
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 472–491
November 4-9, 2025 ©2025 Association for Computational Linguistics

SLOT: Structuring the Output of Large Language Models

Darren Yow-Bang Wang* , Zhengyuan Shen*, Soumya Smruti Mishra
Zhichao Xu, Yifei Teng, Haibo Ding

Amazon Web Services
{ybwang, donshen, soumish, xzhichao, yifeit, hbding}@amazon.com

Abstract

Structured outputs are essential for large lan-
guage models (LLMs) in critical applications
like agents and information extraction. Despite
their capabilities, LLMs often generate outputs
that deviate from predefined schemas, signif-
icantly hampering reliable application devel-
opment. We present SLOT (Structured LLM
Output Transformer), a model-agnostic ap-
proach that transforms unstructured LLM out-
puts into precise structured formats. While
existing solutions predominantly rely on con-
strained decoding techniques or are tightly
coupled with specific models, SLOT employs
a fine-tuned lightweight language model as
a post-processing layer, achieving flexibility
across various LLMs and schema specifica-
tions. We introduce SLOTBENCH, curated by
a data synthesis pipeline alongside a formal
evaluation methodology that quantifies both
schema accuracy and content fidelity. Our re-
sults demonstrate that fine-tuned Mistral-7B
model with constrained decoding achieves near-
perfect schema accuracy (99.5%) and content
similarity (94.0%), outperforming Claude-3.5-
Sonnet by substantial margins (+25 and +20
percentage points, respectively). Notably, even
compact models like Llama-3.2-1B can match
or exceed the structured output capabilities of
much larger proprietary models when equipped
with SLOT, enabling reliable structured genera-
tion in resource-constrained environments.

1 Introduction

The emergence of large language models
(LLMs) (OpenAI, 2023; Gemini, 2023) has led to
a wide range of applications that leverage their
natural language understanding capabilities. In
such applications, developers are often required
to carefully craft prompts to elicit specific and
reliable responses from LLMs, followed by
post-processing of the generated outputs to derive

* Contributed equally.

Figure 1: SLOT converts a textual LLM response into
structured JSON with a pre-defined schema.

structured and precise results (Liu et al., 2023).
This process becomes particularly critical when
LLMs are integrated as components of within more
complex systems, such as for function calling or
multi-agent collaboration, where inaccuracies in
earlier stages can propagate through the workflow,
adversely affecting overall system performance.

An emerging requirement for LLM-based appli-
cations is to support structured output (Lu et al.,
2025; Tam et al., 2024a; Liu et al., 2025; Kulka-
rni and Srikumar, 2025, inter alia). Although cer-
tain proprietary models (e.g., GPT-4o, Hurst et al.,
2024) inherently support structured output through
specialized training and constrained decoding (CD)
mechanisms, replicating this capability for other
LLMs presents significant challenges. In particular,
for platforms that serve a diverse set LLMs and
required to provide day-1 support to new model re-
leases, including open-weight and proprietary mod-
els, post-training each model for structured output
without undermining general purpose performance
is neither feasible nor scalable.

To tackle these challenges, we introduce
SLOT for converting unstructured text into struc-
tured output. Different from existing approaches
that relies on LLM post-training and constrained de-
coding, SLOT post-processes LLM’s unstructured
output by leveraging a lightweight language model,

472

therefore being task and model-agnostic. Specifi-
cally, we fine-tune a lightweight language model
to map unstructured text to the target schema, with-
out modifying the underlying LLM. SLOT ensures
broad compatibility with both current and emerg-
ing models, regardless of their task specialization
or output constraints, effectively bridging the gap
between the generative flexibility of LLMs and the
rigorous structural requirement for downstream in-
tegration in modern software systems. Our main
contributions are as follows:
• We introduce SLOT for structured output conver-

sion applicable to any textual LLM outputs.
• We introduce SLOTBENCH, curated by a syn-

thetic data pipeline to ensure data diversity.
• We present evaluation metrics for SLOT covering

schema accuracy and content similarity.
• We demonstrate lightweight models including

Llama-3.2 (1B/3B) and Mistral-7B outperform
existing solutions across evaluation dimensions
through supervised fine-tuning.

2 Background and Problem Formulation

Structured Output and JSON Schema. In the
context of LLM, the term structured output means
that model-generated content conforms to a pre-
defined, machine readable format rather than free-
form natural language (Dong et al., 2024; Jiang
et al., 2023b; OpenAI, 2024). Generating struc-
tured data from unstructured inputs enables the
ability of LLM-based applications to answer ques-
tions via function calling, extract structured data
and build multi-step agent workflows that allow
LLMs to take actions. One of the most widely-
used structure format is JSON Schema, a declara-
tive language to define structure and constraints for
JSON data. JSON schema maintains a consistent
pattern, making it easier to ensure data validity and
exchange structured data between applications. In
this paper, we focus specifically on JSON schema
due to its wide adoption.

Problem Formulation. We focus on the post-
processing setting (Fig. 1), where we assume ac-
cess to an LLM’s unstructured output. We define
our task as a text-to-structure problem, i.e., to trans-
form an existing LLM’s free-form text output into
a structured format according to a specified JSON
schema. Given x as an input text and f as the
formatting specification, let Mθ be a generative
model parameterized by θ: Mθ(x, f) → y′, and
we seek to optimize the probability distribution

P
(
y|x, f ; θ) where y is the groundtruth structured

output and y′ the model’s structured output. Note
that the input text x typically represents a response
from an LLM rather than a user query. Our post-
processing based method is flexible and does not
require access to model weights of the LLM used to
generate unstructured response, making it suitable
for the case of serving a diverse array of LLMs in
a platform.

3 Evaluation Framework

The evaluation of structured output is inherently
multi-faceted, as structure-wise, the output needs
to adhere to the target JSON schema; while also
not derailing from the unstructured input’s seman-
tic meaning. Therefore, we design our evaluation
framework with the focus on (1) schema accuracy
and (2) content similarity.

Schema Accuracy. We define schema accuracy
as As(y

′ | f): whether the response JSON string
y′ exactly matches the user-demanded schema f in
terms of key strings and value types. To accurately
assess the LLM’s formatting capability, we directly
evaluate response y′. The response y′ must be a
valid JSON string by itself to be considered correct.

Content Similarity. The desired structured out-
put should not derail from the unstructured in-
put in terms of semantic meaning. Assume that
the groundtruth JSON structured output y is pro-
vided, we can compute the content similarity be-
tween groundtruth output y and model’s output
y′ as simC(y, y

′). In practice, we evaluate the
semantic similarity between y and y′. For each
value in the prediction y′, we compute its seman-
tic similarity using a pre-trained Sentence-BERT
model (Reimers and Gurevych, 2019; Zhang et al.,
2020) against the corresponding value (with match-
ing key; including all ancestor keys for nesting
structures) in the groundtruth JSON y. Miss-
ing keys result in a score of 0. The average of
these scores represents the “soft-precision", de-
noted simP (y, y

′). Similarly, we calculate “soft-
recall", denoted simR(y, y

′), by averaging SBERT
scores for gold JSON values against their coun-
terparts in the prediction. The content similar-
ity score is therefore the harmonic mean of soft-
precision and soft-recall (details in Appx. C.2):
simC(y, y

′) = 2× simP (y,y′)×simR(y,y′)
simP (y,y′)+simR(y,y′) .

Additional evaluation dimensions are considered
in related work (see Appx. C). For instance, task

473

performance metrics (Tam et al., 2024b; Beurer-
Kellner et al., 2024; Jiang et al., 2024; Shorten
et al., 2024; Geng et al., 2025) assess impact on
original tasks but may lack generalizability. Com-
putational efficiency metrics, such as latency or
speed-up (Willard and Louf, 2023; Geng et al.,
2025), prioritize algorithmic performance over out-
put quality. Furthermore, JSON validity checks
(Zhou et al., 2023; Beurer-Kellner et al., 2024;
Jiang et al., 2024; Agarwal et al., 2025; Geng et al.,
2025; Li et al., 2024; Xia et al., 2024) ensure syn-
tax but often do not guarantee semantic correctness.
These metrics alone may not simultaneously ad-
dress the dual requirements of structural correct-
ness and semantic preservation to structured output
evaluation, hence are not focused in this work.

4 SLOTBENCH

Figure 2: JSON complexity in different dimensions for
SLOTBENCH.

To enable training and evaluation of SLOT, we
designed a data pipeline (Appx Fig. 5) to repur-
pose existing public datasets for structured out-
put, and synthesize challenging datasets. The main
challenge in creating datasets for text-to-structure
tasks lies in obtaining high-quality (x, f, y) triples
that: (1) cover diverse domains and text styles,
(2) contain valid and well-formed structured out-
puts, and (3) ensure the structured outputs faith-
fully represent information present in the input
text without hallucination. Therefore, we created
SLOTBENCH with a combination of synthetic data
generation and careful curation of public datasets.

Our final dataset consists of a synthetic training
set mixture of 126K examples and multiple test
sets totaling over 9K examples across diverse do-
mains and formats. To analyze the quality of the
synthetic data versus existing public datasets, we
define seven dimensions to characterize the relative
JSON complexity of different datasets, including
depths, number of keys, number of elements, size
(bytes), cyclomatic complexity, schema complexity
and content complexity (details in Appx. D.3), and
the breakdowns can be found from Fig. 2.

SLOTBENCH Splits Train Val Test
WebNLG 13,211 - 2,779
E2E NLG 12,568 - 2,347
WikiBio 25,000 650 2,500
ToTTo ⋄ - - 500
HF GitHub Issues ⋄ - - 1,000
Synthetic ⋆ 126,000 - -
Total 176,779 650 9,126

Table 1: Statistics of the SLOTBENCH. ⋄ refers to par-
tially synthesized for repurposing and ⋆ refers to fully
synthesized.

Test Case Curation. To evaluate LLM Formatter
comprehensively, we curated test sets from 5 public
datasets spanning different domains and complex-
ity levels (details in Appx. D.1):
• WebNLG (Zhou and Lampouras, 2020): Orig-

inally designed for structured data-to-text gen-
eration, the dataset contains factual descriptions
about entities and their relationships.

• E2E NLG (Puzikov and Gurevych, 2018): Con-
tains restaurant domain descriptions paired with
attribute-value structures.

• WikiBio (Lebret et al., 2016): A dataset of bi-
ographical sentences paired with infobox-style
structured data from Wikipedia.

• ToTTo (Parikh et al., 2020): A table-to-text
dataset containing highlighted tables cells paired
with corresponding descriptive sentences.

• HF GitHub Issues: To evaluate model perfor-
mance on complex, real-world scenarios, we cu-
rated a challenging benchmark from Hugging
Face Transformers GitHub issues1. This dataset
captures diverse software issue elements (e.g.,
system/error information, reproduction steps,
code snippets, expected behaviors). It exhibits
significantly higher complexity in structure and
technical content compared to existing bench-
marks, providing a rigorous test of the model’s

1https://api.github.com/repos/huggingface/
transformers/issues

474

https://api.github.com/repos/huggingface/transformers/issues
https://api.github.com/repos/huggingface/transformers/issues

Figure 3: Our proposed framework for post-training and
hosting an LLM for structured output generation.

ability to handle intricate nested structures and
technical inputs.

Training Data Creation. We use Claude-3.5-
Sonnet to systematically generate synthetic train-
ing data, ensuring broad coverage by sampling
across variables related to diversity and quality
(Appx. D.2). For each generation batch, we first
sample 1-3 demonstrations from the WikiBio train-
ing set. We then randomly sample values for each
control dimension to define target characteristics,
incorporating these into our prompt (Appx. F.2)
to guide generation. The prompt encourages for-
mat adherence, content diversity, and semantic co-
herence between input text and structured output.
Temperature sampling (T ∈ [0, 0.5]) is applied to
balance creativity and consistency.

Data Filtering. To ensure data quality, we use
a two-stage validation process to filter generated
triples that are unfactual or contain hallucinations.
Stage 1 checks format validity, ensuring f (schema)
and y (output) are parsable, structurally consistent,
and adhere to type agreements and required struc-
tural relationships. Because content validity is chal-
lenging for semantic text-to-structure tasks where
rule-based/fuzzy matching fails, Stage 2 employs
an LLM validator. This validator checks if each
structured output field’s content is reasonably infer-
able from the source text (x). This data synthesis
pipeline yielded 126K high-quality training exam-
ples for training SLOT (§ 6).

5 Training SLOT

Our primiary goal is to train SLOT to accurately
transform unstructured text input into a structured

representation conforming to a specified schema,
optimizing for the evaluation metrics detailed in
§ 3, which include structural validity, schema com-
pliance, and semantic accuracy of extracted values.
To achieve this, we employ Supervised Fine-tuning
(SFT) as our core training strategy.

We build SLOT upon a pre-trained decoder lan-
guage model (e.g., Llama-3 and Mistral), which
provides a strong foundation in natural language
understanding and generation, significantly reduc-
ing the need for training from scratch and allowing
us to focus computational resources on adapting
the model to the specific nuances of the text-to-
structure task. The autoregressive nature is well-
suited for generating sequential structured outputs
like JSON strings token by token.

We adopt SFT due to its effectiveness in teach-
ing pre-trained models to follow instructions and
generate outputs in specific formats when provided
with high-quality input-output examples (Ouyang
et al., 2022). Our task perfectly fits this paradigm:
we have source text (xi), a clear instruction em-
bedded within the schema specification (fi), and
a desired target output (yi). The training dataset
D = {(xi, fi, yi)}, synthesized as described in § 4,
forms the basis for SFT. During fine-tuning, each
triple (xi, fi, yi) from dataset D is formatted into
an instruction-following prompt. A typical format
concatenates the task instruction, the target schema,
and the input text into a single input sequence for
the model. We then apply the standard causal lan-
guage modeling loss on the target structured output
yi only, masking out the input prompt tokens from
loss calculation.

Unlike prior works (Jiang et al., 2024; Agar-
wal et al., 2025, inter alia), our approach is task-
agnostic – SLOT decouples formatting from task-
specific generation, which ensures compatibility
with any LLM output for any task without modifica-
tion, while avoiding generation quality degradation
from constrained decoding. This positions SLOT as
a universal adapter between general-purpose LLMs
and structured data applications.

6 Experiments

6.1 Experiment Setting

Methods Compared. We evaluate SLOT against
state-of-the-art methods for structured output gener-
ation, which fall into two categories. First, we use
proprietary LLMs, specifically Claude-3.5-Haiku
and Claude-3.5-Sonnet (Anthropic, 2024a,b) with

475

Schema Accuracy (%) Content Similarity (%)
SLOTBENCH
Test Splits

Web-
NLG

E2E-
NLG

Wiki-
Bio ToTTo

GitHub
Issues Avg

Web-
NLG

E2E-
NLG

Wiki-
Bio ToTTo

GitHub
Issues Avg

LLM Baselines
Claude-3.5-Haiku
+Prompting 50.3 98.9 99.3 99.0 97.6 89.0 40.5 90.4 86.8 96.4 89.4 80.7
Claude-3.5-Sonnet
+Prompting 11.8 77.0 97.8 91.7 95.3 74.7 9.4 92.8 85.4 91.1 90.9 73.9
Qwen-2.5-14B
+Prompting 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0
+OT 100 100 100 99.8 76.7 95.3 79.3 89.8 86.7 96.8 70.4 84.6
+XG 100 100 100 99.4 97.1 99.4 53.5 86.6 86.7 96.8 89.4 82.6
Qwen-2.5-32B
+Prompting 0.0 0.0 0.0 0.0 0.5 0.1 0.0 0.0 0.0 0.0 0.5 0.1
+OT 100 100 100 99.6 76.4 95.2 80.7 93.9 91.1 97.6 70.2 86.7
+XG 100 100 100 99.4 97.1 99.3 80.6 93.8 91.0 97.5 89.6 90.5
Llama-3.3-70B
+Prompting 3.2 54.1 32.6 28.8 0.9 23.9 2.6 48.5 30.7 28.4 0.9 22.2
+OT 100 100 100 99.0 78.0 95.4 80.2 85.3 90.6 97.4 70.3 84.8
+XG 100 100 100 98.8 99.1 99.6 80.3 85.7 91.0 97.4 91.0 89.1
SLOT
Llama-3.2-1B
+Prompting 0.0 0.0 42.2 2.1 3.5 9.6 0.1 0 32.0 1.5 1.7 7.1
+SFT 97.7 100 99.4 95.4 52.2 88.9 79.8 98.2 94.3 90.0 46.2 81.7
+OT 100 100 99.9 97.9 56.9 90.9 72.2 76.1 85.6 93.7 51.3 75.8
+SFT & OT 100 99.5 100 100 15.4 83.0 83.3 94.6 93.9 95.7 13.4 76.2
+XG 100 100 99.8 91.7 78.1 93.9 68.6 76.3 83.7 90.3 73.4 78.4
+SFT & XG 100 100 100 100 81.2 96.2 82.3 98.2 94.3 95.3 78.1 89.6
Llama-3.2-3B
+Prompting 0.0 0.0 1.5 0.0 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0
+SFT 99.8 99.7 100 98.6 75.6 94.7 85.3 98.1 95.9 94.7 69.4 88.7
+OT 100 100 100 96.5 56.9 90.7 74.3 76.1 87.4 95.3 56.3 77.9
+SFT & OT 99.3 99.8 99.4 99.0 36.9 86.9 84.9 96.0 94.4 95.5 34.7 81.1
+XG 100 100 99.6 98.3 84.0 96.4 67.0 77.5 84.0 94.4 77.7 80.1
+SFT & XG 100 100 100 99.8 91.5 98.2 85.5 98.1 95.6 96.7 86.1 92.4
Mistral-7B-v0.2
+Prompting 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
+SFT 99.5 100 100 98.3 93.1 98.2 87.0 98.7 96.2 96.7 85.9 92.9
+OT 100 100 99.9 88.6 60.7 89.8 73.8 83.0 86.3 87.6 58.4 77.8
+SFT & OT 100 100 99.9 97.9 70.9 93.7 86.6 94.9 94.7 96.0 64.7 87.4
+XG 100 100 99.8 88.2 73.1 92.2 74.0 82.9 85.9 87.9 70.2 80.2
+SFT & XG 100 100 100 99.8 97.5 99.5 87.4 98.7 96.3 98.0 89.7 94.0

Table 2: Average percentage schema accuracy and content similarity of different base and fine-tuned LLMs. OT
denotes Outlines, XG denotes XGrammar.

standard prompting to establish strong baselines.
Second, we experiment with open-weight LLMs
with constrained decoding, including Qwen-2.5
(14B, 32B) (Qwen et al., 2025) and Llama-3.3-
70B (Grattafiori et al., 2024) using two leading con-
strained decoding frameworks: Outlines (Willard
and Louf, 2023) and XGrammar (Dong et al.,
2024). We also include direct prompting results for
reference in Appx. F.1.

We employ three lightweight language mod-
els in their Instruct versions: Llama-3.2 (1B
/ 3B) (Grattafiori et al., 2024), and Mistral-7B-
v0.2 (Jiang et al., 2023a). We also evaluate
SLOT combined with constrained decoding meth-
ods in the inference time, which provides an op-
portunity to understand how model-based and rule-
based approaches can complement each other.

Training Setup. For SLOT training, we employ
LoRA (Hu et al., 2022) fine-tuning with a standard
language modeling objective on completions. We
selected checkpoints based on a balanced metric
combining schema accuracy and content similarity,
evaluated on a validation subset of 650 instances
from WikiBio. For inference, We used vLLM
(Kwon et al., 2023) to optimize generation through-
put. The complete hyperparameters for both train-
ing and inference are detailed in Appx Table 5.

6.2 Results and Analysis

Schema Accuracy and Content Similarity.
Shown in Table 2, proprietary models establish
competitive baseline performance, with Claude-
3.5-Sonnet achieving 74.7% schema accuracy and
73.9% content similarity on average. However,
even these frontier models fall short of the reliabil-

476

ity required for applications like function calling,
suggesting potential limitations in pure prompting
approaches. In contrast, small open-weight models
perform extremely poorly via direct prompting –
Llama-3.2-1B, 3B, and Mistral-7B-v0.2 achieve
near-zero schema accuracy and content similarity
across most datasets.

SLOT significantly improves performance via
supervised fine-tuning. The 1B parameter model
achieves 88.9% overall schema accuracy (com-
parable to Claude-3.5-Haiku) and 81.7% content
similarity (exceeding Claude-3.5-Sonnet’s 73.9%).
More impressively, Mistral-7B-v0.2 reaches 98.2%
schema accuracy and 92.9% content similarity,
surpassing all proprietary baselines on both met-
rics. These results demonstrate that specialized
training can outperform general capabilities of
much larger models for structured generation tasks.
Dataset complexity significantly impacts perfor-
mance across all methods. The GitHub Issues
dataset is the most challenging across all config-
urations, given the prevalence of deeply nested
structures and technical content (Fig. 2). Yet here
SLOT shows remarkable gains – Mistral-7B im-
proves from 0% to 93.1% schema accuracy. Con-
versely, E2E NLG consistenly yields the highest
content similarity across models, likely due to its
simpler descriptions with well-defined attributes.

Synergy Between Fine-Tuning and Constrained
Decoding. We observe that constrained decoding
methods reveal interesting algorithmic tradeoffs
between structure and semantics. XGrammar per-
forms markedly better on complex nested structures
(achieving 97.1% schema accuracy on GitHub is-
sues with Qwen-2.5-32B compared to Outlines’
76.4%). This advantage stems from XGrammar’s
adaptive token caching strategy that efficiently han-
dles context-independent tokens and context ex-
pansion. The byte-level pushdown automaton ap-
proach with persistent execution stack enables effi-
cient validation of complex structures, while still
allowing for semantic coherence during genera-
tion. Outlines offers efficiency advantage through
finite-state indexing for simpler structures, but its
traditional pushdown automaton faces scalability
challenges with deeply nested structures – resulting
timeout errors with complex schemas.

Most significantly, combining SLOT with con-
strained decoding creates a powerful synergy.
Mistral-7B-v0.2 with SFT + XGrammar achieves
near-perfect results: 99.5% schema accuracy and

94.0% content similarity. Even the 1B parame-
ter model reaches impressive performance (96.2%
schema accuracy, 89.6% content similarity) with
this combined approach, demonstrating that struc-
tured output generation does not necessarily re-
quire massive model sizes, but rather targeted train-
ing and appropriate constraints. This synergy oc-
curs because SFT teaches the model to inherently
produce well-structured and semantically appropri-
ate outputs, while constrained decoding provides
a complementary guarantee of structural validity,
which is particularly pronounced in smaller models.
Detailed error analysis is in Appx. E.2.

Impact of Training Data. Our detailed anal-
ysis of training data contributions (Table 3, Ta-
ble 4) reveals that the diversity and complexity
of synthetic data plays a crucial role in SLOT’s suc-
cess. For instance, with Llama-3.2-1B, public data
alone achieves 63.1% schema accuracy and 68.3%
content similarity. Synthetic data alone performs
substantially better for schema accuracy, reaching
89.6%, while achieving 74.4% content similarity.
The combined dataset demonstrates complemen-
tary benefits, achieving 89.0% schema accuracy
and 81.7% content similarity, with particular gains
in content preservation. This pattern holds across
model sizes, with the strongest results typically
coming from the combined dataset.

7 Related Works

To enable the model generation to conform to a tar-
get JSON schema, existing works mainly opted for
three approaches, which have their strengths and
weaknesses. Direct prompting, although straight-
forward, often yields lower performance (Tam
et al., 2024b). Constrained decoding methods, ex-
emplified by works like (Dong et al., 2024; OpenAI,
2024), does not rely on dedicated post-training, but
only supports limited types of JSON schemas and
may underperform training-based methods. Post-
training generally improves performance compared
to constrained decoding, but also requires access to
model weights. The training itself adds complexity,
and is not scalable for adaptation to new LLMs.
More details can be found in Appx. A.

8 Conclusion

We introduced SLOT, a model-agnostic and task-
agnostic framework for generating structured out-
puts from LLMs. While our solution can be theoret-
ically applied to any specified schema, we focused

477

on JSON as our primary use case and developed
two objective metrics – Schema Accuracy and Con-
tent Similarity – to evaluate the quality of gener-
ated JSON outputs. Through a comprehensive data
pipeline, we synthesized and validated training data
spanning diverse text lengths, styles, industry verti-
cals, and JSON complexity levels. We demonstrate
that with supervised fine-tuning, lightweight open-
weight language models can outperform larger pro-
prietary models and exhibit strong generalizability.
This finding underscores the efficacy of training-
based approaches for structured output generation,
potentially improving the accessibility of structured
data in real-world applications. Future work will fo-
cus on investigating more sophisticated data synthe-
sis strategies and exploring advanced post-training
methodologies, including preference tuning and
reinforcement learning.

Limitations

Our data synthesis approach primarily focused on
cases where the input schema and gold structured
output capture the majority of entities and rela-
tionships present in the input text. We did not
extensively explore scenarios where only a subset
of the textual information needs to be structured,
or where complex filtering or transformation of
the input content is required. We conducted la-
tency analysis but did not reported in detail since
the results can be hardware-dependent and may
not generalize across different computing environ-
ments. Finally, we note that an ideal evaluation of
SLOT would involve end-to-end testing, where the
input text is generated by a preceding LLM instead
of using arbitrary texts that emulate LLM output.
These limitations suggest potential areas for future
work in handling more diverse LLM output and
structuring requirements.

References
Bhavik Agarwal, Ishan Joshi, and Viktoria Rojkova.

2025. Think inside the json: Reinforcement strat-
egy for strict llm schema adherence. Preprint,
arXiv:2502.14905.

Anthropic. 2024a. Claude 3.5 haiku.

Anthropic. 2024b. Claude 3.5 sonnet.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev.
2024. Guiding llms the right way: Fast, non-invasive
constrained generation. Preprint, arXiv:2403.06988.

Harrison Chase. 2022. LangChain.

Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ruihang
Lai, Ziyi Xu, Yilong Zhao, and Tianqi Chen. 2024.
Xgrammar: Flexible and efficient structured gener-
ation engine for large language models. Preprint,
arXiv:2411.15100.

Gemini. 2023. Gemini: a family of highly capable mul-
timodal models. arXiv preprint arXiv:2312.11805.

Saibo Geng, Hudson Cooper, Michał Moskal, Samuel
Jenkins, Julian Berman, Nathan Ranchin, Robert
West, Eric Horvitz, and Harsha Nori. 2025. Json-
schemabench: A rigorous benchmark of struc-
tured outputs for language models. Preprint,
arXiv:2501.10868.

Georgi Gerganov. 2023. llama.cpp.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

GuidanceAI. 2023. Guidance.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. 2022. Lora: Low-rank adap-
tation of large language models. ICLR, 1(2):3.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Albert Q Jiang, A Sablayrolles, A Mensch, C Bamford,
D Singh Chaplot, Ddl Casas, F Bressand, G Lengyel,
G Lample, L Saulnier, et al. 2023a. Mistral 7b. arxiv.
arXiv preprint arXiv:2310.06825, 10.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji rong Wen. 2023b. Structgpt:
A general framework for large language model to rea-
son over structured data. In Conference on Empirical
Methods in Natural Language Processing.

Xin Jiang, Xiang Li, Wenjia Ma, Xuezhi Fang, Yiqun
Yao, Naitong Yu, Xuying Meng, Peng Han, Jing
Li, Aixin Sun, and Yequan Wang. 2024. Sketch:
A toolkit for streamlining llm operations. Preprint,
arXiv:2409.03346.

Atharv Kulkarni and Vivek Srikumar. 2025. Re-
inforcing code generation: Improving text-to-sql
with execution-based learning. arXiv preprint
arXiv:2506.06093.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

478

https://arxiv.org/abs/2502.14905
https://arxiv.org/abs/2502.14905
https://www.anthropic.com/claude/haiku
https://www.anthropic.com/news/claude-3-5-sonnet
https://arxiv.org/abs/2403.06988
https://arxiv.org/abs/2403.06988
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2411.15100
https://arxiv.org/abs/2411.15100
https://arxiv.org/abs/2501.10868
https://arxiv.org/abs/2501.10868
https://arxiv.org/abs/2501.10868
https://github.com/ggerganov/llama.cpp
https://github.com/guidance-ai/guidance
https://api.semanticscholar.org/CorpusID:258714753
https://api.semanticscholar.org/CorpusID:258714753
https://api.semanticscholar.org/CorpusID:258714753
https://arxiv.org/abs/2409.03346
https://arxiv.org/abs/2409.03346

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1203–1213, Austin,
Texas. Association for Computational Linguistics.

Diya Li, Yue Zhao, Zhifang Wang, Calvin Jung, and Zhe
Zhang. 2024. Large language model-driven struc-
tured output: A comprehensive benchmark and spa-
tial data generation framework. ISPRS International
Journal of Geo-Information, 13(11).

Jason Liu. 2022a. instructor.

Jerry Liu. 2022b. LlamaIndex.

Michael Xieyang Liu, Frederick Liu, Alexander J. Fi-
annaca, Terry Koo, Lucas Dixon, Michael Terry, and
Carrie J. Cai. 2024. “we need structured output”:
Towards user-centered constraints on large language
model output. In Extended Abstracts of the CHI Con-
ference on Human Factors in Computing Systems,
CHI ’24, page 1–9. ACM.

Shu Liu, Sumanth Hegde, Shiyi Cao, Alan Zhu,
Dacheng Li, Tyler Griggs, Eric Tang, Akshay Ma-
lik, Kourosh Hakhamaneshi, Richard Liaw, Philipp
Moritz, Matei Zaharia, Joseph E. Gonzalez, and Ion
Stoica. 2025. Skyrl-sql: Matching gpt-4o and o4-
mini on text2sql with multi-turn rl.

Xiaoxia Liu, Jingyi Wang, Jun Sun, Xiaohan Yuan, Guo-
liang Dong, Peng Di, Wenhai Wang, and Dongxia
Wang. 2023. Prompting frameworks for large lan-
guage models: A survey. ArXiv, abs/2311.12785.

Ya-Ting Lu, Haolun Li, Xin Cong, Zhong Zhang, Yesai
Wu, Yankai Lin, Zhiyuan Liu, Fangming Liu, and
Maosong Sun. 2025. Learning to generate structured
output with schema reinforcement learning. ArXiv,
abs/2502.18878.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

OpenAI. 2024. Introducing structured outputs in the
api.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730–27744.

Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann,
Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and
Dipanjan Das. 2020. ToTTo: A controlled table-to-
text generation dataset. In Proceedings of EMNLP.

Yevgeniy Puzikov and Iryna Gurevych. 2018. E2E
NLG challenge: Neural models vs. templates. In
Proceedings of the 11th International Conference
on Natural Language Generation, pages 463–471,
Tilburg University, The Netherlands. Association for
Computational Linguistics.

Qwen, An Yang, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical
report. Preprint, arXiv:2412.15115.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
Preprint, arXiv:1908.10084.

Connor Shorten, Charles Pierse, Thomas Benjamin
Smith, Erika Cardenas, Akanksha Sharma, John
Trengrove, and Bob van Luijt. 2024. Structuredrag:
Json response formatting with large language models.
Preprint, arXiv:2408.11061.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-
Yen Lin, Hung-yi Lee, and Yun-Nung Chen. 2024a.
Let me speak freely? a study on the impact of format
restrictions on large language model performance. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: Industry
Track, pages 1218–1236, Miami, Florida, US. Asso-
ciation for Computational Linguistics.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-
Yen Lin, Hung yi Lee, and Yun-Nung Chen. 2024b.
Let me speak freely? a study on the impact of format
restrictions on performance of large language models.
Preprint, arXiv:2408.02442.

Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang,
Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang.
2023a. Gpt-ner: Named entity recognition via large
language models. Preprint, arXiv:2304.10428.

Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze
Chen, Yuansen Zhang, Rui Zheng, Junjie Ye,
Qi Zhang, Tao Gui, Jihua Kang, Jingsheng Yang,
Siyuan Li, and Chunsai Du. 2023b. Instructuie:
Multi-task instruction tuning for unified information
extraction. Preprint, arXiv:2304.08085.

Brandon T. Willard and Rémi Louf. 2023. Effi-
cient guided generation for large language models.
Preprint, arXiv:2307.09702.

Congying Xia, Chen Xing, Jiangshu Du, Xinyi Yang,
Yihao Feng, Ran Xu, Wenpeng Yin, and Caim-
ing Xiong. 2024. Fofo: A benchmark to eval-
uate llms’ format-following capability. Preprint,
arXiv:2402.18667.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

479

https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.18653/v1/D16-1128
https://doi.org/10.3390/ijgi13110405
https://doi.org/10.3390/ijgi13110405
https://doi.org/10.3390/ijgi13110405
https://github.com/instructor-ai/instructor
https://doi.org/10.5281/zenodo.1234
https://doi.org/10.1145/3613905.3650756
https://doi.org/10.1145/3613905.3650756
https://doi.org/10.1145/3613905.3650756
https://api.semanticscholar.org/CorpusID:265308881
https://api.semanticscholar.org/CorpusID:265308881
https://api.semanticscholar.org/CorpusID:276617592
https://api.semanticscholar.org/CorpusID:276617592
https://openai.com/index/ introducing-structured-outputs-in-the-api/
https://openai.com/index/ introducing-structured-outputs-in-the-api/
https://doi.org/10.18653/v1/W18-6557
https://doi.org/10.18653/v1/W18-6557
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2408.11061
https://arxiv.org/abs/2408.11061
https://doi.org/10.18653/v1/2024.emnlp-industry.91
https://doi.org/10.18653/v1/2024.emnlp-industry.91
https://arxiv.org/abs/2408.02442
https://arxiv.org/abs/2408.02442
https://arxiv.org/abs/2304.10428
https://arxiv.org/abs/2304.10428
https://arxiv.org/abs/2304.08085
https://arxiv.org/abs/2304.08085
https://arxiv.org/abs/2304.08085
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2402.18667
https://arxiv.org/abs/2402.18667
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

Giulio Zhou and Gerasimos Lampouras. 2020.
WebNLG challenge 2020: Language agnostic delex-
icalisation for multilingual RDF-to-text generation.
In Proceedings of the 3rd International Workshop
on Natural Language Generation from the Semantic
Web (WebNLG+), pages 186–191, Dublin, Ireland
(Virtual). Association for Computational Linguistics.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. 2023. Instruction-following evaluation for
large language models. Preprint, arXiv:2311.07911.

480

https://aclanthology.org/2020.webnlg-1.22/
https://aclanthology.org/2020.webnlg-1.22/
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

A Related Work Details

Direct Prompting. The most straightforward approach involves explicitly instructing LLMs to generate
structured outputs, supported by frameworks like LangChain (Chase, 2022), LlamaIndex (Liu, 2022b),
and Instructor (Liu, 2022a). However, Tam et al. (2024b) demonstrated that this approach often produces
invalid structures and can lower performance on reasoning-intensive tasks due to the additional cognitive
load of format adherence.

Constrained Decoding. To guarantee structural validity, constrained decoding techniques (Beurer-
Kellner et al., 2024; Liu et al., 2024) guide the generation process using formal grammars. Tools like
llama.cpp (Gerganov, 2023), Guidance (GuidanceAI, 2023), XGrammar (Dong et al., 2024), and Outlines
(Willard and Louf, 2023) implement this approach. While effective at ensuring valid outputs, these
methods typically increase inference latency and may impact task performance due to the restrictive nature
of the constraints.

Post-Training Approaches. Task-specific fine-tuning has shown success in structured output generation,
particularly for tasks like named-entity recognition (Wang et al., 2023a) and information extraction (Wang
et al., 2023b). However, this approach requires separate training efforts for each task-format combination,
limiting its scalability.

Hybrid Solutions. Recent work has explored combining multiple techniques to balance reliability and
performance. Jiang et al. (2024) demonstrated success in fine-tuning with diverse schema datasets, while
Agarwal et al. (2025) combined reinforcement learning with supervised fine-tuning for schema-constrained
tasks.

As illustrated in Appx Fig. 4, these existing approaches are typically tied to specific LLMs, requiring
reimplementation for each new model. Additionally, previously launched LLMs cannot benefit from
these improvements without significant modification. Our proposed SLOT addresses these limitations
by decoupling output formatting from the natural language task, offering a model-agnostic solution that
maintains task performance while ensuring structural validity.

Figure 4: Approaches for LLM structured outputs. a) prompting LLM form structured output, b) constrained
decoding, c) post-training, and d) SLOT.

B Detailed Experiment Results

We present the full experiment results in Table 3 and Table 4.

481

LLM & Settings SFT dataset Schema Accuracy (%)
WebNLG E2E NLG WikiBio ToTTo GitHub Avg

Llama 3.2 11B - 0.47 0.13 45.88 60.58 15.18 24.45
Llama 3.2 1B - 0 0 42.20 2.07 3.52 9.56

Public 99.28 91.86 99.44 13.49 11.26 63.07
Synthetic 99.42 99.96 98.4 95.23 54.87 89.58
Public & Synthetic 97.73 100 99.44 95.44 52.16 88.95

Llama 3.2 1B + Outlines - 100 100 99.88 97.93 56.88 90.94
Public & Synthetic 100 99.53 99.96 100 15.38 82.97

Llama 3.2 1B + XGrammar - 100 100 99.8 91.7 78.09 93.92
Public & Synthetic 100 100 100 100 81.21 96.24

Llama 3.2 3B - 0 0 1.48 0 0.10 0.32
Public 99.46 100 99.88 28.22 34.07 72.33
Synthetic 100 99.79 98.92 94.81 82.31 95.17
Public & Synthetic 99.75 99.7 99.96 98.55 75.58 94.71

Llama 3.2 3B + Outlines - 100 100 100 96.47 56.88 90.67
Public & Synthetic 99.28 99.83 99.44 98.96 36.88 86.88

Llama 3.2 3B + XGrammar - 100 100 99.6 98.34 84.02 96.39
Public & Synthetic 100 100 99.96 99.79 91.46 98.24

Mistral 7B (v0.2) - 0 0 0 0 0 0
Public 100 100 99.6 11.83 20.7 66.43
Synthetic 99.03 99.96 97.88 98.76 88.14 96.75
Public & Synthetic 99.5 100 99.96 98.34 93.07 98.17

Mistral 7B (v0.2) + Outlines - 100 100 99.92 88.59 60.70 89.84
Public & Synthetic 100 100 99.92 97.93 70.85 93.74

Mistral 7B (v0.2) + XGrammar - 100 100 99.8 88.17 73.07 92.21
Public & Synthetic 100 100 100 99.79 97.49 99.46

Table 3: Schema accuracy of different base and fine-tuned LLMs

LLM & Settings SFT dataset Content Similarity (%)
WebNLG E2E NLG WikiBio ToTTo GitHub Avg

Llama 3.2 11B - 0.42 0.20 35.63 59.30 9.90 21.09
Llama 3.2 1B - 0.08 0 32.03 1.54 1.69 7.07

Public 80.59 89.91 94.35 51.13 25.48 68.29
Synthetic 74.46 75.51 82.78 90.68 48.77 74.44
Public + Synthetic 79.84 98.15 94.28 89.95 46.24 81.69

Llama 3.2 1B + Outlines - 72.17 76.13 85.61 93.68 51.32 75.78
Public + Synthetic 83.34 94.62 93.87 95.73 13.43 76.20

Llama 3.2 1B + XGrammar - 68.58 76.29 83.67 90.25 73.38 78.43
Public + Synthetic 82.32 98.17 94.31 95.32 78.09 89.64

Llama 3.2 3B - 0 0 0.02 0 0 0
Public 84.87 98.3 95.5 79.48 50.99 81.83
Synthetic 78.42 81.51 85.56 91.35 74.86 82.34
Public + Synthetic 85.32 98.08 95.88 94.73 69.43 88.69

Llama 3.2 3B + Outlines - 74.3 76.06 87.36 95.26 56.25 77.85
Public + Synthetic 84.93 96.01 94.4 95.45 34.67 81.09

Llama 3.2 3B + XGrammar - 67 77.49 84.02 94.42 77.65 80.12
Public + Synthetic 85.53 98.06 95.63 96.73 86.14 92.42

Mistral 7B (v0.2) - 0 0 0 0 0 0
Public 85 97.79 95.86 37.25 25.49 68.28
Synthetic 77.91 85.4 86 96.45 81.66 85.48
Public + Synthetic 87 98.72 96.24 96.73 85.94 92.93

Mistral 7B (v0.2) + Outlines - 73.76 82.96 86.28 87.61 58.44 77.81
Public + Synthetic 86.6 94.88 94.69 96 64.66 87.37

Mistral 7B (v0.2) + XGrammar - 73.95 82.93 85.93 87.92 70.16 80.18
Public + Synthetic 87.42 98.73 96.25 98.01 89.71 94.02

Table 4: Content similarity of different base and fine-tuned LLMs

C Evaluation Details

C.1 Existing evaluation metrics for JSON structured outputs from LLMs

Task performance. This approach treats structured output as an additional requirement alongside
the original task (e.g., reasoning or information extraction). Researchers measure the impact of this
requirement by comparing performance metrics (such as answer accuracy) with and without structured
output constraints, or across different required formats. However, this evaluation method is task-specific
and measures the LLM’s ability to provide structured outputs for particular tasks rather than its general

482

formatting capability (e.g., in Tam et al. (2024a), Beurer-Kellner et al. (2024), Jiang et al. (2024), Shorten
et al. (2024), Geng et al. (2025) etc.).

Latency or speed-up. Structured output requirements demand additional processing during next-token
generation and/or constrained decoding. Works focusing on algorithmic efficiency often measure either
latency (compared to baseline without structured output requirements) or speed-up (compared to other
structured output tools) (e.g., in Willard and Louf (2023), Geng et al. (2025) etc.).

JSON validity. Many studies evaluate whether the LLM’s responses are valid JSON, e.g. Zhou et al.
(2023), Beurer-Kellner et al. (2024), Jiang et al. (2024), Agarwal et al. (2025). Some examine schema
compliance (e.g. Geng et al. (2025)) or value accuracy using exact match (Agarwal et al. (2025)) or edit
distance (Li et al. (2024)). While some benchmarks like Xia et al. (2024) relied on LLM-as-a-Judge
(LLMaaJ) to evaluate the generated structured output’s format and/or content validity, this approach’s
non-deterministic nature makes it unsuitable for industrial applications involving LLM agents or function
calling.

C.2 Details on content similarity metric

The content similarity score in this work is defined as the harmonic mean of soft-precision and soft-recall:

simC(y, y
′) = 2× simP (y, y

′) · simR(y, y
′)

simP (y, y′) + simR(y, y′)

There are several rationales behind the design choices of our content similarity. First, if we simply
concatenate all the values into one large string, not only the order of concatenation is not trivial, such
metric could be dominated by values of very long strings. Consider:

Gold:

{
"error": "ValueError: This is a sample error

message",
"traceback": "Traceback (most recent call

last):"
// a very long error message

}

Prediction:

{
"error": "ValueError: This is a sample error

message",
"traceback": ""

}

In contrary, the pairwise SBERT works even when the numbers of entities in ground truth and prediction
are different, and also weighs each value uniformly disregarding its length.

Second, requiring exact key matches, rather than using edit distances as in Li et al. (2024), helps identify
cases where values are incorrectly swapped between similar keys. Here is one example we observed from
the E2E NLG dataset:

Text:

"Near The Rice Boat you can visit coffee shop called Giraffe."

Gold:

{
"name": "Giraffe",
"eatType": "coffee shop",
"near": "The Rice Boat"

}

Prediction:

{
"name": "The Rice Boat",
"eatType": "coffee shop",
"near": "Giraffe"

}

In such cases, particularly for agent chaining and function calling applications, attributing values to
incorrect keys represents a failure to follow user intent and should be penalized.

483

Figure 5: Data curation pipeline for synthetic training data and partially synthetic test data.

D Dataset Details

We benchmark SPOT on five public datasets, recast into a text-to-JSON formulation.

D.1 Dataset Curation Details and Examples
WebNLG [License: CC BY-NC-SA 4.0] (DBpedia Triples → Text) In the original dataset, each
instance contains data/text pairs where the data is a set of triples extracted from DBpedia, and the text is a
verbalisation of these triples. We use the WebNLG v3.0 dataset of 25K RDF triple sets each paired with
3–7 verbalizations. We converted the triplets into a JSON which described the text / subject.
{

"input_text ": "The album 1969: The Velvet Underground Live is preceded by the Velvet Underground album
Squeeze , which was followed by The Quine Tapes.",

"json_schema ": {
"type": "object",
"properties ": {

"category ": {
"type": "string"

},
"subject ": {

"type": "string"
},
"properties ": {

"type": "object",
"properties ": {

"precededBy ": {
"type": "string"

},
"followedBy ": {

"type": "string"
}

},
"required ": [" precededBy", "followedBy "],
"additionalProperties ": false

}
},
"required ": [" category", "subject", "properties "],
"additionalProperties ": false

},
"gold": {

"category ": "MusicalWork",
"subject ": "Bootleg Series Volume 1: The Quine Tapes",
"properties ": {

"precededBy ": "Squeeze (The Velvet Underground album)",
"followedBy ": "1969: The Velvet Underground Live"

}
}

}

E2E NLG [License: CC-BY-4.0] (Restaurant Attributes → Text) The original dataset is an English
benchmark dataset for data-to-text models that verbalize a set of 2-9 key-value attribute pairs in the
restaurant domain. Contains restaurant domain descriptions paired with attribute-value structures. This is
also one of the dataset that was reversed engineered to text-to-json.
{

484

https://spdx.org/licenses/CC-BY-NC-4.0
https://spdx.org/licenses/CC-BY-SA-4.0.html

"input_text ": "The Blue Spice is a pub located by the riverside , near the Rainbow Vegetarian Cafe. It is
not child friendly.",

"json_schema ": {
"type": "object",
"properties ": {

"name": {
"type": "string"

},
"eatType ": {

"type": "string"
},
"area": {

"type": "string"
},
"familyFriendly ": {

"type": "string"
},
"near": {

"type": "string"
}

},
"required ": ["name", "eatType", "area", "familyFriendly", "near"],
"additionalProperties ": false

},
"gold": {

"name": "Blue Spice",
"eatType ": "pub",
"area": "riverside",
"familyFriendly ": "no",
"near": "Rainbow Vegetarian Cafe"

}
}

WikiBio [License: CC-BY-SA-3.0] (Infobox → Intro Paragraph) The original Dataset contains 728K
biographies extracted from Wikipedia containing the first paragraph of the biography and the tabular
infobox. This dataset was in json format but not in out desired format to json schema format. We convert
the infobox key–value table into a nested JSON schema aligned with first-paragraph content. We randomly
sampled 2,500 examples from its test set, providing evaluation on biographical information extraction
with diverse schema complexity.
{

"input_text ": "miroslav popov -lrb - born 14 june 1995 in dvur kralove nad labem -rrb - is a czech grand
prix motorcycle racer . he currently races in the fim cev moto2 championship for montaze broz racing
team aboard a suter .",

"json_schema ": {
"type": "object",
"properties ": {

"birth_date ": {
"type": "string"

},
"name": {

"type": "string"
}

},
"required ": [" birth_date", "name"],
"additionalProperties ": false

},
"gold": {

"birth_date ": "14 june 1995" ,
"name": "miroslav popov"

}
}

ToTTo [License: CC-BY-SA-3.0] (Table → Text) We sampled 500 examples from the challenge split
of ToTTo, a table-to-text dataset where reference texts are annotated based on Wikipedia tables. Since
the source tables often contain information beyond the referenced text, we employed LLM annotation to
synthesize JSON schema and structured output with further validation and filtering to ensure the structured
data strictly adhere to the text content.
{

"input_text ": "Cypresses are numbered B.152 and date from 1887." ,
"json_schema ": {

"type": "object",
"properties ": {

"composition ": {
"type": "object",
"properties ": {

"title ": {"type": "string"},

485

https://spdx.org/licenses/CC-BY-SA-3.0.html
https://spdx.org/licenses/CC-BY-SA-3.0.html
https://huggingface.co/datasets/GEM/totto

"catalog_number ": {"type": "string"},
"year": {"type": "integer "}

},
"required ": ["title", "catalog_number", "year"]

}
},
"required ": [" composition "]

},
"gold": {

"composition ": {
"title ": "Cypresses",
"catalog_number ": "B.152",
"year": 1887

}
}

}

HF GitHub Issues [License: Apache-2.0] (Issue Text → Structured Issue Report) We sampled 1,000
GitHub issues from Hugging Face transformers repository up to Feb 2025. For each issue, we combined
the title and body text as input, then synthesized the corresponding JSON schema and structured output
following the same procedure for ToTTo. The structured outputs capture diverse aspects of software issues
including system / error information, reproduction steps, code snippets and expected behaviors, making it
an excellent test of model’s capability to handle intricate nested structures and technical input contents.

{
"input_text ": "## qwen2_5_vl processor padding side is wrong.\n### System Info\n\n![Image](https :// github.

com/user -attachments/assets /6ecbc96d -d34a -4164 -903a-0 ef65ea65fb0)\n\n![Image](https :// github.com/user
-attachments/assets/e92f3446 -3e81 -4887 -9f9c -0 b5cb3047683)\n\n![Image](https :// github.com/user -
attachments/assets /8bef88c1 -40ba -413b-8444- d018c9691787)\nthe padding side should be left as qwen2 vl
do .\n\n### Information\n\n- [] The official example scripts\n- [x] My own modified scripts\n\n###

Tasks\n\n- [] An officially supported task in the `examples ` folder (such as GLUE/SQuAD , ...)\n- [x]
My own task or dataset (give details below)\n\n### Reproduction\n\nrun conditional generation using

qwen2_5_vl using flash attention 2 .\n\n### Expected behavior\n\n![Image](https :// github.com/user -
attachments/assets/e92f3446 -3e81 -4887 -9f9c -0 b5cb3047683)\n",

"json_schema ": {
"type": "object",
"properties ": {

"issue_title ": {
"type": "string"

},
"system_info ": {

"type": "array",
"items": {

"type": "string"
}

},
"information ": {

"type": "object",
"properties ": {

"official_example_scripts ": {
"type": "boolean"

},
"modified_scripts ": {

"type": "boolean"
}

}
},
"tasks ": {

"type": "object",
"properties ": {

"official_task ": {
"type": "boolean"

},
"own_task ": {

"type": "boolean"
}

}
},
"reproduction ": {

"type": "string"
},
"expected_behavior ": {

"type": "string"
}

}
},
"gold": {

"issue_title ": "qwen2_5_vl processor padding side is wrong.",
"system_info ": [

"https :// github.com/user -attachments/assets /6ecbc96d -d34a -4164 -903a-0 ef65ea65fb0",
"https :// github.com/user -attachments/assets/e92f3446 -3e81 -4887 -9f9c -0 b5cb3047683",
"https :// github.com/user -attachments/assets /8bef88c1 -40ba -413b-8444- d018c9691787"

486

https://www.apache.org/licenses/LICENSE-2.0
https://api.github.com/repos/huggingface/transformers/issues

],
"information ": {

"official_example_scripts ": false ,
"modified_scripts ": true

},
"tasks": {

"official_task ": false ,
"own_task ": true

},
"reproduction ": "run conditional generation using qwen2_5_vl using flash attention 2.",
"expected_behavior ": "https :// github.com/user -attachments/assets/e92f3446 -3e81 -4887 -9f9c -0 b5cb3047683"

}
}

D.2 Training Data Diversity Dimensions
Industry Vertical. Defines the domain context spanning 30 categories such as “Healthcare”, “Financial
Services”, etc.

JSON Complexity. Specifies 10 levels of structural complexity from “Basic” (3-5 key-value pairs) to
“Comprehensive” (multiple nested objects)

Text Length Style. Covering 10 input text length styles from “Brief Snippets” (15-30 words) to
“Extended” (200-300 words)

Genre Includes 40 text styles (e.g., from news articles, technical reports, etc.)

Text Type. Specifies 10 types of text structures that are widely present in LLM responses (e.g., “Bullet
points”, “Code snippets”, “Dialogue”)

D.3 Json Complexity Dimensions
D.3.1 Depth (d)
Maximum nesting level of the JSON structure, calculated recursively:

d = max
v∈values

depth(v)

where depth is calculated as:

depth(v) =

{
0 if v is a primitive value
1 + maxc∈children(v) depth(c) if v is an object or array

D.3.2 Number of Keys (k)
Total count of keys at all levels in the JSON structure, calculated as:

k =
∑

o∈objects

|keys(o)|

where |keys(o)| is the number of keys in object o, summed across all nested objects.

D.3.3 Size in Bytes (s)
Size of the JSON string when encoded in UTF-8, calculated as:

s = |UTF-8(json.dumps(obj))|

where |UTF-8(x)| represents the length of string x when encoded in UTF-8. This has a small weight to
avoid dominating the score.

D.3.4 Number of Elements (e)
Total count of all values in the JSON structure, including primitive values, objects, and arrays. Incremented
during traversal:

e = |{v : v is any value in the JSON structure}|
487

D.3.5 Cyclomatic Complexity (c)
Measure of structural decision points (branches) in the JSON, calculated as:

c =
∑

o∈objects

|keys(o)|+
∑

a∈arrays

[|a| > 0]

where:

• |keys(o)| is the number of keys in object o

• [|a| > 0] is 1 if array a is non-empty, 0 otherwise

D.3.6 Schema Complexity (sc)
Complexity of the JSON structure considering types and nesting. For a value v:

sc(v) =





1 + min(|v|,100)
10 if v is a string

1 + |keys(v)|+∑
k∈keys(v) sc(v[k]) if v is an object

1 + |v|+
{
sc(v[0]) if homogeneous∑

i sc(v[i]) if heterogeneous
if v is an array

1 otherwise

where:

• |v| is the length of a string or array, or number of keys in an object

• An array is homogeneous if all items have the same type

• For homogeneous arrays, complexity is calculated using the first item’s schema

D.3.7 Content Complexity (cc)
Complexity of the actual data values. For a value v:

cc(v) =





∑
k∈keys(v) cc(v[k]) if v is an object∑
i cc(v[i]) if v is an array

lf + ef + sf + tf if v is a string
min(|digits(v)|

5 , 1) if v is a number
0 otherwise

where for strings:

• lf = min(|v|20 , 5) (length factor)

• ef = |unique(v)|
|v| · 3 (entropy factor)

• sf = min(|special(v)|
|v| · 5, 3) (special characters factor)

• tf = 2 if contains code-like patterns, 0 otherwise (structure factor)

• special(v) counts non-alphanumeric, non-space characters

E Experiment Details

E.1 Training and Inference Hyperparameters
Hyperparameters and configurations used during training and inference are presented in Table 5.

488

Training Parameters Inference Parameters
Learning rate 1e-5 Maximum generation length 2048
Training epochs 2 Temperature 0
Per-device batch size 2 Top-p 0.9
Gradient accumulation 2 Top-k 50
Context length 16,384 Generation timeout 60 s
Optimizer paged_adamw_32bit GPU memory utilization 0.8
Maximum gradient norm 0.1 Tensor parallel size 1
LoRA Configuration
Rank (r) 32
Alpha 64
Dropout 0.05

Table 5: Hyperparameters used in our experiments

E.2 Error Analysis

We conducted a detailed analysis of the errors made by different model configurations to better understand
their failure modes. Non-fine-tuned models primarily failed by completely ignoring the target schema,
either generating free-form text or incorrect JSON structures that did not match the requirements. This
matches our expectation that base models lack the specialized knowledge needed to follow complex
structural constraints without additional training or guidance.

SFT models showed more sophisticated error patterns, typically involving missing fields, incorrect
field types, or hallucinatory content for complex examples. The GitHub Issues dataset accounted for
the majority of errors, with failures often occurring in deeply nested structures. We observed that errors
frequently appeared at deeper nesting levels (beyond 3-4 levels), suggesting that even fine-tuned models
struggle to maintain structural coherence across extended hierarchical dependencies. This points to a
fundamental limitation in how standard decoder-only transformer architectures represent and track deeply
nested structures during generation.

Constrained decoding approaches (Outlines and XGrammar) guaranteed structural correctness for
the examples they could complete but sometimes produced semantically incorrect content, particularly
for ambiguous inputs or when multiple valid interpretations were possible. This semantic mismatch
manifested in different ways between the two algorithms. XGrammar sometimes over-constrains the
model’s generative capabilities when the schema is highly structured, particularly affecting the nuanced
language expression in fields with longer texts like descriptions. Outlines, with its regex-based validation,
occasionally creates token selection pressures that lead to less fluent text in certain fields.

The combined SFT + constrained decoding approach yielded the fewest errors. The few remaining
errors were predominantly in the GitHub Issues dataset and typically involved either timeout issues or
extreme edge cases where the model struggled to extract the correct content for very complex nested
structures. We identified two main error categories in this combined approach: (1) timeout failures when
compiling extremely complex schemas with many optional fields and alternatives, and (2) cases where the
model must make subjective decisions about how to map ambiguous content to structured fields.

This error analysis reinforces the complementary nature of SFT and constrained decoding approaches:
SFT addresses semantic understanding and content organization, while constrained decoding enforces
structural correctness. It also highlights an important direction for future research: developing more
efficient algorithms for handling extremely complex schemas and improving models’ ability to maintain
coherent structural representations across deep hierarchies.

F Prompts

F.1 Prompts for Training and Evaluation

F.2 Prompts for Data Generation and Validation

The prompt template used for synthetic table generation is listed as below. The variables are sampled
from different data diversity dimensions as mentioned in Appx. D.2.

489

Convert the following text into JSON format according to the specified schema. Ensure that both keys
and values are strings, even for numerical values.

Text: {input_text}

Provide your response in the following JSON format: {json_schema}

Please output ONLY the JSON structure and extract the attributes only present in the schema.

Output:

Figure 6: Prompt template for direct LLM prompting

Be an impartial judge to identify whether the structured data accurately reflect the input text. If the
structured data contains anything that unsupported by the ‘input_text’, return False. If everything
can be found or inferred from the input text, return True. Enclose your answer in <validity></validity>
xml tags.

<input_text>{input_text}</input_text>

<structured_data>{gold}</structured_data>

Your answer:

Figure 7: Prompt template for synthetic training data validation

490

You are an advanced AI assistant specialized in data augmentation for text-to-JSON conversion tasks. Your goal is to generate
diverse and high-quality input-output pairs that will be used to train machine learning models for structured information extraction.

First, review these examples of input-output pairs:

<examples>{examples}</examples>

Your task is to generate 3 additional input-output pairs in JSONL format. Each pair should consist of:
1. Input:
- A text description
- A desired JSON schema with a brief explanation
2. Output:
- The text converted into JSON following the given schema

Please adhere to the following specifications:

<industry_vertical> {industry_vertical} </industry_vertical>
<genre> {genre} </genre>
<json_complexity_description> {json_complexity_description} </json_complexity_description>
<text_length_style> {text_length_style} </text_length_style>
<text_type> {text_type} </text_type>

Before generating each pair, wrap your thought process in <planning> tags. Consider the following:

1. Industry relevance: How can you make the text diverse and representative of the specified industry - *{industry_vertical}*?
- List 1-5 key topics or scenarios relevant to the industry.
- Consider how these topics can be incorporated into the text descriptions.
2. JSON schema complexity: How can you adhere to the complexity level of the JSON schema - *{json_complexity_description}*, while
staying within the other given constraints?
- Brainstorm 1-5 different schema structures of such complexity.
- Ensure each schema adheres to the complexity description and other constraints provided.
3. Text length adherence: How can you ensure the text length adheres to the specified style - *{text_length_style}*?
- Outline a strategy for maintaining consistent text length across all pairs.
- Consider using a word count check for each generated text.
4. Unique aspects and edge cases: What unique aspects or edge cases can you incorporate to make the training data more robust?
- List 2-3 potential edge cases or unusual scenarios relevant to the industry.
- Plan how to integrate these into some of the pairs.
5. Diversity tracking: How will you ensure diversity across all 5 pairs?
- Create a simple tracking system to ensure you’re varying topics, schema complexity, and text length across the pairs.
- Number each pair as you plan it (1/5, 2/5, etc.) to keep track of your progress.
6. JSON content alignment: How will you ensure the gold JSON only contains information present in the input text?
- Implement a strict check to verify that every piece of information in the gold JSON can be directly traced back to the input text.
- Plan a review process to eliminate any potential extra content in the gold JSON that is not explicitly stated in the input text.
7. Genre: Ensure that the generated text adheres to the specified genre *{genre}*. This will influence the tone, style, and content
of the ‘input_text‘, but does not affect the JSON structure.
8. Text Type: Generate text that aligns with the specified text type *{text_type}*. This will determine the format, structure, or
purpose of the ‘input_text‘ you create, separate from the JSON output.
9. Follow the format in the example below for your ‘input_text‘, ’json_schema‘ and ‘gold‘:

{{ "input_text": "Acme Motors, a major automaker has announced plans to build a new electric vehicle manufacturing plant in
Greenville, South Carolina. The state-of-the-art facility will produce the company’s latest line of battery-powered cars and SUVs,
with an initial annual capacity of 200,000 units.", "json_schema": {{ "type": "object", "properties": {{ "company": {{ "type":
"string" }}, "location": {{ "type": "string" }}, "production_capacity": {{ "type": "number" }} }} }}, "gold": {{ "company": "Acme
Motors", "location": "Greenville, South Carolina", "production_capacity": 200000 }} }}

Notes:
- "input_text": Contains a string value, represents the raw text input that needs to be processed
In this case, it’s a news-like paragraph about a company announcement.
- "json_schema": Defines the structure of the expected output. must include "type" and "properties", defined as below:
"type": "object" - specifies that the output should be a JSON object
"properties" - defines the expected fields:
- "company": expects a string value
- "location": expects a string value
- "production_capacity": expects a number value
Each property has its own type definition
- "gold": Contains the correct/expected output that matches the schema. Has the exact same structure as defined in json_schema.
Contains the actual values extracted from the input_text:
- "company": contains the company name
- "location": contains the city and state
- "production_capacity": contains the numerical value
Values must match the types specified in the schema (strings for company and location, number for production_capacity)
- *IMPORTANT* Do not replicate any of the content in the given example, it’s just used as a reference for a specified answer structure.

After your planning process, generate the input-output pair and format it in JSONL. Here’s an example of the expected format:

{{"input_text": "Your generated text here", "json_schema": {{"Your": "JSON", "schema": "here"}}, "gold": {{"Your": "gold", "JSON":
"here"}}}

Remember to generate 5 unique and diverse pairs, each following this format. Ensure that each pair adheres to the industry vertical,
complexity description, and text length style specified above. EACH response should be enclosed in <JSONL> </JSONL> XML tags.

Figure 8: Prompt template synthetic training data generation

491

