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Abstract

Chinese Spelling Correction (CSC) aims to de-
tect and correct spelling errors in given sen-
tences. Recently, multi-domain CSC has grad-
ually attracted the attention of researchers be-
cause it is more practicable. In this paper, we
focus on the key flaw of the CSC model when
adapting to multi-domain scenarios: the ten-
dency to forget previously acquired knowledge
upon learning new domain-specific knowledge
(i.e., catastrophic forgetting). To address this,
we propose a novel model-agnostic Multi-stage
Knowledge Transfer (MKT) framework with
an evolving teacher model and dynamic distil-
lation weights for knowledge transfer in each
domain, rather than focusing solely on new do-
main knowledge. It deserves to be mentioned
that we are the first to apply continual learning
methods to the multi-domain CSC task. Exper-
iments prove our method’s effectiveness over
traditional approaches, highlighting the impor-
tance of overcoming catastrophic forgetting to
enhance model performance.

1 Introduction

Chinese Spelling Correction (CSC) plays a criti-
cal role in detecting and correcting spelling errors
in Chinese text (Li et al., 2022¢c; Ma et al., 2022),
enhancing the accuracy of technologies like Opti-
cal Character Recognition (OCR) and Automatic
Speech Recognition (ASR) (Afliet al., 2016; Wang
et al., 2018). In search engines, for example, CSC
reduces human error, ensuring that users find the
information they seek accurately.

In real applications, the input text may come
from various domains, demanding that the model
contains different domain-specific knowledge. As
illustrated in figure 1, the word “3% # (Strong Foun-
dation)” is evidently common in the Chinese Ed-
ucation domain. Accurately correcting “7K(open)”
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T Corresponding authors
zheng.haitao @sz.tsinghua.edu.cn).

(cswhjiang @ gmail.com,

to “7%(Strong)” requires the model to have specific
knowledge about the Chinese Education domain.
Therefore, some works have begun to focus on the
impact of domain-specific knowledge on the perfor-
mance of CSC models (Lv et al., 2023a; Wu et al.,
2023). These types of knowledge are difficult to
grasp through the original model’s generalization
ability. However, with the rise of the internet and
social media, a large number of new internet slang,
codes, and colloquialisms emerge every year, tra-
ditional static training paradigms struggle to meet
these demands.

o3BT 3k (zhang) 7% - Input with an error pertaining to

He passed the Open Foundation plan, ~ education-specific knowledge
Train | | education-specific data

thil i T 58 (qiang) A THR] .

[of ti
He passed the Strong Foundation plan. V/ Correction

Train

foi@ i T #(qiang) A& .
He passed the Hydroxyl project.

X catastrophic forgettiny

Figure 1: Case of model forgetting general-domain
knowledge during continual learning. red represents
the misspelled character and blue represents the cor-
rected character.

To dynamically integrate newly acquired knowl-
edge, two main paradigms exist. The first method
entails periodically blending old data with new
and retraining the model to refresh its knowledge
base. However, this technique requires significant
computational resources, as it involves repeatedly
reprocessing data that has already been encoun-
tered. The second paradigm, continual learning,
addresses this challenge by updating the model in-
crementally, eliminating the need for full retraining
on past data. This significantly improves resource
efficiency and stands as a key research direction for
developing models that can continuously adapt to
an ever-evolving linguistic landscape.
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The core challenge of the continual learning set-
ting is to minimize catastrophic forgetting of pre-
viously acquired knowledge while learning in new
domains (Wang et al., 2024). As demonstrated in
Figure 1, when a CSC model learns educational-
specific knowledge, it accurately corrects the word
R %{Strong Foundation)”. However, after it con-
tinues to learn knowledge from the chemistry do-
main, it would learn the new knowledge of “#
#(hydroxyl)”, but forget the education word *“7%
# (Strong Foundation)”. Unfortunately, in previ-
ous multi-domain CSC studies, the challenge of this
catastrophic forgetting of domain-specific knowl-
edge has not been fully explored.

As a widely adopted method in continual learn-
ing, knowledge distillation leverages a static
teacher model and incorporates task-specific heads
to handle diverse tasks. However, this approach has
two significant limitations: firstly, the static teacher
model struggles to adapt to the ever-expanding
knowledge from emerging domains; secondly, the
continuous addition of task-specific heads leads
to an increasingly bloated model. When directly
applied to CSC tasks, these knowledge distillation
methods inevitably encounter the same scalability
challenges. Given the wide variety of error types in
Chinese text, the model grows progressively more
complex and computationally demanding, render-
ing it impractical for real-world applications.

To address these limitations, we propose a novel,
model-agnostic Multi-stage Knowledge Transfer
(MKT) framework. Unlike traditional methods that
require expanding the model architecture, the MKT
framework maintains a fixed structure, avoiding
model expansion. This not only reduces computa-
tional overhead but also simplifies deployment in
real-world environments, where linguistic data is
dynamic and constantly evolving.

MKT framework incorporates two dynamic
mechanisms to enhance continual learning. First,
the evolving teacher model adapts to growing
domain-specific knowledge, overcoming the limi-
tations of static teacher models. Second, it seam-
lessly integrates knowledge from both new and
existing domains by transferring its accumulated
knowledge to the current student model, with dis-
tillation weights dynamically adjusted based on the
data ratio. The combination of these two dynamic
mechanisms makes MKT framework significantly
more effective than other continual learning meth-
ods, greatly mitigating catastrophic forgetting.

2 Related Work

2.1 Chinese Spelling Correction

In the field of CSC, we witness significant advance-
ments in various model architectures and modules,
as evidenced by recent works (Li et al., 2022b,
2023b; Zhang et al., 2023; Ye et al., 2023b, 2022;
Ma et al., 2023; Ye et al., 2023a; Huang et al.,
2023; Li et al., 2023d). Early models such as the
Confusionset-guided Pointer Networks focus on
optimizing at the dataset level by leveraging confu-
sion sets for character generation. This technique
enhances accuracy by considering commonly con-
fused characters (Wang et al., 2019). Innovations
in embeddings, like the REALISE model, improve
model inputs by integrating semantic, phonetic,
and visual information into character embeddings,
thereby enriching the representational capacity of
the model (Xu et al., 2021). Improvements in
encoders are highlighted by models such as Soft-
Masked BERT, which employs Soft MASK tech-
niques post-detection to blend input characters with
[MASK] embeddings. This method is effective for
error prediction and has shown significant improve-
ments in performance (Zhang et al., 2020). Another
notable model, SpellGCN, constructs a character
graph and maps it to interdependent detection clas-
sifiers based on BERT-extracted representations,
showcasing innovative uses of graph neural net-
works in spelling correction (Cheng et al., 2020).

Previous research in multi-domain CSC empha-
sizes cross-domain knowledge sharing and general-
ization (Lv et al., 2023a). Typically, this involves
training models on high-quality datasets to gen-
eralize effectively to specific domains. However,
domain-specific knowledge is hard to generalize,
and fine-tuning on multiple datasets can lead to
catastrophic forgetting, where new knowledge over-
writes old knowledge. This paper addresses catas-
trophic forgetting by introducing mechanisms that
balance retaining existing knowledge with integrat-
ing new information. We propose a framework that
mitigates forgetting while ensuring robust perfor-
mance across multiple domains.

2.2 Continual Learning

In the field of continual learning, core strategies
such as replay, regularization, and parameter iso-
lation play pivotal roles (Liu et al., 2022; Li et al.,
2022a; Wang et al., 2023; Dong et al., 2023; Li
et al.,, 2023c).Replay methods, including tech-
niques like GEM and MER, work by retaining train-
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ing samples and using constraints or meta-learning
to align gradients effectively (Lopez-Paz and Ran-
zato, 2017; Riemer et al., 2018). Regularization
strategies, such as Elastic Weight Consolidation
(EWC), aim to preserve task-specific knowledge by
assigning higher importance to parameters crucial
for previous tasks (Kirkpatrick et al., 2017). How-
ever, both our initial investigations and existing
literature (Buzzega et al., 2020) suggest that knowl-
edge distillation techniques, such as Learning with-
out Forgetting (LwF), tend to outperform EWC.
Knowledge distillation is a method that enables in-
cremental training by transferring knowledge from
larger models to smaller ones, thereby facilitating
the integration of new knowledge while preserving
previously learned information (Gou et al., 2021).
Parameter isolation techniques, such as CL-plugin,
address task interference by assigning dedicated
parameters to different tasks, thus minimizing the
risk of overlap and interference (Ke et al., 2022).
However, CL-plugin is specifically designed for
task-incremental learning, it is not suitable for our
domain-incremental learning experiments.

Our MKT framework stands out as a model-
agnostic approach, capable of being applied across
various CSC models. By leveraging the strengths
of existing continual learning strategies and inte-
grating them into a cohesive framework, we aim
to effectively mitigate catastrophic forgetting and
enhance the adaptability of CSC models in multi-
domain scenarios.

3 Our Approach

3.1 Problem Formulation

The CSC task is to detect and correct spelling er-
rors in Chinese texts. Given a misspelled sentence
X ={z1, x2,..., Ty} with m characters, a CSC
model takes X as input, detects possible spelling er-
rors at character level, and outputs a corresponding
correct sentence Y = {y1, y2,..., ym} of equal
length. This task can be viewed as a conditional
sequence generation problem that models the prob-
ability of p(Y|X). In multi-domain CSC tasks
under a continual learning setting, assuming that
there are n domains D = {D;, Do, ..., D,}, these
domains are trained sequentially, where each do-
main Dy, is trained without access to the data from
previous domains, from D; to Dy_;. Furthermore,
after training domain Dy, we should consider the
performance of all domains from D; to Dy, a met-
ric which we will introduce in Section 4.1.

3.2 Structure of MKT Framework
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Figure 2: Overview of the MKT framework and the
pipeline for multi-domain training.

As illustrated in Figure 2, teacher model acts as
a comprehensive knowledge repository, effectively
serving as a backup of the student model from the
previous stage to calculate the distillation loss for
the current stage’s student model. It encapsulates
all the domain-specific knowledge accumulated to
date, providing crucial guidance for the model train-
ing in the current phase. This dynamically evolv-
ing teacher model avoids the substantial cost of
continually updating a static teacher’s knowledge
repository in traditional knowledge distillation and
prevents any expansion of the teacher model. Ad-
ditionally, we conduct experiments to explore how
to a priori select appropriate distillation weights
(results are shown in Table 3), so that framework
can dynamically adjust distillation weights during
training to achieve better performance.

3.3 MKT Framework for Multi-domain CSC

We consider the scenario where the training is com-
prised of n stages, denoted by k = 1,2...,n. At
k-th stage, a subset of data {azg), y,(;)}iG:’“1 are fed
to the model, where G}, refers to the number of
samples at k-th domain, x,(j) refers to i-th sample
at k-th domain. Assume that u(-) is an target func-

tion that maps each a:,(j) to y,g,l) at stage k, i.e., y,Ef)

= uk(:v,(;)). Under the continual learning setting,
our goal is to train a CSC model g(- ; w) parame-
terized by w, such that g(- ; w) not only fits well to
ug(-), but also fits ug—1(-) , up—2(-), - - -, wi(:) in
early stages to alleviate catastrophic forgetting. We
optimize model parameters by minimizing the loss
function:

L® =k 4 L® (1)

In the equation, A\ is a hyper-parameter that
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ranges from [0, 1]. L™ is the knowledge distil-

lation loss, calculating cross entropy between the
output probabilities of teacher model g(- ; wy—_1)
and student model g(- ; wy):

Ty ) .
L) = — ZQ(UC;(;); Wi—1) X logg(iﬁi(;); Wi)-

i=1
2
L;Lk) is the cross-entropy loss between the output
of student model g(- ; wy) and ground truth y:

LW = =3y xlogg(a; wi). ()
=1

The choice of A is related to the ratio of domain
data and old data, Sy is domain data scale and .S,
is old data scale:

A= (4)

Algorithm 1 MKT Framework

Input: Training set Dy, Student model Sy_{
Output: Student model Sy,

Copy Sk_1 as the teacher model T},

Freeze the parameters of T},

Calculate A according to Equation 4.

S, forward propagation and calculates the loss
guided by T}, according to Equation 1
Optimize the parameters of S,

6: Return S},

I

bd

As shown in Algorithm 1, during the training
of the k-th domain, both the teacher model T}, _
and the student model Sj_; are initialized using
the parameters of Si_1. The teacher model T},_1 is
kept frozen to provide stable knowledge guidance,
while the student model S;_1 is further optimized
on the current domain data, resulting in the up-
dated model Sj. The final loss is the dynamically
weighted summation of the knowledge distillation
loss Lgk) and the original CSC task loss L;Lk), with
the weights as shown in Equation 4.

4 Experiment and Result

4.1 Datasets and Metrics

For domain selection, we defined four domains:
General, Car, Medical, and Legal. As shown in
Table 1, CSC models trained on the general dataset
exhibit significant knowledge gaps compared to

later domains. This closely aligns with our fo-
cus on catastrophic forgetting of domain-specific
knowledge, making these datasets and experiments
highly suitable for our research. As shown in Ta-
ble 1, the Zero-Shot performance of CSC-specific
models trained on the General dataset exhibits sig-
nificant knowledge gaps compared to later domains.
This closely aligns with our focus on catastrophic
forgetting of domain-specific knowledge, making
these datasets and experiments highly suitable for
our research. For the General domain, we also use
SIGHAN13/14/15 (Wu et al., 2013; Yu and Li,
2014; Tseng et al., 2015) and Wang271K (Wang
et al., 2018) as training data and SIGHAN1S5 test
set as our test data. For other special domains, we
utilize the data resources released by LEMON (Wu
et al., 2023) and ECSpell (Lv et al., 2023b), and
randomly take 500 samples from the original data
of each domain as the test set. The dataset statistics
are presented in the Table A.

Our evaluation predominantly relies on the
sentence-level F1 score, a widely acknowledged
metric (Xu et al., 2021).

In each table, Avg represents the overall perfor-
mance after training on all domains. Unlike aver-
age accuracy (AA) (Wang et al., 2023), we use the
average sentence-level F1 score, which is a more
stringent metric than AA.

4.2 Baseline Methods

To validate the model-agnostic nature of MKT, we
select three commonly used CSC models with dif-
ferent architectures as baselines, aiming to evaluate
our approach across various frameworks. As shown
in Table 1, these include the RoBERTa (Liu et al.,
2019), Soft-Masked-BERT (Zhang et al., 2020),
and REALISE (Xu et al., 2021), which integrates
multimodal information. In addition, we evaluate
the Chinese spelling correction capabilities of two
advanced general large language models (LLMs):
LLama-3.1-8B (Dubey et al., 2024) and Qwen-2.5-
7B (Yang et al., 2024). However, their performance
shows a significant gap compared to specialized
CSC models, so we conduct our experiments on
different continual learning methods using these
specialized CSC models.

To validate the effectiveness of our MKT
framework, we compare it with different con-
tinual learning methods on the aforementioned
models, thereby demonstrating the superior-
ity of our approach.  Specifically, we con-
duct experiments with Fine-tuning (lacking
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Type | Model | Method | General CAR MED LAW Avg
Zero-Shot 73.40 085 1955 2584 2991
RoBERTa Fine-tuning 67.41 3350 4286 6235  51.53
Zero-Shot 69.60 1553 30.53 4684  40.63
CSC Soft-Masked BERT | g uning 5422 3073 4388 6854 4934
Zero-Shot 77.84 028 1945 2857  31.54
REALISE Fine-tuning 70.78 2748 5333 7059  55.55
Zero-Shot 8.48 380 1362 1473 10.16
LLama-3.1-8B Fine-tuning 9.34 976  18.15 3698 1856
General
Owen2.5.78 Zero-Shot 20.66 1400 2800 4830  27.74
: Fine-tuning 2222 2016 3060 6475 3443

Table 1: Baseline Performance of General LLMs and Specialized Models on Each Domain’s Test Set.

Model | Method | General CAR MED LAW Avg

|  Upper Bound | 73.40 39.14 45.13 62.88 55.14

Replay(random) 70.07 34.87 41.33 59.51 51.45

RoBERTa Replay(RAP) 70.09 36.22 43.00 58.25 51.89
EWC 67.77 35.64 40.09 62.75 51.56

| MKT(Ours) | 68.58 36.18 43.56 62.47 52.70"

| Upper Bound | 69.60 45.78 58.28 70.68 61.09

Replay(random) 47.45 23.88 39.51 64.30 43.79

Soft-Masked BERT Replay(RAP) 54.48 22.86 46.52 60.59 46.11
EWC 54.00 25.72 4521 69.65 48.65

| MKT(Ours) | 60.90 35.64 52.21 70.40 54.79"

|  Upper Bound | 77.84 32.82 56.62 70.85 59.53

Replay(random) 75.78 27.83 53.81 69.25 56.67

REALISE Replay(RAP) 76.10 31.51 50.33 69.76 56.93
EWC 74.11 28.22 54.22 70.16 56.68

| MKT(Ours) | 7384 31.25 54.1 70.18 57.34"

Table 2: Final Performance After Continual Learning Across All Domains.

any forgetting-prevention mechanisms), two
replay-based methods—random sampling and
RAP (Replay According imPortance) and a
regularization-based approach (EWC). We also in-
clude knowledge distillation methods, with the cor-
responding experiments discussed in our ablation
study. Additionally, we provide implementation
details in the appendix B.

4.3 Results and Analyses

Main Results From Table 2, it can be seen that
after applying the MKT framework, whether it is
RoBERTa, Soft-Masked BERT specially designed
for CSC, or REALISE that integrates multi-modal
information, their performance in all domains
improves compared to Fine-Tuning without any
forgetting-prevention strategy. This fully demon-
strates the advantages of our proposed MKT frame-

work in terms of both effectiveness and model-
agnostic capability. When comparing MKT with
other continual learning methods, among the two
replay strategies, RAP outperforms random replay
and even approaches the performance of MKT.
However, it requires ten times the training data
of MKT, leading to significantly higher training
overhead. EWC can also effectively mitigate catas-
trophic forgetting, but it still lags behind MKT, un-
derscoring the superiority of MKT among various
continual learning approaches.

Parameter Study To explore the impact of the
key parameter A, we conduct experiments using
REALISE + MKT on the General dataset and three
subsequent specific domain datasets, selecting a
portion of the General dataset as the old dataset.
As shown in Table 3, the old dataset size is set
to 50, 20, and 10 times that of the corresponding
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%‘ A |General MED Avg |General MED Avg |General LAW Avg
o

0 66.73 30.42 48.58 | 65.65 47.17 56.41 | 66.07 59.45 62.76
0.01 | 6697 3025 48.61 | 65.78 47.60 56.69 | 669 5827 62.59
0.02 | 67.26 3096 49.11T | 66.67 47.27 56.97T| 66.91 59.01 62.96T
0.04 | 67.51 30.19 4885 | 67.17 45.16 56.17 | 66.84 58.38 62.61

0.02

0 62.25 29.85 46.05 | 6236 42.44 5240 | 6127 585 59.89
0.025| 64.10 29.42 46.76 | 61.84 4389 52.87 | 61.87 59.84 60.86
0.05 | 6580 30.17 47.99T | 63.82 41.96 52.89T | 62.30 60.63 61.47T
0.1 | 6485 30.17 47.51 | 6294 4127 52.11 | 63.00 57.82 60.41

0.05

0 | 5507 2744 4126 | 57.69 40.18 48.94 | 5368 5494 5431
0.05 | 5846 28.03 4325 | 5748 4191 49.70 | 54.53 5562 55.08
0.1 | 59.13 2851 43.82T| 58.81 4138 50.107| 5566 55.20 55437
02 | 5747 2570 4159 | 5896 3570 47.33 | 5560 5422 5491

Table 3: Selection of Optimal Distillation Weights ()
under Different Domain(S,;) and O1d(S,) Data Ratios.

specific domain dataset. When A is set to 0.5, 1,
and 2 times the ratio of the domain dataset size
to the old dataset size, the experimental results
show stable improvements over the baseline (i.e.,
A = 0). In particular, when A matches the ratio of
domain data to old data, all domains achieve the
best performance. Thus, for MKT an appropriate
A can be chosen based on the ratio of new domain
data to old data to achieve optimal performance.

Model | Method | Buffer size | General CAR MED LAW  Avg

80

—& - Fine-Tuning
—e— MKT
78+
° 761
;Y
o
"
]
-
'S
74
72+
0-— T T T
General + Car + Med + Law

Domain

Figure 3: The phenomenon of model forgetting General-
domain knowledge during incremental domain training.

loss (i.e., catastrophic forgetting) on the General
dataset after incremental training with data from
other domains, as shown in Figure 3. The perfor-
mance loss of REALISE on the General dataset is
much smoother when optimized with MKT, indi-
cating that MKT framework effectively mitigates
catastrophic forgetting at each stage.

0.001 7414 27.56 5407 67.88 5591

Replay 0.01 7578 27.83 5381 6925 56.677
(random)
0.1 7444 3033 5194 67.87 56.15
REALISE

0.001 7431 2677 4937 67.88  54.58

Replay 0.01 7548 3151 4875 6867 56.10
(RAP) )

0.1 7610 3151 5033 69.76 5693

Method \ General CAR MED LAW Avg

KD 7439 30.03 48.80 64.63 54.46
Replay(RAP) | 7571 3094 44.42 69.55 55.16
MKT(Ours) 7407 30.03 51.55 67.13 55.69"

Table 4: Replay Performance with Buffer Sizes.

Buffer study We investigated the optimal buffer
sizes for two replay methods. As presented in Ta-
ble 4, random sampling delivers peak performance
with a buffer size equivalent to 1% of the old data,
striking an effective balance between new and old
data scales. In contrast, importance-based sampling
(RAP) excels at incorporating critical knowledge
from both domains, achieving optimal results with
a buffer size of 10% of the old data, albeit at the
cost of extended training time.

Catastrophic Forgetting The above analysis
convincingly demonstrate that the MKT framework
outperforms other continual learning methods in
overall performance after training across all do-
mains. To better observe the forgetting at each
stage when training on subsequent domain datasets,
we select the best-performing model from Table
2 (i.e., REALISE) and examine its performance

Table 5: Average Performance of Two Training Orders.

Training Order In real-world applications, data
often arrive in unpredictable, continuously expand-
ing orders. To simulate this uncertainty, we ran-
domly select two training orders and evaluate the
best-performing model, REALISE, from Table 2.
Table 5 shows the average domain performance for
both orders, demonstrating that the MKT frame-
work effectively integrates domain-specific knowl-
edge under varied training sequences and mitigates
catastrophic forgetting.

4.4 Ablation Study

MKT differs from knowledge distillation in two
key aspects: evolving teacher model and dynami-
cally distillation weights. To evaluate their effec-
tiveness, we conduct ablation experiments on RE-
ALISE without these optimizations. Table 6 shows
that both mechanisms of MKT effectively mitigate
catastrophic forgetting. A continuously evolving
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Method \General CAR MED LAW Avg

Circumventing Catastrophic Forgetting

KD 7423 29.69 52.68 67.61 56.05
+ evolving teacher | 72.74 29.25 55.28 70.85 57.03
+ dynamic A 74.13  30.30 53.74 67.34 56.38
MKT(Ours) \ 73.84 31.25 54.10 70.18 57.34"

Table 6: The Impact of Dynamic Distillation Weights
(A) and the Evolving Teacher Model on Performance.

teacher model can incorporate the most important
knowledge previously learned, effectively reducing
the student’s forgetting of prior knowledge. For
dynamic distillation weights, we provided experi-
mental results in Table 3. MKT’s adaptation to the
ratio of domain and old data allows it to better learn
the most important knowledge from domain and
old data. Using dynamic distillation weights alone
can only provide limited performance improve-
ment, with the performance improvement brought
by the dynamically evolving teacher being more
significant. By integrating both mechanisms, MKT
achieves superior anti-forgetting performance in
domain adaptation, despite slightly higher forget-
ting on the General dataset compared to the fixed
teacher method.

5 Conclusion

This paper demonstrates through experimentation
that existing CSC models, when adapting to multi-
domain scenarios, tend to forget previously ac-
quired domain-specific knowledge, a phenomenon
known as catastrophic forgetting. To address this,
we propose an effective, model-agnostic MKT
framework that incorporates an evolving teacher
model and dynamic distillation weights. This
framework balances retaining existing knowledge
with integrating new information, effectively mit-
igating catastrophic forgetting. Extensive exper-
iments and detailed analyses underscore the im-
portance of tackling catastrophic forgetting, prov-
ing that our approach outperforms other continual
learning approaches.

6 Case Study

To further verify the effectiveness of our MKT in
mitigating catastrophic forgetting in multi-domain
CSC, we present some cases in Table 7. For a test
sentence in the CAR domain, REALISE accurately
corrects errors after fine-tuning on CAR. However,
after further fine-tuning on the MED domain, it
can no longer correct successfully and instead pre-

Input FEB/ILHRSUV
+CAR(Fine-tuning) BREHILHESUV
+CAR(+MKT) #EFBILFESUV
+MED(Fine-tuning) AELTASUV
+MED(+MKT) #2EFBITFESUV
Target BEHILESUV
Input B RARMEKE:6.0L
+CAR(Fine-tuning) B FRARAEAE:6.00
+CAR(+MKT) B F A RAERE:6.00
+MED(Fine-tuning) B F AR AEXE:6.00
+MED(+MKT) B RAEMAEKEF:6.0L
Target B RAMAEXF:6.0L

Table 7: Cases from the CAR Test Set, Conducted on
the REALISE Model, Show that the MKT Framework
Mitigates Catastrophic Forgetting.

dicts “%k(cyanide)” related to the medical domain.
Another case of catastrophic forgetting is overcor-
rection, such as when the character “#&(version)"
is mistakenly corrected to “#& (board)" after learn-
ing from the MED domain. Both cases illustrate
classic examples of catastrophic forgetting where
old domain knowledge is washed away by new
domain knowledge. It can be seen that with the
optimization of MKT, REALISE effectively avoids
the occurrence of catastrophic forgetting.

7 Limitations

We do not compare our proposed method
against commonly used Large Language Models
(LLMs) (Kuang et al., 2025; Li et al., 2024b; Huang
et al., 2024; Li et al., 2025a; Zhang et al., 2025b;
Xuetal., 2025; Yu et al., 2024; Li et al., 2025b,c) in
our experiments. The primary reason is that in the
CSC task, representative LLMs still lag behind tra-
ditional fine-tuned smaller models, which has been
proved by many related works (Li et al., 2023a,
2024a,2025d; Ye et al., 2024b,a, 2025; Zhang et al.,
2025a; Zou et al., 2025), which has been confirmed
by many related works, and we also verify this in
Table 1. In addition, our approach specifically fo-
cuses on the Chinese scenarios. However, other
languages, such as English, could also benefit from
our methodology. We will conduct related studies
on English scenarios in the future.
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A Datasets

Training Set Domain Sent Avg.Length Errors

Wang271K  General 271,329 42.6 381,962
SIGHAN13  General 700 41.8 343
SIGHAN14  General 3,437 49.6 5,122
SIGHAN15 General 2,338 31.1 3,037
CAR CAR 2,743 434 1,628
MED MED 3,000 50.2 2,260
LAW LAW 1,960 30.7 1,681

Test Set Domain Sent Avg.Length Errors

SIGHAN15 General 1,100 30.6 703
CAR CAR 500 43.7 281
MED MED 500 49.6 356
LAW LAW 500 29.7 390

Table 8: Statistics of the Datasets We Use.

B Implementation Details

In the main experiment, we initially train the
models on General dataset, which consists of
Wang271K combined with double the amount of
SIGHAN data. This is followed by training on the
CAR, MED, and LAW datasets using various con-
tinual learning methods, including Joint-Training,
fine-tuning, replay (random), and replay (RAP).
Upon completion of training, we evaluate the per-
formance of the final model across all domain-
specific datasets to gauge its effectiveness.

Additionally, auxiliary experiments are con-
ducted using our top-performing REALISE model.
These experiments investigate several factors such
as determining the optimal ), assessing the appro-
priate buffer size, examining the effects of different
training orders, and performing ablation studies to
understand the contribution of each component.

For all experiments, we train the aforementioned
datasets for 10 epochs with a batch size of 64. The
learning rates are Se-5 for REALISE and BERT
models, and 1e-4 for the Soft-Masked BERT model.
Our approach incorporates a knowledge transfer
process at each domain, where the A between Lj,
and L is updated prior to training each domain
according to Equation 4. The hyper parameter set-
tings for the auxiliary experiments remain consis-
tent with those used in our main experiments.
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