
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 364–382
November 4-9, 2025 ©2025 Association for Computational Linguistics

ReAct Meets Industrial IoT: Language Agents for Data Access

James T Rayfield, Shuxin Lin, Nianjun Zhou, Dhaval Patel
IBM T.J. Watson Research Center, NY, USA

{jtray@us., shuxin.lin@, jzhou@us., pateldha@us.}ibm.com

Abstract
We present a robust framework for deploying
domain-specific language agents that can query
industrial sensor data using natural language.
Grounded in the Reasoning and Acting (Re-
Act) paradigm, our system introduces three key
innovations: (1) integration of the Self-Ask
method for compositional, multi-hop reason-
ing; (2) a multi-agent architecture with Review,
Reflect and Distillation components to
improve reliability and fault tolerance; and (3)
a long-context prompting strategy leveraging
curated in-context examples, which we call
Tiny Trajectory Store, eliminating the need for
fine-tuning. We apply our method to Industry
4.0 scenarios, where agents query SCADA sys-
tems (e.g., SkySpark) using questions such as,
“How much power did B002 AHU 2-1-1 use on
6/14/16 at the POKMAIN site?” To enable sys-
tematic evaluation, we introduce IoTBench, a
benchmark of 400+ tasks across five industrial
sites. Our experiments show that ReAct-style
agents enhanced with long-context reasoning
(ReActXen) significantly outperform standard
prompting baselines across multiple LLMs, in-
cluding smaller models. This work repositions
NLP agents as practical interfaces for industrial
automation. The code/data can be found here.

1 Introduction

The deployment of AI agents to automate complex
workflows is accelerating across industries (Jab-
bour and Reddi, 2024). Recent systems such as
SWE-Agent (Jimenez et al., 2023; Tao et al., 2024;
Wang et al., 2024) and AIOps-Agent (Shetty et al.,
2024) demonstrate the potential of autonomous
agents in software engineering and cloud opera-
tions. A common foundation for these agents is the
ReAct framework (Yao et al., 2023; Shinn et al.,
2023), which enables agents to interleave reason-
ing and acting in response to real-time feedback.
While ReAct-based systems are promising, adapt-
ing them to domain-specific applications, particu-
larly in Industry 4.0, poses new challenges related

to reliability, domain adaptability, interpretability,
and tool integration.

Industry 4.0 focuses on the automation and
monitoring of physical assets, such as chillers, com-
pressors, and air handling units (AHUs), to en-
able predictive maintenance and energy optimiza-
tion (Yang et al., 2022; Nikitin and Kaski, 2022). In
this context, we introduce an IoT agent designed to
query historical/real-time sensor data from SCADA
systems (e.g., SkySpark (Skyspark, 2024)) using
natural language. For example, a query such as
“How much power was B002 AHU 2-1-1 using
on 6/14/16 at the POKMAIN site?” illustrates the
agent’s intended interaction mode. Even such short
queries require reasoning over multiple interdepen-
dent domain concepts: assets, sensors, timestamps,
and locations, highlighting the need for tool-aware
and context-sensitive language agents.

To meet these demands, we develop a ReAct-
centered multi-agent framework tailored for in-
dustrial environments. Our system integrates three
core capabilities:

• Tool Integration: Support for complex, multi-
parameter industrial tools beyond generic
APIs (Langchain, 2024b).

• Contextual Reasoning: Handling domain-
specific reasoning tasks, such as sensor disam-
biguation, entity grounding and mathematical
reasoning tasks such as last week, max value.

• Model Evaluation: Benchmarking LLMs on
real-world data access tasks to assess reliabil-
ity, reasoning depth, and domain robustness.

Our approach demonstrates that language agents
can act as effective, domain-aware interfaces for
structured industrial data, bridging natural lan-
guage understanding with sensor-driven systems in
Industry 4.0.

364

https://github.com/IBM/ReActXen

Figure 1: IoT Agent architecture and workflow for processing natural language queries in industrial systems.

While the standard ReAct agent (Yao et al.,
2023) is effective for web tasks, it proved insuffi-
cient for industrial settings, often exhibiting incom-
plete reasoning, redundant tool calls, and failures
in multi-step composition. To overcome these, we
enhance the agent with an iterative ReAct, Review,
and Reflect loop combined with the Self-Ask
strategy (Press et al., 2023), enabling deeper intro-
spective reasoning.

We evaluate our approach on two data center
assets, a Chiller and an AHU, using 20 curated
queries, and introduce IoTBench, a benchmark
with 400+ natural language tasks across five in-
dustrial sites, incorporating both real and synthetic
SCADA-style data (Xu et al., 2023) for diverse
input formats.

We also explore smaller LLMs (∼8B parame-
ters) for agentic workflows, leveraging new mod-
els with 128k-token contexts to transition from
few-shot to many-shot in-context learning. Re-
cent studies (Agarwal et al., 2024; Belcak et al.,
2025; Dherin et al., 2025) show large contexts can
outperform fine-tuning on complex tasks, enabling
scalable, low-overhead deployment.

To exploit this, we introduce Tiny Trajec-
tory Stores, a lightweight method for curating
in-context examples. Combined with our prompt-
based strategy, ReActXen, we show that long-
context prompting significantly boosts reasoning
without fine-tuning, enabling LLM agents to handle
complex, domain-specific queries and advancing
trustworthy, language-driven industrial automation.

2 IoT Agent: System Architecture

Figure 1 illustrates the architecture and workflow of
the IoT Agent, which follows a ReAct-style frame-

work to process natural language (NL) queries and
generate actionable outputs for industrial monitor-
ing and data retrieval.

The workflow begins with a user-issued natural
language query Q, which the IoT Agent A pro-
cesses using a structured system prompt P and a
set of available tools L. This results in a multi-
step reasoning and action trajectory T , and a final
response ofinal. Formally:

T, ofinal = A(Q,P,L),

where ofinal is the final output returned to the
user (See Appendix A.1). A distinguishing feature
of our system is its real-time integration with
SkySpark (Skyspark, 2024), an industrial analytics
platform that archives up to ten years of sensor
and site data across multiple facilities. The IoT
Agent uses tools backed by SkySpark to query both
real-time and historical data for operational metrics
such as energy usage, tonnage, temperature
differentials, and sensor health.

To facilitate reliable interaction with these plat-
forms, we implement seven custom tools (exclud-
ing the “Finish” tool), detailed in Table 1. These
include four specialized tools for external data ac-
cess (e.g., “Histories”) and three internal utilities.
All tools are implemented using Langchain’s tool
abstraction layer (Langchain, 2024a). The “Histo-
ries” tool presents unique challenges, such as inter-
preting temporal and string arguments robustly.

As shown in the top-right corner of Figure 1, tool
outputs fall into three primary categories: Sensor
Data (e.g., temperature, power readings), Sensor
Metadata (e.g., units, source), and Site Informa-
tion (e.g., zone labels, equipment relationships). It

365

Tool Description Parameters (All strings, dates in ISO
8601)

Json Reader∗ Reads a JSON file and returns it as a single-line JSON
string

file_name

Json Merge∗ Merges two JSON arrays of the same type into a single-
line JSON

file_name_1, file_name_2

CurrentDateTime∗ Returns the current time as an ISO 8601 string and an
equivalent English text date and time

None

Finish∗ Finishes the agent execution and specifies a return string Return string
Sites† Returns a list of sites from SkySpark None
Assets† Returns a list of Assets at a Site site_name

Sensors† Returns a list of sensors for an Asset at a Site site_name, asset_name
Histories† Returns a list of sensor values for the specified Asset(s)

at the specified Site
site_name, asset_name_list, start
(date), final (date), sensor_name

Table 1: IoT Agent tools, their functionalities, and required parameters. ∗ Supporting tool. † domain-specific tool.

is critical to distinguish between the output of a tool
and that of the agent: tools typically return files or
structured data, whereas the agent interprets this
output to produce concise, human-readable sum-
maries (e.g., data point counts, asset summaries, or
file pointers).

3 ReActXen: Design and Implementation

Hallucination remains a critical bottleneck in agen-
tic workflows, particularly when smaller LLMs
operate under a ReAct-only paradigm. Our eval-
uations highlight consistent failures in date-offset
reasoning (e.g., misinterpreting “last week”), hal-
lucinated tools or parameters, and premature task
termination. Beyond these, agents often fail to
decompose multi-step problems, explore alternate
toolchains, or match exact strings (e.g., sensor
names). Also, models exhibit gaps in common-
sense reasoning, such as linking chiller tonnage
with energy efficiency, a vital inference in indus-
trial IoT settings. These findings point to the need
for more structured reasoning scaffolds and robust
reflection phases to mitigate LLM brittleness. To
address these, we propose ReActXen, a framework
built on an “Agent-family” design as shown in Fig-
ure 2.

3.1 Agent Roles and Interactions

Building upon the terminology defined in Sec-
tion A.1, we introduce a suite of specialized agents
within the Agent-Family (Afamily), each contribut-
ing to robust and interpretable query resolution.

ReAct with Self-Ask. The ReAct Agent (Areact)
serves as the core executor, generating a trajec-
tory T in response to a query Q. To enhance
reasoning fidelity, especially for structured tasks

Figure 2: Proposed Architecture : ReActXen

such as mathematical problem-solving or entity
disambiguation,Areact is equipped with a self-ask
mechanism. Before executing any action ai ∈ T ,
the agent emits an internal sub-question ri to guide
subsequent reasoning. This anticipatory query is
also answered by LLM and improves trajectory co-
herence and tool invocation precision. Appendix
12 provide full system prompt.

Review Agent. The Review Agent (Areview) func-
tions as a lightweight verifier (See Appendix 13 for
System Prompt). Given the triplet (Q, T, ofinal),
it classifies the outcome as Accomplished, Par-
tially Accomplished, or Not Accomplished, based
on whether the final reasoning step rn sufficiently
addresses Q. Using the LLM M, it analyzes the
full trajectory and, when necessary, generates feed-
back incorporated back into the system prompt P
for the next iteration.

Reflect Agent. The Reflect Agent (Areflect) is trig-
gered when Areact is unable to finish task failures
occur or when prompted by Areview. It performs

366

Algorithm 1 Reinforcement via Multiple Verbal
Feedback
1: Initialize: ReAct agent Areact, Review agent Areview, Re-

flect agent Areflect, Distillation agent Adistill, TTS T
2: Receive queryQ
3: Q′ ← Adistill(Q) ▷ Optional distillation
4: Set memory mem← [T]; t← 0
5: while t < Tmax do
6: (ans, T)← Areact(Q′, mem)
7: if ans exists then
8: reviewt ← Areview(⟨Q′, ans, T ⟩)
9: if reviewt = Accomplished or Error then

10: break
11: end if
12: end if
13: reflectt ← Areflect(Q′, T)
14: Update mem with feedback from reflectt and

reviewt
15: t← t+ 1
16: end while
17: Return: Final solution ans

post-hoc introspection over the trajectory T , as-
sessing reasoning steps and tool usage. It outputs
targeted feedback, often in the form of strategy
shifts or reasoning templates, which are added to
the prompt P to guide future executions. The com-
plete system prompt is given in Appendix 15.

Distillation Agent. The Distillation Agent
(Adistill) acts as a pre-processor, decomposing
complex queries Q into structured semantic units:
variables, constraints, and goals. It generates
a distilled prompt P ′ ⊆ P , which serves as
a scaffold for downstream agents, improving
both interpretability and overall problem-solving
success (See Appendix 14 for system prompt).

Algorithm 1 formalizes this iterative loop driven
by verbal feedback, continuing until task success
or a retry threshold is reached.

3.2 Tiny Trajectory Stores (TTS)

The Tiny Trajectory Store is a compact repository
of short, efficient trajectories that represent key
problem-solving steps. Formally, the TTS is de-
fined as:

T = {S1, S2, . . . , Sn}

where each trajectory Si is a sequence of steps
{s1, s2, . . . , sk}, with k ≤ 3. These trajectories
capture essential actions and reasoning, enabling
the agent to quickly adapt, reduce redundancy, and
improve decision-making in subsequent tasks.

TTS enhances many-shot in-context learning by
organizing examples into three pedagogical cate-
gories:

Figure 3: Tiny Trajectory Samples Organization

• Tool/Skill Teaching: Focuses on proper tool
invocation, including specifying tool names,
parameters, and expected outputs. This en-
sures accurate tool application in problem-
solving.

• Domain/Entity Teaching: Emphasizes un-
derstanding and description of domain-
specific entities (e.g., HVAC systems or sen-
sors in industrial IoT). This helps the LLM
recognize entities in user queries.

• Workflow Teaching: Guides the agent in exe-
cuting tasks with structured, step-by-step pro-
cesses to ensure efficient problem-solving.

Each TTS combines handcrafted (H) and
system-generated (G) examples, balancing preci-
sion with adaptability. Currently, we have prepared
17 handcrafted trajectories: 12 general-purpose
(e.g., merging JSON files) and 5 domain-specific
(e.g., describing assets or sensors). These examples
foster in-context learning and enhance the agent’s
ability to generalize across tasks. We have included
two examples in Appendix 7 and 8. Figure 3 shows
the overall organization of TTS.

4 IoTBench: Benchmark Dataset

In this section, we introduce IoTBench, a bench-
mark dataset D specifically constructed for evaluat-
ing agent performance in industrial IoT scenarios.
Due to the absence of publicly available datasets
tailored to this domain, we adopted a multi-phase
strategy that combines hand-crafted and machine-
generated data to ensure both quality and diversity.
Figure 4 provides an outline of the data generation
workflow.

Phase 1: Hand-Crafted Seed Set. We began
by constructing 20 high-quality, manually written

367

Figure 4: Synthetic Data Generation Pipeline

instructions for the IoT site POKMAIN, inspired by
TaskBench (Shen et al., 2024). These examples
span a range of reasoning challenges, including en-
tity discovery (e.g., sites, assets), temporal queries
with relative references (e.g., “last week”, “mid-
night”), multi-asset and multi-sensor comparisons,
interval-based versus point-in-time queries, and
sensor disambiguation tasks (e.g., comparing read-
ings from Chiller 6 and Chiller 9).

This dataset is denoted DPOKMAIN. To test gen-
eralization, we generated DRCHMAIN by adapting
the original queries to a structurally similar site,
RCHMAIN, with systematic substitutions of assets
(e.g., swapping “AHU” with “Chiller”).

Phase 2: Synthetic Instruction Generation. To
scale coverage, we used the Evol-Instruct frame-
work (Xu et al., 2024) to generate approximately
300 synthetic instructions based on both single
prompts and prompt pairs. These were assessed
by an Assessment Agent, which labeled each in-
struction with a confidence level (High, Medium,
Low). After manual review, we retained 164 high-
confidence instructions, comprising the dataset
DSyn-I. Appendinx 16 provide detailed system
prompt. The prompt used to produce new synthetic
instruction is given in Appendix 17.

Phase 3: Domain-Specific Augmentation. Next,
we enriched DSyn-I by embedding domain-specific
information such as site metadata, sensor types,
and asset hierarchies. This yielded an additional
290 context-rich instructions across three distinct
sites: HQ3SBY, HQ1ARM3, and AUSWEST. The final
dataset from this phase, DSyn-II, emphasizes com-
plex, multi-entity scenarios and longer instruction
structures.

As evidenced in Table 2, both instruction
length and complexity increase substantially from
DPOKMAIN to DSyn-II, facilitating rigorous evalua-
tion across a spectrum of IoT task difficulties.

Dataset Size Site(s) Avg. Length (Std.)
DPOKMAIN 20 1 12.90 (5.43)
DRCHMAIN 20 1 12.05 (4.98)
DSyn-I 164 1 20.83 (6.52)
DSyn-II 290 3 41.36 (10.17)

Table 2: Summary of IoTBench Datasets

5 Experimental Setup

5.1 Models and Agents

We evaluate diverse language models, includ-
ing closed-source (o1 (OpenAI, 2024)) and open-
source families like mistral (Jiang et al., 2023),
llama (Touvron et al., 2023), and granite (Gran-
ite Team, 2024)), selected based on leaderboard per-
formance (Contributors, 2023). Experiments use
handcrafted (DPOKMAIN,DRCHMAIN) and synthetic
datasets (DSyn-I,DSyn-II), covering varied task com-
plexities. Unless specified, mistral-large and
granite-3-8b are default backends.

We compare planning strategies including
CoT (Wei et al., 2023), HuggingGPT (Shen
et al., 2023), RAFA (Liu et al., 2024), ReAct-
Review (Yao et al., 2023), and ReActXen, cov-
ering from plan-execute to reflective agents.
For ReActXen, we set max_react_step=15,
max_reflect_step=15, and temperature=0 (1
for o1), running all experiments on a MacBook Pro
with GPU backends. We report task completion
rate (queries marked Accomplished by the Review
Agent), efficiency (total token usage, average tra-
jectory length, execution time), and computational
cost (API calls per task).

5.2 Results on Baseline Dataset

Figure 5 shows task completion on DPOKMAIN.
Models like o1 and granite-3-8b solve up to
14 tasks without reflection, with ReActXen en-
abling most models to achieve near-complete per-
formance. Five out of seven models improve with
reflection, highlighting its value. Tasks are marked
Not Accomplished when exceeding step limits or
when outputs are insufficient per Review Agent
judgment. Results on DRCHMAIN are included in
Appendix D.1.

5.3 Reflection Rounds

Figure 6 shows performance as reflection steps in-
crease. Most models improve within 5 steps, e.g.,
mixtral-8x7b rapidly reaches near-optimal per-
formance. Models like llama-3-8b show limited

368

Figure 5: Tasks accomplished on baseline dataset.

gains, possibly due to suboptimal Review Agent
outputs (Appendix 10).

Figure 6: Effect of reflection rounds on task completion.

5.4 Traj. Length and In-context Examples
Figure 7 shows average trajectory lengths; early
success (fewer steps) indicates higher efficiency.
Without in-context examples, models perform
worse; reflective reasoning mitigates this gap (Fig-
ures 8, 9), confirming the benefit of Tiny Trajectory
Samples (TTS).

Figure 7: Average trajectory length.

5.5 Execution Strategies
Figure 10 compares strategies. ReActXen achieves
the highest task completion, followed by RAFA
and ReActXen-Reflect, highlighting the benefit of

Figure 8: Task completion comparison when no exam-
ple is included.

Figure 9: TTS Impact on average reflection rounds

iterative reasoning. CoT and HuggingGPT com-
plete fewer tasks, underscoring limitations in static
planning.

Figure 10: Task completion across agent strategies.

5.6 Synthetic Benchmark

Table 3 summarizes large-scale experiments on
DSyn-I. Reflection significantly boosts task
completion (e.g., mistral-large: 101→161,
granite-3-8b-instruct: 88→149), though with
increased computational cost. Results on DSyn-II
are in Appendix D.2.

369

Model Tasks Completed Tokens Sent Tokens Recv. API Calls Proc. Time Traj. Len
@Round 1 @Final Avg Avg Avg Avg Avg

Experiment 1: Internal Reviewer
mistral-large 101 161 337k 1854 32 3.2 7.2

granite-3-8b-instruct 88 149 601k 2445 49 5.9 5.8
Experiment 2: External Reviewer

mistral-large 121 155 270k 1395 25 2.7 6.7
granite-3-8b-instruct 90 140 642k 2721 55 6.6 5.7

Table 3: Summary metrics on DSyn-I.

6 Research Innovation in TTS

Tiny Trajectory Store (TTS) provides a compact
representation of reasoning trajectories, which are
essential for supplying high-quality examples to
small language models (SLMs). A key research
innovation is the automatic generation of compact
trajectories from real execution traces exceeding
a length of five (Figure 5). Since real traces often
have an average length greater than five, this moti-
vates an automated, scalable method to efficiently
curate examples. We conducted an experiment
on the DPOKMAIN problem set to quantify this ap-
proach. The experiment iteratively expands TTS by
automatically generating solved examples, allow-
ing SLMs to leverage TTS for improved problem-
solving performance while reducing their reliance
on handcrafted examples.

Algorithm 2 Iterative Auto-Generation of TTS
1: Initialize: Empty Tiny Trajectory Store T , Problem set

P = DPOKMAIN (size 20)
2: Set unsolved_problems ← P , max_reflect_step ← 1,

max_examples← 17
3: for round = 1 to 5 do
4: Use current T as in-context examples (ICL)
5: Solve unsolved_problems using ReAct + Review
6: Record num_solved
7: Add solved problems to T as new examples via LLM

auto-generation
8: Update unsolved_problems← unsolved_problems -

solved_problems
9: if size(T) ≥ max_examples or num_solved = 0 then

10: break
11: end if
12: end for
13: Return: Solved problems per round, final T

The automation process worked iteratively: prob-
lems solved in one round were automatically con-
verted into TTS examples and reused as in-context
demonstrations for the next round. Performance
began low with zero in-context examples (5 prob-
lems solved in Round 1). Over successive rounds,
the model reused its own generated examples, with
mixed effectiveness, as shown in Table 4.

Round # of Examples
in TTS

of Problems Newly
Solved by granite-3-8b

1 0 5
2 5 4
3 9 2
4 11 3
5 14 0

Table 4: Iterative performance of granite-3-8b.

6.1 Effect of Curated Trajectories

To isolate the effect of curated trajectories based
on quantity and quality, we varied the number of
hand-crafted examples. Figure 3 shows results with
all 17 curated trajectories, while Figure 6 shows
the 0-example baseline, where performance drops
sharply. Table 5 summarizes the effect of quantity
while keeping quality fixed. For all models, per-
formance improves consistently as the number of
curated examples increases. The in-context exam-
ples in this experiment were hand-curated to ensure
high quality.

Model 0 5 12 17

llama-3-405b 5 9 15 18
granite-3-8b 9 11 17 20
mixtral-8x7b 6 8 11 15

Table 5: Performance of different models as the number
of curated hand-crafted trajectories increases. Higher
number of curated examples improves performance.

7 Conclusion

Our experiments reveal key challenges and gains in
reasoning, tool use, monitoring, scanning, and early
termination. Integrating Self-Ask and many-shot
training with Tiny Trajectory Store (TTS) improved
reasoning and tool generalization. Distillation, Re-
flection, and Review Agents boosted accuracy, effi-
ciency, and reduced redundant executions. Future
work will explore model fine-tuning for scaling to
100s of IoT sites, addressing variations in sensor
descriptions and asset diversity.

370

Limitations

A major difficulty with ReActXen is the verifica-
tion of the result answer. The answer obviously
varies with the question and the LLM used, but the
validation is complicated:

• Validation of a JSON result – it is relatively
easy to validate that the JSON structure is
correct

• The asset instance and sensor should also be
validated

• The date range should also be validated (if
applicable)

• The sensor values should also be validated (if
applicable)

We have had some limited success validating
these items for a restricted subset of assets. It is
not clear how this can be extended to a large study.
Perhaps the larger community can help with this
task.

References
Rishabh Agarwal, Avi Singh, Lei M. Zhang, Bernd

Bohnet, Luis Rosias, Stephanie Chan, Biao Zhang,
Ankesh Anand, Zaheer Abbas, Azade Nova, John D.
Co-Reyes, Eric Chu, Feryal Behbahani, Aleksandra
Faust, and Hugo Larochelle. 2024. Many-shot in-
context learning. Preprint, arXiv:2404.11018.

Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan
Fu, Xin Dong, Saurav Muralidharan, Yingyan Ce-
line Lin, and Pavlo Molchanov. 2025. Small lan-
guage models are the future of agentic ai. Preprint,
arXiv:2506.02153.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Benoit Dherin, Michael Munn, Hanna Mazzawi,
Michael Wunder, and Javier Gonzalvo. 2025. Learn-
ing without training: The implicit dynamics of in-
context learning. Preprint, arXiv:2507.16003.

IBM Granite Team. 2024. Granite 3.0 language models.

Jason Jabbour and Vijay Janapa Reddi. 2024. Gener-
ative ai agents in autonomous machines: A safety
perspective. arXiv preprint arXiv:2410.15489.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,

Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Langchain. 2024a. Langchain tools documentation. Ac-
cessed: 2025-02-09.

Langchain. 2024b. Wikipedia tool integration. Ac-
cessed: 2025-02-09.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi
Ke, Boyi Liu, and Zhaoran Wang. 2024. Reason
for future, act for now: A principled architecture
for autonomous LLM agents. In Proceedings of the
41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning
Research, pages 31186–31261. PMLR.

Alexander Nikitin and Samuel Kaski. 2022. Human-in-
the-loop large-scale predictive maintenance of work-
stations. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, pages 3682–3690.

OpenAI. 2024. o1-preview.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2023. Measuring
and narrowing the compositionality gap in language
models. Preprint, arXiv:2210.03350.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
hugging face. Preprint, arXiv:2303.17580.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. 2024. Taskbench: Bench-
marking large language models for task automation.
Preprint, arXiv:2311.18760.

Manish Shetty, Yinfang Chen, Gagan Somashekar,
Minghua Ma, Yogesh Simmhan, Xuchao Zhang,
Jonathan Mace, Dax Vandevoorde, Pedro Las-Casas,
Shachee Mishra Gupta, Suman Nath, Chetan Bansal,
and Saravan Rajmohan. 2024. Building ai agents for
autonomous clouds: Challenges and design princi-
ples. Preprint, arXiv:2407.12165.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning. Preprint, arXiv:2303.11366.

Skyspark. 2024. Skyspark. https://www.
skyfoundry.com/product. Accessed: 2024-
09-02.

371

https://arxiv.org/abs/2404.11018
https://arxiv.org/abs/2404.11018
https://arxiv.org/abs/2506.02153
https://arxiv.org/abs/2506.02153
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://arxiv.org/abs/2507.16003
https://arxiv.org/abs/2507.16003
https://arxiv.org/abs/2507.16003
https://github.com/ibm-granite/granite-3.0-language-models/
https://arxiv.org/abs/2310.06825
https://python.langchain.com/v0.1/docs/modules/tools/
https://js.langchain.com/docs/integrations/tools/wikipedia/
https://proceedings.mlr.press/v235/liu24ab.html
https://proceedings.mlr.press/v235/liu24ab.html
https://proceedings.mlr.press/v235/liu24ab.html
https://openai.com/
https://arxiv.org/abs/2210.03350
https://arxiv.org/abs/2210.03350
https://arxiv.org/abs/2210.03350
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2311.18760
https://arxiv.org/abs/2311.18760
https://arxiv.org/abs/2407.12165
https://arxiv.org/abs/2407.12165
https://arxiv.org/abs/2407.12165
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://www.skyfoundry.com/product
https://www.skyfoundry.com/product

Wei Tao, Yucheng Zhou, Yanlin Wang, Wenqiang
Zhang, Hongyu Zhang, and Yu Cheng. 2024. Magis:
Llm-based multi-agent framework for github issue
resolution. arXiv preprint arXiv:2403.17927.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. Preprint, arXiv:2307.09288.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F
Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, and 1 oth-
ers. 2024. Openhands: An open platform for ai soft-
ware developers as generalist agents. arXiv preprint
arXiv:2407.16741.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. 2023. Wizardlm: Empowering large language
models to follow complex instructions. Preprint,
arXiv:2304.12244.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations.

Hong Yang, Aidan LaBella, and Travis Desell.
2022. Predictive maintenance for general avia-
tion using convolutional transformers. Preprint,
arXiv:2110.03757.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. Preprint, arXiv:2210.03629.

372

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2304.12244
https://arxiv.org/abs/2304.12244
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://arxiv.org/abs/2110.03757
https://arxiv.org/abs/2110.03757
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629

A Agent Terminology

A.1 Terminology Definitions
We use following key terms throughout this paper:

• Query (Q): A natural language instruction
submitted by a user—typically a plant opera-
tor—to retrieve or analyze sensor data.

• Agent (A): A reasoning and acting module re-
sponsible for solving a given query Q. Agents
may be specialized for distinct stages in the
overall task workflow.

• System Prompt (P): A structured in-
put to the LLM, comprising instructions,
domain-specific exemplars, and constraints
that shape agent behavior. Formally, P =
{instructions, examples, . . .}.

• Trajectory (T): The sequence of reasoning
and action steps taken by an agent to solve a
query. A trajectory is denoted as:

T = {r1, a1, o1, . . . , rn−1, an−1, rn},
where ri is a reasoning step, ai an action (e.g.,
tool invocation), oi the result of the action,
and rn contains the final answer.

• In-context Learning Example (Ei): A
worked-out demonstration included within the
prompt to guide agent reasoning for task Ti.

• LLM (M): The large language model serving
as the agent’s reasoning core. The model maps
input x to output y as M : x 7→ y.

• Tools (L): External utilities or APIs the agent
can invoke to access data, execute domain-
specific operations, or assist in solving sub-
tasks.

A.2 Agent Output
Figure 11 illustrates three representative examples
of agent input-output behavior across varying query
types. Additionally, the agent performs further
analysis on this data, such as identifying maximum
values and detecting patterns.

A.3 Why ReActXen Improves performance
Theorem 1 (R.1: Early Feedback Stabilizes Tra-
jectories). Injecting Review and Reflect feedback
early in the reasoning process establishes a stable
and influential feedback regime. This significantly
enhances the guidance provided to the model and
improves final task completion accuracy.

Figure 11: IoT Agent : Input-Output Configuration

Theorem R.1: Injecting Review and Reflect
feedback early in the process establishes a stable
and influential feedback loop, significantly enhanc-
ing the guidance provided to the model.

Let M denote an auto-regressive language
model that generates tokens sequentially, where
each token is produced based on previous tokens
via an attention mechanism operating over a Key-
Value (KV) cache.

Let F1 and F2 represent two reflexive feedback
regions inserted at the beginning and end of the
prompt, respectively. We assume that:

• Tokens in F1 are accessible to all downstream
tokens due to the model’s attention pattern,
where each token in F1 influences subsequent
tokens for i ≥ t.

• Tokens in F2, however, are injected too late
in the process, affecting only a narrow sub-
set of trailing tokens, and hence have limited
influence on the overall generation.

Thus, the influence of early reflection (F1) is
strictly greater than that of late reflection (F2):

Influence(F1) > Influence(F2)

Proof: This inequality arises from three key
factors:

• Sequential Generation: In an auto-regressive
model, only past tokens influence future gen-
erations, thereby amplifying the role of tokens
early in the process.

• KV Cache Persistence: Early tokens persist
in the KV cache and are attended to repeatedly,
reinforcing their impact on subsequent tokens.

• Positional Advantage: Early tokens serve as
foundational anchors, shaping the trajectory
of the generation process and guiding later
tokens more effectively.

373

Benchmark TaskBench (NeurIPS 2024) ITBench (ICML 2025) IoTBench (Ours)

Data Generation Tool Graph + Back-Instruct Manual Manual + LLM
Tool Dependency
Quality Control LLM Self-critique + Rule-

based
Human Verification Human Verification

Evaluation Task Decomposition + Tool
Selection + Parameter Predic-
tion

ReAct Planning + Tool Selec-
tion

ReAct Planning + Tool Selec-
tion + Parameter Prediction

Tool Complexity Single tool to complex tool
graph

- Multiple tools; same tools
can be called multiple times

Dataset Scale 17,331 samples 141 scenarios 494 samples
Temporal / Dynamic Query ✗ ✗ ✓
Name Disambiguation ✗ ✗ ✓
Tools Output Operation ✗ ✗ ✓

Table 6: Comparative overview of IoTBench against existing benchmarks. IoTBench combines rigorous human
curation, systematic generation, and diverse evaluation, making it a high-quality resource for LLM benchmarking.

Corollary: The early injection of reflective feed-
back creates a more stable and impactful model
behavior, compared to feedback introduced later in
the generation process.

B Comparative Overview with Existing
Benchmarks

To contextualize the significance of our dataset,
we provide a comparative analysis of IoTBench
against two existing benchmarks: TaskBench
(NeurIPS 2024) and ITBench (ICML 2025). Ta-
ble 6 summarizes the key differences in data gen-
eration, tool usage, evaluation methodology, and
other dataset characteristics.

This comparison highlights that IoTBench not
only maintains tool dependency and human verifi-
cation like prior benchmarks, but also incorporates
temporal/dynamic queries, name disambiguation,
and tool output operations, offering a more com-
prehensive evaluation framework.

C ReAct Style Dialog in TTS

We provided two examples stored in TTS for do-
main understabnding, see Table 7 and 8. In Table 8,
we queried the system for the list of assets associ-
ated with the site “POKMAIN” to understand their
representation. After retrieving the asset details
in JSON format, we identified five example assets,
each containing a site_name and asset_name pair,
such as “B706_LC26” and “B012 SCWP 1”. The
action flow included retrieving the data, reading
the JSON file, and presenting these asset examples
as the final output.

D Experiment on Remaining Dataset

D.1 DRCHMAIN

We move from one asset to another. The results
(See Table 11) from our experiments demonstrate
the significant impact of reflective reasoning and in-
context learning on task completion across various
language models. Models incorporating the reflec-
tion process, such as ReActXen, consistently out-
performed those without it, achieving higher task
completion rates. For instance, Mistral-large and
Granite-3-8b-instruct saw improvements in task
completion when reflective reasoning was intro-
duced. However, while these improvements were
evident, they came at the cost of increased com-
putational time, underlining the trade-off between
performance and efficiency. The results also sug-
gest that the number of reflection steps plays a
crucial role, with diminishing returns observed af-
ter a certain point. This emphasizes the need for
careful optimization of reflection mechanisms to
balance task completion and resource utilization.

D.2 Larger Dataset - DSyn−II

The Table 9 presents a comparison of key metrics
for two models: mistral-large and granite-3-8b-
instruct. We managed to run only 32 task in 24
hour. mistral-large completed 27 tasks, with aver-
age token metrics slightly lower than granite-3-8b-
instruct, which completed 24 tasks. The mistral-
large model sent an average of 1,048,972 tokens
(with a standard deviation of 1,386,043.31), com-
pared to granite-3-8b-instruct’s 1,387,515.79 to-
kens (standard deviation of 1,852,631.64). Both
models show significant differences in API and
reflection call counts, with granite-3-8b-instruct
requiring more reflection calls. The mistral-large

374

Thought 1 I need to get the list of available sites to answer the question.
Action 1 sites

Action Input 1 {}
Observation 1 Available sites: found the following 34 sites, listed in file 4ce1a0e4-

....
Thought 2 I now have the list of available sites, which is stored in a file.
Action 2 Finish

Action Input 2 The sites are listed in file 4ce1a0e4....

Table 7: ReAct Style Dialog with Thought, Action, and Observation Loop Stored in TTS

Thought 1 I need to get the list of assets for a specific site to understand how
they are represented.

Action 1 assets

Action Input 1 site_name=POKMAIN

Observation 1 "site_name": "POKMAIN", "total_assets": 5,
"file_path": "360fea44-....json",
"message": "found 5 assets for site_name POKMAIN. file_path
contains a ..."

Thought 2 I now have the list of assets for site POKMAIN, which is stored in
a file.

Action 2 jsonreader

Action Input 2 file_name=360fea44-6bb2-4f41-89d7-9a8313714589.json

Observation 2 ["site_name": "POKMAIN", "asset_name": "B706_LC26"]...
Thought 3 I now have the list of assets for site POKMAIN. I will provide
Action 3 Finish

Action Input 3 Assets are represented with a site_name and an asset_name.
Here are five examples:
1. "site_name": "POKMAIN", "asset_name": "B706_LC26"
2. "site_name": "POKMAIN", "asset_name": "B012 SCWP
1"
3. "site_name": "POKMAIN", "asset_name": "B710 FCU
1-39"
4. "site_name": "POKMAIN", "asset_name": "B006_LC74"
5. "site_name": "POKMAIN", "asset_name": "B006A AHU
2"

Table 8: ReAct Style Dialog for Asset Representation Query also stored in TTS

model has a lower average processing time of 10.90
minutes compared to 17.18 minutes for granite-3-
8b-instruct.

375

Metric mistral-large granite-3-8b-instruct

ModelID 6 8
Total Tasks Completed 27 24

Avg Tokens Sent 1048972.31 1387515.79
Std. Dev. 1386043.31 1852631.64

Avg Tokens Received 6532.38 7326.79
Std. Dev. 8486.77 11303.45

Avg API Calls 109.53 133.94
Std. Dev. 137.66 130.54

Avg REF Calls 4.75 8.94
Std. Dev. 5.12 7.84

Avg Processing Time (min) 10.90 17.18
Std. Dev. 13.52 21.99

Table 9: Summary of model metrics with mean and standard deviation on DSyn-II.

Model No Reflect [min] Reflect [min]

granite-3-2-8b-instruct 16.34 43.88
mistral-large 18.17 54.53
llama-3-1-8b-instruct 16.81 35.58
o1 14.00 470.50

Table 10: Comparison of execution times with and without reflection.

ModelName
Total Tasks
Completed

Avg Tokens
Sent

Avg Tokens
Received

mixtral-8x7b-instruct-v01 14 771161.50 4276.80
(1052780.44) (5390.68)

mistral-large 18 948762.30 4687.25
(1827178.31) (8830.64)

llama-3-405b-instruct 16 539524.45 3478.65
(1269279.89) (7668.36)

granite-3-8b-instruct 16 559777.75 2304.85
(1035710.01) (4334.83)

llama-3-1-8b-instruct 1 443671.40 1635.15
(1094015.96) (3881.86)

llama-3-3-70b-instruct 0 204592.15 1461.65
(526319.34) (3566.10)

Table 11: Summary of model metrics with mean and standard deviation on D∗
RCHMAIN.

376

System Prompt
(ReActXen)

Answer the following questions as best you can. You have access to the following
tools:

{tool_desc}

Use the following format:
Question: the input question you must answer
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

Here are Guidance on Tool Usage:
1. Default to Self-Ask When Tools Are Missing: Fallback to Self-Ask when tools
are unavailable, using logical problem-solving, knowledge or recent interaction
(e.g., datetime calculations, math reasoning).
2. Prioritize Step-by-Step Explanations: Provide step-by-step explanations to
ensure clarity and transparency in reasoning.
3. Fallback for Common Operations: Manually solve common operations like
arithmetic, string manipulations, or date handling when necessary, and validate
the solution.
4. Clearly Identify the Steps: Explicitly state when reasoning is used and solve
problems step-by-step.
{ 5. Utilize Agent-Ask for Clarifications: When additional information is needed
to resolve the question, use Agent-Ask to query another agent before taking
action. Ensure the clarification request is specific and directly addresses
missing details in the input question.
{Here are some examples:
{examples}
(END OF EXAMPLES)

Here is feedback:
{reflections}

Question: {question}
{scratchpad}

Table 12: System prompt for proposed ReActXen Agent

377

You are a critical reviewer tasked with evaluating the effectiveness and
accuracy of an AI agent’s response to a given question or task. Your goal is to
determine whether the agent has successfully accomplished the task or has made
an unjustified claim of success (hallucinated).

Evaluation Criteria:
1. Task Completion:
- Verify if the agent executed the necessary actions (e.g., using tools,
downloading files, generating results) to address the question or task.
- The response must produce a meaningful and relevant outcome within the context
of the given question.
- Do not make an implicit assumption, such as show the file content when question
or task has not asked explicitly.
- If the agent made an internal mistake (e.g., incorrect reasoning or error in
intermediate steps) but successfully recovered and completed the task, it should
still be considered Accomplished as long as the outcome is correct.

2. Exception Handling:
- If the agent claims it cannot complete the task due to the unavailability of
remote services or resources, confirm whether this is a valid justification.

3. Hallucination Check:
- If the agent claims success without executing the required actions or without
producing tangible outcomes, identify this as a hallucination.

4. Clarity and Justification:
- Ensure the response provides sufficient evidence or explanation to support its
claims (success or failure).

Question: {question}
Agent’s Thinking: {agent_think}
Agent’s Final Response: {agent_response}

Output Format:
Your review must always be in JSON format. Do not include any additional
formatting or Markdown in your response.
{
"status": "Accomplished | Partially Accomplished | Not Accomplished",
"reasoning": "A concise explanation for your evaluation.",
"suggestions": "Optional. Actions or improvements for rectifying the response
if applicable."
}
(END OF RESPONSE)

Please provide your review based on the given criteria.

Table 13: Critical Reviewer System Prompt

378

As a highly professional and intelligent expert in information distillation,
you excel at extracting essential information from user input query to solve
problems. You adeptly transform this extracted information into a suitable
format based on the respective type of the issue. If the problem can be
generalized to a higher level to solve multiple issues, further analysis and
explanation will be provided upon your next response.

Please categorize and extract the crucial information required to solve the
problem from the user’s input query. Combining these two elements will generate
distilled information. Subsequently, deliver this distilled information, based
on the problem type, to your downstream task. The distilled information should
include:

1. Values and information of key variables extracted from user input, which
will be handed over to the respective expert for task resolution, ensuring all
essential information required to solve the problem is provided.
2. The objective of the problem and corresponding constraints.
3.

Query: {question}
Please distill the information following the format below and cease response
after the output of the distilled information. Do not generate any new
information which is not provided in the input query.

Distiller Respond:

Distilled Information:

1. Original Question:
- Question: Write the input query/question unaltered.
2. Key Information:
- Variables: List the key variables extracted from the query.
- Values: Any known values or default values (if provided by the user).
... 6. Python Transformation (Optional):
Input parameters:
variable1_name = x
variable2_name = y
......
variableN_name = z

Do not proceed beyond this structured output.
(END OF RESPONSE)

Avoid providing any solution or attempting to answer the problem directly. Your
role is only to extract, categorize, and structure the information.

Table 14: System Prompt Template for Information
Distillation

379

You are an advanced reasoning agent that can improve based on self reflection.
You will be given a previous reasoning trial in which you were given access to
several tools and a question to answer. You were unsuccessful in answering the
question either because you guessed the wrong answer with Finish[<answer>], or
you used up your set number of reasoning steps. In a few sentences, diagnose
a possible reason for failure and devise a new, concise, high-level plan that
aims to mitigate the same failure. Use complete sentences.

Here are some examples:
{examples}

Previous trial:
Question: {question}
{scratchpad}

Reflection:

Table 15: Reflection Agent System Prompt

380

You are an evaluator tasked with assessing the feasibility of a given agent
solving a specific task based on its available tools, expertise, and past
performance. Your objective is to determine whether the agent can successfully
complete the task and assign a confidence level based on your analysis.

Evaluation Criteria:
1. Tool Availability: Verify the agent has the necessary tools.
2. Expertise and Experience: Assess relevant expertise or past successes.
3. Task Complexity: Evaluate task difficulty vs. agent capability.
4. Confidence Evaluation: Assign High (80–100%), Medium (50–79%), or Low (0–49%)
confidence.
5. Justification: Explain the reasoning behind the assigned confidence.

Task Details:
- Input Task: {input_task}

Agent Details:
- Agent Name: {agent_name}
- Agent Tools: {agent_tools}
- Agent Expertise: {agent_expertise}
- Agent Past Task History: {agent_task_history}

Output Format:
Your response must be in JSON format with the following structure:
{
"confidence_level": "High | Medium | Low",
"confidence_percentage": {confidence_percentage},
"justification": "Concise explanation for confidence level.",
"recommendations": "Optional suggestions for improving agent success."
}
(END OF RESPONSE)

Table 16: Task Assessment System Prompt

381

You are tasked with generating a brand new, unique prompt inspired by two
provided prompts. Your goal is to combine elements from both prompts, ensuring
that the new prompt belongs to the same domain but is even more unique and rare.
The new prompt should reflect the themes of both given prompts in a creative and
original way.

Guidelines:
1. Incorporate Elements from Both Prompts: Synthesize aspects from both Given
Prompt 1 and Given Prompt 2.
2. Maintain Similar Length and Complexity: Ensure that the new prompt has a
similar length and level of complexity as the two given prompts.
3. Ensure Coherence and Reasonability: The new prompt must be logical,
reasonable, and coherent.
4. If a Date or Time is Provided: Then generate a variation or representation
of a new date close to the given date.
5. If the Prompts Are Diverse: Avoid mixing the two prompts. Instead, select
one prompt for generating a new prompt.
6. Avoid Direct Phrases: Do not use the phrases Given Prompt 1, Given Prompt 2,
or Created Prompt in the new prompt itself.

Prompt Inputs:
- Prompt 1: {prompt1}
- Prompt 2: {prompt2}

Output Format:
Your response must be in JSON format with the following structure:
{
"created_prompt": "here is your newly generated prompt"
}
(END OF RESPONSE)

Please provide your output based on the given prompt 1 and prompt 2 and the above
guidelines.

Table 17: Base Instruction: Two Prompt

382

