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Abstract

In large-scale industrial LLM systems, prompt
templates often expand to thousands of tokens
as teams iteratively incorporate sections such
as task instructions, few-shot examples, and
heuristic rules to enhance robustness and cov-
erage. This expansion leads to bloated prompts
that are difficult to maintain and incur signifi-
cant inference latency and serving costs. To ad-
dress this, we introduce Prompt Compression
via Attribution Estimation (ProCut), a flex-
ible, LLM-agnostic, training-free framework
that compresses prompts through attribution
analysis. ProCut segments prompt templates
into semantically meaningful units, quantifies
their impact on task performance, and prunes
low-utility components. Through extensive ex-
periments on five public benchmark datasets
and real-world industrial prompts, we show that
ProCut achieves substantial prompt size reduc-
tions (78% fewer tokens in production) while
maintaining or even slightly improving task
performance (up to 62% better than alternative
methods). We further introduce an LLM-driven
attribution estimator that reduces compression
latency by over 50%, and demonstrate that Pro-
Cut integrates seamlessly with existing prompt-
optimization frameworks to produce concise,
high-performing prompts.

1 Introduction

Recent advances in Generative AI have brought
large language models (LLMs) such as GPT-4
(Achiam et al., 2023) and Claude (Anthropic, 2025)
into production pipelines for question answering,
code generation, and retrieval-augmented search
(Kamalloo et al., 2023; Zan et al., 2023; Zhu
et al., 2023). In industry, these systems are typ-
ically driven by prompt templates that grow organ-
ically over time as teams iteratively incorporate
sections such as task instruction and heuristic rules.

*Preprint available at arXiv:2508.02053.

Few-shot in-context learning and chain-of-thought
prompting magnify this expansion (Wei et al., 2022;
Brown et al., 2020), so prompts spanning several
thousand tokens are now common (Hsieh et al.,
2024).

Prompt bloat presents three primary challenges.
The first is inflated inference latency and escalat-
ing API expenditure (Jiang et al., 2023); the sec-
ond is degraded task accuracy, as vital instructions
can be diluted or forgotten in very long prompts
(Liu et al., 2024). The third is mounting mainte-
nance debt, with overlapping or conflicting sec-
tions making prompts increasingly hard to audit
and debug. As a result, prompt compression has
emerged as a crucial research and engineering fo-
cus. Prior work spans hard methods, such as Selec-
tive Context, LLMLingua, LLMLingua-2, Nano-
Capsulator, Selection-p, DisComp, and EFPC (Li
et al., 2023; Jiang et al., 2023; Pan et al., 2024;
Chuang et al., 2024; Chung et al., 2024; Quancai
et al., 2025; Cao et al., 2025), which perform token-
level removal or generative paraphrasing, and soft
methods, such as Gisting, AutoCompressor, ICAE,
and 500×Compressor (Mu et al., 2023; Chevalier
et al., 2023; Ge et al., 2023; Li et al., 2024c),
which encode prompts into compressed continu-
ous embeddings. However, token-level methods
can produce grammatically incorrect or disfluent
text, complicating prompt maintenance and manual
post-editing, whereas soft-embedding techniques
lack cross-model generalizability and must be re-
trained for each new LLM, limiting their scalability
across diverse production pipelines.

In this study, we introduce ProCut, a flexible,
training-free framework that compresses prompt
templates by leveraging attribution-estimation
methods. Unlike token-level compression ap-
proaches, ProCut treats a prompt as a set of se-
mantically coherent text segments, which are typi-
cally contiguous sentences or paragraphs, and casts
prompt compression as a feature-selection prob-
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lem, with each segment encoded as a binary feature.
This formulation allows either direct use of estab-
lished attribution techniques such as Shapley values
(SHAP) (Lundberg and Lee, 2017), Leave-One-
Out (LOO) (Lei et al., 2018), LASSO regression
(Tibshirani, 2018), or our newly proposed LLM-
driven attribution method, to identify and retain the
most impactful segments. We also demonstrate
that ProCut integrates seamlessly with prompt-
optimization frameworks such as TextGrad (Yuk-
sekgonul et al., 2025); by alternating between op-
timization and compression, the resulting prompts
are both markedly more concise and more effective.
In this paper, we make the following contributions:

1. We present the first use of attribution estima-
tion for prompt compression, supporting di-
verse attribution algorithms.

2. We propose a constant-call, LLM-driven attri-
bution estimator that preserves performance
while significantly reducing latency.

3. We integrate prompt compression with prompt
optimization frameworks, delivering concise
and high-performing prompts.

The software architecture and implementation
details are in Appendix K and L.

2 Related Work

Automatic prompt optimization refines prompts to
maximize LLM performance without direct model
access (Ramnath et al., 2025). Prior work includes
prompt rewriting (Li et al., 2024a), in-context ex-
ample selection (Gupta et al., 2023), and gradient-
based updates (Pryzant et al., 2023; Yuksekgonul
et al., 2025). Automatic prompt optimization of-
ten causes significant prompt growth; TextGrad,
for instance, adds roughly 500 tokens per iteration
(Section 4.7), raising execution costs and mainte-
nance burdens (Das et al., 2025).

Prompt compression aims to shorten prompts
to improve inference efficiency and reduce costs.
Existing approaches fall into two categories. Hard
methods such as Selective Context, LLMLingua,
LLMLingua-2, Nano-Capsulator, Selection-p, Dis-
Comp, and EFPC (Li et al., 2023; Jiang et al., 2023;
Pan et al., 2024; Chuang et al., 2024; Chung et al.,
2024; Quancai et al., 2025; Cao et al., 2025) re-
move or paraphrase tokens but can break placehold-
ers, produce disfluent text, and provide limited con-
trol over the final length. Soft methods such as Gist-
ing, AutoCompressor, ICAE, and 500×Compressor

(Mu et al., 2023; Chevalier et al., 2023; Ge et al.,
2023; Li et al., 2024c) compress prompts into con-
tinuous embeddings; these representations lack in-
terpretability and cross-model transferability and
require retraining for each LLM.

3 ProCut: Prompt Compression via
Attribution Estimation

3.1 Problem Formulation

We assume an initial prompt template p whose
placeholders are filled at inference time and that
can be partitioned into an ordered list of M disjoint
segments [p1, . . . , pM ]. A ground-truth dataset
D = {(xi, yi)} provides inputs and reference out-
puts. For each input xi, the instantiated prompt
p(xi) is sent to a black-box LLM, yielding ŷi =
LLM(p(xi)), which is evaluated with a task metric
s(yi, ŷi) or a reference-free metric s(ŷi). The goal
is to choose a subset K ⊆ {1, . . . ,M} of size k
so that the compressed template pK maximizes the
average metric value on D.

ProCut compresses prompts in three steps:
prompt template segmentation (Sec. 3.2) divides
the template into segments; segment attribution
estimation (Sec. 3.3) scores each segment; and
prompt template pruning (Sec. 3.4) removes low-
impact segments to produce a compact prompt tem-
plate.

3.2 Prompt Template Segmentation

The prompt template segmentation module decom-
poses a given prompt template p into M segments
[p1, . . . , pM ] where M denotes the number of seg-
ments and is a configurable hyperparameter. We
employ three strategies: (a) pre-defined segmenta-
tion, in which domain owners label logical blocks
for targeted compression; (b) structure-aware
segmentation, which cuts at natural sentence or
paragraph boundaries, assuming these units corre-
spond to semantically coherent components; and
(c) LLM-driven segmentation, which prompts
LLM to partition unstructured or model-generated
templates such as those produced by TextGrad. Fig-
ure 7 illustrates the prompt used in the LLM-driven
segmentation method, and Appendix B provides
examples of three segmentation methods.

3.3 Segment Attribution Estimation

Perturbation-based Attribution Methods
The attribution module accepts a segmented
prompt template [p1, . . . , pM ] and produces
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Figure 1: ProCut framework overview. The process consists of three stages: segmenting the prompt template,
estimating the importance of each segment via attribution analysis, and pruning low-impact segments.

scores [a1, . . . , aM ] that quantify each segment’s
contribution to the task metric. We rely on
perturbation-based methods, which require
only API access and thus keep the framework
model-agnostic. Any perturbation scheme can
be plugged in; for illustration we report four
representative algorithms: (a) Shapley values
(SHAP), which estimates marginal contributions
via Monte Carlo subsets; (b) Leave-One-Out
(LOO), which measures the performance drop
when a single segment is removed; (c) LASSO
regression, which fits a sparse linear model to
scores from randomly masked prompts; and (d)
greedy forward selection, which adds segments
sequentially based on observed gain. All methods
are evaluated on a held-out test set Dtest, using the
task-specific metric s(y, ŷ) to assess prediction
quality.

LLM-driven Attribution Estimation The attri-
bution methods discussed above require a large
number of LLM invocations, ranging from M for
Leave-One-Out to 2M for Shapley values, making
them costly and impractical for large-scale deploy-
ment, especially when the number of segments and
dataset size are high. To address this limitation,
we propose an LLM-driven approach (Algorithm 1)

that leverages the model’s own semantic under-
standing of the prompt. Specifically, rather than
relying on a single zero-shot estimate (Jeong et al.,
2024), our method prompts the LLM to generate
a bounded set of candidate masks that highlight
segments it deems important. Each mask is evalu-
ated on the training set, and the resulting feedback
is returned to the LLM, forming a probe-and-test
loop that refines the segment rankings iteratively.
By limiting the number of candidate masks, the
process completes in fewer than M LLM calls, sub-
stantially cheaper than traditional black-box tech-
niques while maintaining high attribution fidelity.

3.4 Prompt Template Pruning

After scoring the segments, we prune the prompt
template by retaining the top ⌊rM⌋ segments,
where M is the total number of segments and
r ∈ [0, 1] is a user-defined compression ratio. Re-
tained segments preserve their original order to
maintain context. The ratio r can be fixed to meet
latency or cost targets or tuned for task perfor-
mance.
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Dataset Tasks Train Test Metric

GSM8K – 20 100 Exact Match
SQuAD – 20 100 F1-score
HumanEval – 20 100 pass@1

BBH

Geometry Shapes 20 100

Exact MatchObject Counting 20 100
Color Reasoning 20 100
Penguins 20 100
Temporal Sequence 20 100

MMLU

College Medicine 20 100

Exact MatchCollege Math 20 75
Anatomy 20 100
Astronomy 20 100

Table 1: Summary of datasets, tasks, splits, and metrics.

4 Experiments

We conduct a series of experiments to evaluate
the effectiveness and efficiency of ProCut across
diverse settings. Specifically, we aim to answer the
following research questions (RQs):

• RQ1: How effective is ProCut in compressing
prompts compared to baseline methods?

• RQ2: Can LLMs’ semantic understanding
capabilities be leveraged to accelerate prompt
attribution analysis while maintaining high
attribution quality?

• RQ3: How can ProCut be integrated
with automated prompt optimization frame-
works such as TextGrad for generating high-
performing and efficient prompts?

4.1 Datasets
To comprehensively assess ProCut’s compression
effectiveness and attribution accuracy, we evaluate
it on 12 tasks spanning five benchmark datasets
across four diverse categories (Table 1): mathemat-
ical reasoning with GSM8K (Cobbe et al., 2021);
code generation with HumanEval (Chen et al.,
2021); extractive QA with SQuAD (Rajpurkar
et al., 2016); and broad knowledge and reason-
ing from nine tasks sampled from BBH (Suzgun
et al., 2023) and MMLU (Hendrycks et al., 2020).
To ensure a fair and reliable assessment, we use
each dataset’s official train/test split if available;
when subsampling is required, we uniformly sam-
ple within each split.

4.2 Evaluation Metrics
Table 1 lists the metrics used. Following prior work,
we report Exact Match for GSM8K, BBH, and
MMLU (Cobbe et al., 2021; Suzgun et al., 2023;
Fu et al., 2023a); unbiased Pass@1 for HumanEval

(Chen et al., 2021); and F1 score for SQuAD (Li
et al., 2024c).

4.3 Prompt Template

To ensure that our experiments start with repre-
sentative and well-engineered prompts, we con-
structed an initial template with five widely adopted
segment types: role-playing, zero-shot chain-of-
thought prompting, few-shot chain-of-thought ex-
amples, a question placeholder, and a context
placeholder. These segments reflect best prac-
tices in prompt design: few-shot examples are
taken directly from the BBH, GSM8K, and MMLU
datasets; the zero-shot cue follows Kojima et al.
(2022); and role-playing uses the common pattern
“You are an expert in {domain}”. Segments
are instantiated only when relevant (the context
placeholder appears only in SQuAD, and few-shot
examples only in GSM8K, BBH, and MMLU). The
complete template used in the RQ1 and RQ2 exper-
iments is provided in Table 6 of Appendix D.

4.4 Implementation Details

We use the April 2025 release of GPT-4.1 mini
model via the OpenAI API.1 To improve the sta-
bility of outputs produced by the LLM, we set the
temperature to 0 and allow a 4000-token context
window for long TextGrad prompts. Experiments
run on a MacBook Pro (M3 Pro, 36 GB RAM) with
Python 3.12, issuing API calls in parallel through
ten concurrent.futures threads. All algorithms
keep their default hyperparameters. For RQ1 and
RQ2 we apply the template from Section 4.3 at
compression ratios r ∈ {25%, 50%, 75%}; for
RQ3 we use LLM-driven segmentation (up to five
segments) with r ∈ {40%, 60%, 80%}. To ensure
reliable evaluation, each setting is run for five itera-
tions, and the averaged results are reported.

4.5 Prompt Compression Performance (RQ1)

We compare ProCut with four segment-level
prompt compression baselines: (i) Vanilla LLM,
where the LLM is instructed to compress the
prompt (Pu et al., 2024); (ii) Selective Context
(Li et al., 2023), a heuristic filter that removes
low-utility segments; (iii) Random Selection (Jiang
et al., 2023); and (iv) a Brute-force Oracle that ex-
haustively searches all 2M segment subsets. We fur-
ther compare ProCut with competitive token-level
compression methods, including (v) LLMLingua

1https://platform.openai.com/
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and LLMLingua-2 (Jiang et al., 2023; Pan et al.,
2024); we address the challenge of prompt tem-
plate placeholder corruption by manually repairing
them while keeping all other compressed tokens
unchanged.

Figure 2 and Table 2 summarize the performance
of compressed prompts for ProCut and the segment-
level compression baselines. ProCut consistently
outperforms all baselines and closely approaches
the brute-force oracle that exhaustively searches
all 2M segment subsets. On average, it improves
compressed prompt performance from 0.46 to over
0.70, confirming that attribution-guided pruning
effectively retains segments most critical for task
quality. Table 3 further reports the comparison
with competitive token-level methods LLMLingua
and LLMLingua-2 on the SQuAD dataset. Pro-
Cut achieves substantially higher performance at
moderate and low compression levels, and remains
competitive under high compression, indicating
that segment-level attribution effectively preserves
essential content even with strong compression.

Baseline Methods ProCut Family

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Performance of compressed prompts. Grey
bars show baselines, blue bars show ProCut variants,
the dashed orange line indicates the brute-force oracle.

Compression Ratio

Method 25% 50% 75% Average
Random Selection (Baseline) 0.104 0.359 0.567 0.343
Vanilla LLM (Baseline) 0.064 0.579 0.743 0.462
Selective Context (Baseline) 0.041 0.122 0.106 0.090
Brute Force (Oracle) 0.567 0.847 0.834 0.749

ProCut (SHAP) 0.575 0.841 0.841 0.752
ProCut (Leave-One-Out) 0.570 0.839 0.836 0.748
ProCut (LASSO) 0.573 0.846 0.826 0.748
ProCut (Greedy Forward) 0.569 0.848 0.838 0.752
ProCut (LLM-as-Ranker 2 Shots) 0.570 0.837 0.826 0.744
ProCut (LLM-as-Ranker 4 Shots) 0.561 0.776 0.781 0.706

Table 2: Average performance of compressed prompts
across compression ratios. The uncompressed prompt
template achieves a performance of 0.817. Detailed
breakdowns are provided in Appendix F, G, and H.

Compression Ratio

Method 25% 50% 75% Average
LLMLingua (Baseline) 0.228 0.236 0.201 0.222
LLMLingua-2 (Baseline) 0.019 0.058 0.755 0.278

ProCut (average across all variants) 0.240 0.832 0.736 0.603

Table 3: Comparison of ProCut and token-level com-
pression methods on the SQuAD dataset. The corre-
sponding compressed prompt templates are provided in
Appendix E.

Interpretability plays a critical role in industrial
prompt compression and optimization. ProCut na-
tively supports this through segment-level attribu-
tion analysis (Table 4) and performance–token re-
duction trade-off visualization (Figure 3). For ex-
ample, the attribution results over the open-source
datasets (Table 1) show that few-shot CoT examples
contribute significantly to performance, underscor-
ing the value of curated demonstrations, while zero-
shot CoT and role-playing have minimal impact,
suggesting that modern LLMs may already inter-
nalize such heuristics. The trade-off plot in Fig-
ure 3 provides actionable insight into how token re-
duction impacts performance, helping practitioners
strike an optimal balance between efficiency and
quality. Importantly, picking the “sweet point” in
this trade-off plot is use-case-specific: it is shaped
by both the product’s performance requirements
and the available cost resources.

Method GSM8K SQuAD HumanEval BBH MMLU

Role-playing 0.009 0.011 0.000 -0.019 -0.031
Zero-shot CoT -0.018 -0.002 0.000 0.014 -0.035
Few-shot CoT Examples 0.199 – – 0.158 0.079
Context Placeholder – 0.232 – – –
Question Placeholder 0.789 0.519 1.000 0.637 0.777

Table 4: Attribution of prompt components. Bold:
|attribution| > 0.1; red/blue: positive/negative impact.
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Figure 3: Prompt Performance vs Token Reductions.

We evaluated ProCut’s robustness under noisy
and weak metrics, a common scenario in produc-
tion where labels are costly and golden metrics are
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Figure 4: Trade-off between attribution quality (NDCG) and computational cost (latency in seconds). The left plot
shows the average quality vs. cost across all datasets, while the right plot presents results for each individual task.

hard to define early on. In the synthetic noise ex-
periment on SQuAD (Figure 5), Gaussian noise
was injected into the evaluation metric; ProCut
remained stable under moderate noise (≤ 1% vari-
ation for σ ≤ 0.5) and showed only a modest drop
at extreme noise. In the weak supervision experi-
ment on GSM8K, replacing gold labels with label-
free LLM-as-judge scores yielded nearly identical
performance (∼0.90 accuracy) and near-perfect at-
tribution alignment (NDCG ≈ 1). These results
demonstrate ProCut’s robustness to noisy and weak
metrics.
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Figure 5: Robustness of ProCut on the SQuAD dataset
with noisy metrics: compression performance (F1
of compressed prompts) and attribution performance
(NDCG vs. noise-free reference) remain stable, with
only modest degradation under large-scale noise.

4.6 LLM-driven Attribution Estimation
(RQ2)

We benchmark our LLM-driven attribution estima-
tor against four commonly used black-box meth-
ods introduced in Section 3.3. Figure 4 compares
these methods along two axes: attribution fidelity
in NDCG and runtime in seconds. Our LLM-driven

estimator achieves comparable performance to the
SHAP “gold standard” while substantially reduc-
ing runtime. The LLM-as-Ranker (2-shot) vari-
ant lowers end-to-end latency by 80%, 52%, and
66% compared to SHAP, LOO, and LASSO re-
spectively, while maintaining near-identical fidelity.
This shifts the latency–fidelity trade-off curve sig-
nificantly, showing that LLMs can effectively esti-
mate attribution with minimal computational over-
head by leveraging their semantic reasoning and
ranking capabilities.

4.7 Integrating ProCut into Prompt
Optimization (RQ3)

Figure 6 compares pure TextGrad optimization
with a ProCut-regularized variant on SQuAD
dataset, where prompt compression is applied
after each iteration. We observe that integrat-
ing ProCut into the optimization loop effectively
controls prompt length growth without sacrific-
ing performance. Specifically, after three itera-
tions, the ProCut-regularized groups generate final
prompts with only 27%, 47%, and 66% of the to-
ken count compared to the TextGrad-only group,
under compression ratios of 40%, 60%, and 80%,
respectively—while maintaining comparable per-
formance of 0.815, 0.819, and 0.813, close to the
uncompressed baseline of 0.813. See Appendix J
for exemplary prompts from both groups.

5 Production Use Cases

We evaluated ProCut using real-world prompts
from two high-traffic production pipelines: intent
classification and candidate qualification assess-
ment. These use cases demonstrate ProCut’s ability
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Figure 6: Prompt template size and performance across
TextGrad + ProCut iterations on the SQuAD dataset.
We use the prompt template “Please finish the
extractive question answering task” as the initial
prompt, and report the size and performance after each
iteration under compression ratios ∈ {0.4, 0.6, 0.8}.

to significantly reduce prompt length without com-
promising accuracy, resulting in substantial LLM
inference cost savings at scale (Table 5).

Use Case Token
Reduction

Cost Saved
per 1M Calls

Performance
Impact

Intent Cls. 73% ~$7K Preserved
Qual. Assess. 84% ~$8K Slightly improved

Table 5: ProCut performance on production prompts.2

ProCut for Intent Classification Prompt Pro-
Cut was applied to a production prompt used to
classify recruiter actions into predefined intent
categories based on a combination of structured
metadata and free-text signals. Using a human-
annotated dataset and classification accuracy as the
evaluation metric, ProCut achieved a 73% reduc-
tion in prompt length with no loss in accuracy.

ProCut for Qualification Assessment Prompt
ProCut was also evaluated on a qualification as-
sessment task with 46 human-labeled examples.
The original prompt, exceeding 2,200 tokens, was
reduced to approximately 300 tokens (84% reduc-
tion). Performance was slightly improved post-
compression, indicating that ProCut preserves es-
sential information while eliminating redundant
context.

2Costs are estimated based on latest publicly available
GPT-4o API pricing; actual deployment costs may vary.

6 Conclusions

In this paper, we introduced ProCut, a flexible,
LLM-agnostic, training-free prompt compression
framework that formulates template pruning as
segment-level attribution. Benchmarked across
12 tasks from five representative datasets, ProCut
achieves an average 62% performance gain over
strong compression baselines (Figure 2). We ex-
tend classical attribution methods by incorporating
an LLM-driven variant that reduces the computa-
tional cost from Ω(M) to a constant number of
LLM calls, resulting in a 52% reduction in run-
time latency (Figure 4). We further show that Pro-
Cut integrates seamlessly with prompt optimization
frameworks and produces prompts with only 27%
of the token count while achieving similar task per-
formance (Figure 6). ProCut has also been applied
to two production prompts, achieving 73% and 84%
token reductions, respectively, leading to substan-
tial cost savings in LLM inference (Table 5).

7 Limitations

While ProCut demonstrates strong empirical per-
formance and practical applicability, several as-
pects warrant further investigation. First, ProCut
assumes the availability of a reliable and directional
evaluation metric to guide segment attribution. Al-
though we have shown that ProCut remains robust
under noisy and weak supervision signals, broader
evaluation across diverse tasks would further vali-
date its generality. Second, while our LLM-driven
attribution estimator significantly reduces model
invocation costs, it remains a heuristic that relies on
the model’s introspective capabilities, which may
be less reliable when prompts contain ambiguous or
adversarial segments. Finally, our evaluation spans
five benchmark datasets, some of which may over-
lap with the pretraining data of foundation models.
Although our internal case studies provide prelimi-
nary evidence of generalization to real-world, out-
of-distribution prompts, future work should system-
atically evaluate ProCut across more diverse and
truly unseen domains.
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A ProCut Prompts

A.1 Prompt for Prompt Segmentation
Instructions for Prompt Segmentation. The instruc-
tion for prompt compression is shown in Figure 7.
When using the instruction, one needs to add the
initial prompt into the {current_prompt} place-
holder.

Prompt for Prompt Segmentation

Below is the prompt you need to split:
<prompt_start_below (this is not part of prompt)>
{current_prompt}
<prompt_end_above (this is not part of prompt)>

Instructions:
1. Split the prompt into at most {max_units} units

.
2. Each unit should ideally represent a complete

sentence or paragraph that preserves the
original meaning.

Ensure:
1. No overlap between units.
2. No missing information from the original prompt

.
3. Units can be concatenated to reconstruct the

original prompt exactly.
4. No modifications , including punctuation , to the

original content.
5. Placeholders (curly braces) must remain intact

and within a single unit.
6. Logically -related content should be grouped

together (again , you don 't need to split the
prompt into maximum number of units {
max_units} if it doesn 't make sense).

Example:
Original prompt: "Please answer the following

question <question >{{ question }}</question
>."

Result: {{" units ": [{{" template ": "Please
answer the following question <question >{{
question }}</question >."}}]}}

Example 2:
Original prompt: "Please answer the following

question <question >{{ question }}</question
>. Please provide your answer in the
following format: <format >{{ format }}</
format >."

Result: {{" units ": [{{" template ": "Please
answer the following question <question >{{
question }}</question >."}}, {{" template ": "
Please provide your answer in the
following format: <format >{{ format }}</
format >."}}]}}

Please return the result in the following format:
{{

"units ": [
{{

"template ": "unit 1 template"
}},
{{

"template ": "unit 2 template"
}},
...

]
}}

Figure 7: Prompt for Prompt Segmentation

A.2 Prompt for Generating Masks for
Attribution Estimation

Instructions for generating masks for attribu-
tion estimation. The instruction for prompt
compression is shown in Figure 8. When
using the instruction, one needs to instanti-
ate the prompt by plugging values, in specific,
adding the segmented prompts into placeholder
{segmented_prompt_template}, and providing
the expected number of masks into placeholder
{num_mask}.

Prompt for Generating Mask for Attribution
Estimation

Below is a prompt that has already been segmented
into text unit: {segmented_prompt_template}

I would like to select some components and test it
on a dataset and then estimate the

importance of each component using LLM.
Please read the segmented prompt and based on the

semantic meaning ,
choose {num_mask} masks that can help me gather

more information in terms of estimating the
importance of each component.

Output Format Instruction:

Please return only the JSON object of the
following format:

{{
"masks ": [List[List[int]]]
"rationale ": str

}}
- Field "masks": selected masks that can help

gather more information about estimating the
importance of each component.
Each mask must be of the same length as {

num_features }.
- Field "rationale ": a string explaining the

rationale behind the selection.

Example:
masks = [[0,0,1,0,0,1], [1,1,1,0,0,1],

[0,0,0,0,0,1], [1,0,1,0,1,1]] represents 4
masks ,

with 1 representing the prompt component is
selected and 0 representing the prompt
component is not selected.

If you need to output more , then please put the
JSON object within "```json" and "```".
Please ensure the json object is valid (e.g.
no # comments within the json object).

Figure 8: AskLLMForIndex: Prompt for Generating
Mask for Attribution Estimation
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A.3 Prompt for Estimating Attribution
Instructions for estimating segment attributions.
The instruction for prompt compression is shown
in Figure 9. When using the instruction, one needs
to add the experiment results (i.e. masks and
corresponding performance) into the placeholder
{experiments}.

Prompt for Estimating Attribution Ranking
Below are the results with different combinations

of prompt components and the corresponding
correctness. Please use the this information
to determine which prompt components are

important.
{experiments}

Output Format Instruction:

Please return only the JSON object of the
following format:

{{
"ranking ": List[int]
"rationale ": str ,

}}

Note:
- Field "ranking ": a list of integers representing

the ranking of each feature according to its
importance. The more important component

should be ranked in front.
- Field "rationale ": a string explaining the

rationale behind the ranking.

Example:
ranking: [3, 4, 0, 2, 5, 1] # the most important

component is the third (#3) component , the
second important is the fourth (#4) component
, etc. Please start counting from 0.

If you need to output more , then please put the
JSON object within "```json" and "```".
Please ensure the JSON object is valid (e.g.
no # comments within the JSON object).

Figure 9: RankPrompt: Prompt for Estimating Attribu-
tion Ranking

B Prompt Template Segmentation
Example

Example Prompt Template Before Segmenta-
tion
You are an expert in climate change and

environmental policy. Please read the
following passage carefully. Then , summarize
the main arguments presented in the passage.
After that , provide at least three potential
counterarguments. Next , identify which of the
arguments are supported by scientific

evidence. Please also highlight any logical
fallacies present in the reasoning. At the
end , write a concise conclusion that balances
both sides of the discussion. Finally ,

suggest one policy recommendation that could
be derived from the passage. Your answer
should be detailed but limited to 300 words.
Remember to include citations in APA format
whenever possible. Here is the passage that
you need to process {passage }.

Below we present the segmentation of the above
prompt template using the three methods described
in Section 3.2.

1. Pre-defined segmentation: A pre-defined
segmentation method depends on prompt man-
agement practices (e.g., storing each segment
in a separate text file or Jinja template). For
instance, if the role assignment (“You are an
expert in climate change and environmental
policy”) is designated as one unit and all re-
maining text as another, the segmentation nat-
urally follows that template choice.

2. Structure-aware segmentation: A sentence-
level approach that splits the text into 11 dis-
tinct units (one per sentence). For example:

• 1st sentence: “You are an expert in cli-
mate change and environmental policy.”

• 2nd sentence: “Please read the following
passage carefully.”

• . . .
• 11th sentence: “Here is the passage that

you need to process {passage}.”

3. LLM-driven segmentation: A semantic ap-
proach that groups content into four logical
sections:

• Role assignment: “You are an expert in
climate change and environmental pol-
icy.”

• Task instructions: “Please read the fol-
lowing passage carefully . . . write a con-
cise conclusion . . . ”
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• Format instructions: “Your answer
should be detailed but limited to 300
words . . . ”

• Input: “Here is the passage
. . . {passage}.”

C LLM-driven Attribution Estimation
Algorithm

Algorithm 1 LLM-Driven Prompt Attribution Esti-
mation
Input: LLM; prompt segments p = [p1, . . . , pM ]; evaluator
s(y, ŷ); dataset Dtrain = {(xi, yi)}Ni=1; number of text units
to keep k; number of experiment t;
Output: Attribution scores [a1, . . . , aM ]

1: {K1, . . .Kt} = LLM(AskLLMForIndex(p, k, t)) ▷
prompt LLM to generate t index sets (see Figure 8) ▷ get
performance for each mask

2: for i = 1 to t do
3: si = 1

N

∑N
j=1 s(yj ,LLM(pKi(xj))).

4: end for
5: π = LLM(RankPrompt(p, {s1, . . . , st}, {K1, . . .Kt}))

▷ Prompt LLM to rank segments to reflect importance
(see Appendix 9)

6: for j = 1 to M do
7: aj ← 1/π(j) ▷ LLM gives ranks; alternatively, we

can also prompt LLM for scores.
8: end for
9: return [a1, . . . , aM ]
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D Initial Prompt Template for RQ1 and RQ2

To ensure that our compression experiments start from representative and high-quality prompts, we
constructed an initial prompt template comprising five widely adopted segment types: role-playing,
zero-shot chain-of-thought (CoT) prompting, few-shot CoT examples, question placeholders, and context
placeholders in Table 6. These segments reflect common best practices, with sources cited either from the
datasets where they were used or from the original papers that proposed them.

Component GSM8K SQuAD BBH HumanEval MMLU

Role-playing You are an expert in grade-
school math. (Mirzadeh
et al., 2024)

You are an expert in read-
ing comprehension and
QA.

You are an expert in
{bbh_task_name}.

You are an expert in
Python programming.
(Zhong et al., 2024)

You are an expert in
{mmlu_task_name}.

Zero-shot
CoT

Let’s think step-by-step be-
fore generating the final an-
swer.
{gsm8k_cot} (Wei et al.,
2022; Jiang et al., 2023; Fu
et al., 2022, 2023b)

Let’s think step-by-step be-
fore answering the ques-
tion. (Kojima et al., 2022)

Let’s think step-by-step be-
fore generating the final an-
swer.
{bbh_cot} (Suzgun et al.,
2023)

Let’s think step-by-step be-
fore generating the answer.
(Kojima et al., 2022)

Let’s think step-by-step
before generating the final
answer.
{mmlu_3shot_cot} (Fu
et al., 2023b)

Few-shot CoT
Examples

Here are a few examples:
{examples} (Mirzadeh
et al., 2024)

– Here are a few examples:
{examples} (Brown et al.,
2020)

– Here are a few examples:
{examples}

Context – Here is the context you
can use to answer the ques-
tion: {context} (Li et al.,
2024c,b)

– – –

Question
Placeholder

Here is the question
you need to answer.
{question} (Mirzadeh
et al., 2024; Jiang et al.,
2023)

Here is the question
you need to answer.
{question} (Li et al.,
2024b,c)

Here is the question
you need to answer.
{question} (Suzgun et al.,
2023)

Here is the initial code
that you need to complete.
{initial_code} (Roziere
et al., 2023)

Here is the question
you need to answer.
{question}

Table 6: Prompt template design across five datasets. Each cell shows the content or placeholder used for a given
component. Citations indicate the source of each design choice.
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E Compressed Prompt Template

To complement the quantitative results in the main text, we provide qualitative examples of prompt
compression across different methods here. Table 7 shows the original and compressed prompt templates
for the SQuAD dataset under a compression ratio of 50%.

Method Prompt Template Note

Original Template You are an expert in {role_domain}.
Let’s think step-by-step before generating the final answer.
Here is the context you can use to answer the question:
<context>
{context}
</context>
Please answer the question below by extracting the minimal span from the
context, if available, that best answers the question.
<question>
{question}
</question>

–

ProCUT (Our Method) Here is the context you can use to answer the question:
<context>
{context}
</context>
Please answer the question below by extracting the minimal span from the
context, if available, that best answers the question.
<question>
{question}
</question>

Context and question
placeholders retained (high
attribution).

Vanilla LLM (Baseline) Here is the context you can use to answer the question:
<context>
{context}
</context>
Please answer the question below by extracting the minimal span from the
context, if available, that best answers the question.
<question>
{question}
</question>

Context and question
placeholders retained.

Selective-Context (Baseline) You are an expert in {role_domain}. Please answer the question below by
extracting the minimal span from the context, if available, that best
answers the question. <question> {question} </question>.

Context placeholder removed,
leading to minor drop.

LLMLingua (Baseline) You are an in {role_domain}.’s thinkstep before final. Please question
below by extracting the minimal span from the context, if available, that
best answers the question. <question> {question} </question>.

Context placeholder removed,
leading to minor drop.

LLMLingua-2 (Baseline) expert in reading comprehension QA think step-by-step before final answer
context to answer question:<context>{context}<context> answer question
extracting minimal span from context best answers question.

Question placeholder removed,
leading to large performance
drop.

Table 7: Prompt templates for the SQuAD dataset under compression ratio 50%.
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F Prompt Template Compression Performance (Task Level)

Table 8 and Table 9 report prompt compression performance across 12 tasks from five benchmark datasets
under varying compression ratios, using GPT-4.1 mini and GPT-4.1, respectively.

F.1 GPT-4.1 mini

Method General QA Coding BBH Tasks MMLU Tasks

GSM8K SQuAD HumanEval geo. object colored penguins temporal medicine math anatomy astronomy

Compression Ratio = 0.25 (3/4 components removed)
Random Selection (Baseline) 0.004 0.059 – 0.096 0.026 0.140 0.170 0.288 0.210 0.195 0.056 0.374
Vanilla LLM (Baseline) 0.132 0.059 – 0.000 0.000 0.124 0.000 0.000 0.162 0.000 0.000 0.000
Selective Context (Baseline) 0.000 0.163 – 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Brute Force (Oracle) 0.636 0.228 – 0.504 0.390 0.662 0.490 0.448 0.810 0.973 0.892 0.940
ProCut (SHAP) 0.648 0.242 – 0.508 0.386 0.662 0.474 0.474 0.822 0.981 0.896 0.942
ProCut (Leave-One-Out) 0.636 0.246 – 0.502 0.392 0.648 0.482 0.440 0.820 0.968 0.896 0.938
ProCut (LASSO) 0.638 0.247 – 0.514 0.382 0.660 0.470 0.468 0.828 0.965 0.900 0.942
ProCut (Greedy Forward) 0.636 0.239 – 0.490 0.390 0.646 0.480 0.472 0.816 0.976 0.900 0.938
ProCut (LLM-as-Ranker 2 Shots) 0.636 0.242 – 0.506 0.368 0.654 0.486 0.468 0.818 0.965 0.894 0.940
ProCut (LLM-as-Ranker 4 Shots) 0.634 0.225 – 0.506 0.380 0.656 0.492 0.368 0.816 0.971 0.894 0.940

Compression Ratio = 0.5 (2/4 components removed)
Random Selection (Baseline) 0.174 0.218 0.504 0.222 0.198 0.268 0.468 0.418 0.424 0.432 0.672 0.808
Vanilla LLM (Baseline) 0.582 0.750 0.000 0.550 0.914 0.728 0.580 0.446 0.824 0.976 0.918 0.952
Selective Context (Baseline) 0.006 0.235 0.000 0.000 0.068 0.106 0.210 0.060 0.264 0.267 0.284 0.302
Brute Force (Oracle) 0.856 0.744 0.834 0.558 1.000 0.976 0.964 0.926 0.836 0.960 0.918 0.946
ProCut (SHAP) 0.848 0.746 0.832 0.636 0.792 0.978 0.962 0.952 0.822 0.971 0.922 0.940
ProCut (Leave-One-Out) 0.848 0.748 0.826 0.594 0.832 0.984 0.960 0.942 0.822 0.965 0.914 0.940
ProCut (LASSO) 0.854 0.752 0.842 0.622 0.826 0.984 0.970 0.946 0.834 0.957 0.924 0.944
ProCut (Greedy Forward) 0.848 0.745 0.832 0.630 1.000 0.974 0.966 0.940 0.826 0.963 0.904 0.950
ProCut (LLM-as-Ranker 2 Shots) 0.846 0.746 0.824 0.608 0.776 0.974 0.966 0.922 0.840 0.965 0.920 0.946
ProCut (LLM-as-Ranker 4 Shots) 0.638 0.747 0.838 0.570 0.916 0.762 0.872 0.590 0.834 0.971 0.914 0.948

Compression Ratio = 0.75 (1/4 components removed)
Random Selection (Baseline) 0.332 0.399 0.662 0.518 0.434 0.424 0.762 0.666 0.822 0.973 0.792 0.944
Vanilla LLM (Baseline) 0.560 0.735 0.830 0.548 1.000 0.832 0.556 0.490 0.814 0.965 0.908 0.936
Selective Context (Baseline) 0.004 0.215 0.000 0.000 0.074 0.032 0.098 0.022 0.232 0.251 0.312 0.276
Brute Force (Oracle) 0.814 0.739 0.840 0.602 0.990 0.984 0.950 0.798 0.824 0.963 0.920 0.944
ProCut (SHAP) 0.830 0.737 0.830 0.648 0.988 0.986 0.956 0.886 0.828 0.979 0.910 0.942
ProCut (Leave-One-Out) 0.804 0.739 0.832 0.616 0.988 0.986 0.952 0.904 0.820 0.976 0.918 0.948
ProCut (LASSO) 0.798 0.731 0.832 0.616 0.988 0.984 0.958 0.750 0.820 0.971 0.910 0.944
ProCut (Greedy Forward) 0.816 0.740 0.832 0.614 1.000 0.982 0.950 0.884 0.830 0.973 0.920 0.948
ProCut (LLM-as-Ranker 2 Shots) 0.786 0.732 0.844 0.592 0.988 0.982 0.954 0.740 0.824 0.973 0.918 0.946
ProCut (LLM-as-Ranker 4 Shots) 0.614 0.736 0.818 0.594 1.000 0.924 0.870 0.750 0.828 0.955 0.914 0.944

No Compression
- 0.782 0.729 0.837 0.612 0.995 0.993 0.959 0.566 0.819 0.964 0.915 0.939

Table 8: Performance across tasks at different compression ratios with GPT-4.1 mini. Bolded values indicate the
highest score per task at each compression ratio.
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F.2 GPT-4.1

Method General QA Coding BBH Tasks MMLU Tasks

GSM8K SQuAD HumanEval geo. object colored penguins temporal medicine math anatomy astronomy

Compression Ratio = 0.25 (3/4 components removed)
Random Selection (Baseline) 0.004 0.031 – 0.210 0.200 0.182 0.358 0.598 0.000 0.155 0.734 0.190
Vanilla LLM (Baseline) 0.174 0.102 – 0.092 0.000 0.180 0.000 0.000 0.172 0.309 0.184 0.000
Selective Context (Baseline) 0.000 0.215 – 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Brute Force (Oracle) 0.860 0.297 – 0.470 0.766 0.886 0.894 0.998 0.850 0.773 0.924 0.946
ProCUT (SHAP) 0.868 0.298 – 0.458 0.776 0.888 0.900 0.996 0.852 0.773 0.926 0.952
ProCUT (Leave-One-Out) 0.866 0.302 – 0.458 0.762 0.882 0.904 0.994 0.852 0.768 0.922 0.950
ProCUT (LASSO) 0.862 0.293 – 0.468 0.770 0.890 0.884 0.996 0.850 0.757 0.922 0.954
ProCUT (Greedy Forward) 0.870 0.300 – 0.464 0.776 0.884 0.892 0.996 0.850 0.781 0.926 0.948
ProCUT (LLM-ranker 2shot) 0.866 0.099 – 0.472 0.784 0.888 0.896 0.798 0.850 0.768 0.736 0.758
ProCUT (LLM-ranker 4shot) 0.868 0.145 – 0.466 0.768 0.890 0.886 0.996 0.680 0.787 0.928 0.952

Compression Ratio = 0.5 (2/4 components removed)
Random Selection (Baseline) 0.176 0.141 0.340 0.414 0.600 0.202 0.784 0.594 0.862 0.571 0.750 0.386
Vernilla LLM (Baseline) 0.846 0.774 0.688 0.736 0.954 0.990 1.000 0.990 0.870 0.928 0.948 0.964
Selective Context (Baseline) 0.016 0.322 0.000 0.112 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Brute Force (Oracle) 0.894 0.766 0.854 0.792 1.000 0.996 1.000 0.998 0.858 0.944 0.938 0.962
ProCUT (SHAP) 0.840 0.771 0.848 0.788 1.000 0.992 1.000 0.992 0.856 0.936 0.926 0.962
ProCUT (Leave-One-Out) 0.854 0.768 0.846 0.648 1.000 0.994 1.000 0.994 0.860 0.949 0.936 0.968
ProCUT (LASSO) 0.854 0.766 0.852 0.722 1.000 0.994 1.000 0.994 0.846 0.875 0.940 0.962
ProCUT (Greedy Forward) 0.840 0.766 0.852 0.778 0.994 0.992 1.000 0.990 0.870 0.917 0.952 0.960
ProCUT (LLM-ranker 2shot) 0.892 0.763 0.862 0.730 0.998 0.992 1.000 0.792 0.852 0.917 0.938 0.966
ProCUT (LLM-ranker 4shot) 0.890 0.764 0.858 0.722 1.000 0.984 1.000 0.994 0.850 0.947 0.936 0.968
Compression Ratio = 0.75 (1/4 components removed)
Random Selection (Baseline) 0.534 0.383 0.848 0.796 0.600 0.396 0.800 0.594 0.854 0.757 0.750 0.768
Vernilla LLM (Baseline) 0.842 0.772 0.850 0.826 0.994 0.994 1.000 0.990 0.848 0.949 0.950 0.964
Selective Context (Baseline) 0.012 0.272 0.000 0.034 0.044 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Brute Force (Oracle) 0.886 0.769 0.852 0.800 1.000 0.992 1.000 0.994 0.852 0.944 0.930 0.964
ProCUT (SHAP) 0.850 0.774 0.858 0.800 1.000 0.994 1.000 0.994 0.846 0.941 0.926 0.966
ProCUT (Leave-One-Out) 0.874 0.764 0.858 0.776 1.000 0.992 1.000 0.990 0.840 0.949 0.928 0.960
ProCUT (LASSO) 0.882 0.765 0.858 0.798 1.000 0.996 1.000 0.992 0.852 0.955 0.932 0.964
ProCUT (Greedy Forward) 0.868 0.775 0.850 0.802 0.998 1.000 1.000 0.990 0.854 0.949 0.944 0.958
ProCUT (LLM-ranker 2shot) 0.898 0.774 0.852 0.808 1.000 0.994 1.000 0.996 0.850 0.947 0.936 0.966
ProCUT (LLM-ranker 4shot) 0.896 0.790 0.850 0.770 1.000 0.996 1.000 0.992 0.852 0.960 0.932 0.964

No Compression
- 0.890 0.795 0.865 0.791 1.000 0.993 1.000 0.995 0.849 0.947 0.936 0.963

Table 9: Performance across tasks at different compression ratios with GPT-4.1 model. Bolded values indicate the
highest score per task at each compression ratio.
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G Prompt Template Compression Performance (Dataset Level)

Table 10 and Table 11 summarize the detailed prompt compression performance across five benchmark
datasets under varying compression ratios, for GPT-4.1 mini and GPT-4.1 respectively.

G.1 GPT-4.1 mini

Method GSM8K SQuAD HumanEval BBH MMLU Average

Compression Ratio λ = 0.25 (3/4 components removed)

Random Selection (Baseline) 0.004 0.059 – 0.144 0.209 0.104
Vanilla LLM (Baseline) 0.132 0.059 – 0.025 0.041 0.064
Selective Context (Baseline) 0.000 0.163 – 0.000 0.000 0.041
Brute Force (Oracle) 0.636 0.228 – 0.499 0.904 0.567
ProCut (SHAP) 0.648 0.242 – 0.501 0.910 0.575
ProCut (Leave-One-Out) 0.636 0.246 – 0.493 0.906 0.570
ProCut (LASSO) 0.638 0.247 – 0.499 0.909 0.573
ProCut (Greedy Forward) 0.636 0.239 – 0.496 0.908 0.569
ProCut (LLM-as-Ranker 2 Shots) 0.636 0.242 – 0.496 0.904 0.570
ProCut (LLM-as-Ranker 4 Shots) 0.634 0.225 – 0.480 0.905 0.561

Compression Ratio λ = 0.5 (2/4 components removed)

Random Selection (Baseline) 0.174 0.218 0.504 0.315 0.584 0.359
Vanilla LLM (Baseline) 0.582 0.750 0.000 0.644 0.918 0.579
Selective Context (Baseline) 0.006 0.235 0.000 0.089 0.279 0.122
Brute Force (Oracle) 0.856 0.744 0.834 0.885 0.915 0.847
ProCut (SHAP) 0.848 0.746 0.832 0.864 0.914 0.841
ProCut (Leave-One-Out) 0.848 0.748 0.826 0.862 0.910 0.839
ProCut (LASSO) 0.854 0.752 0.842 0.870 0.915 0.846
ProCut (Greedy Forward) 0.848 0.745 0.832 0.902 0.911 0.848
ProCut (LLM-as-Ranker 2 Shots) 0.846 0.746 0.824 0.849 0.918 0.837
ProCut (LLM-as-Ranker 4 Shots) 0.638 0.747 0.838 0.742 0.917 0.776

Compression Ratio λ = 0.75 (1/4 components removed)

Random Selection (Baseline) 0.332 0.399 0.662 0.561 0.883 0.567
Vanilla LLM (Baseline) 0.560 0.735 0.830 0.685 0.906 0.743
Selective Context (Baseline) 0.004 0.215 0.000 0.045 0.268 0.106
Brute Force (Oracle) 0.814 0.739 0.840 0.865 0.913 0.834
ProCut (SHAP) 0.830 0.737 0.830 0.893 0.915 0.841
ProCut (Leave-One-Out) 0.804 0.739 0.832 0.889 0.916 0.836
ProCut (LASSO) 0.798 0.731 0.832 0.859 0.911 0.826
ProCut (Greedy Forward) 0.816 0.740 0.832 0.886 0.918 0.838
ProCut (LLM-as-Ranker 2 Shots) 0.786 0.732 0.844 0.851 0.915 0.826
ProCut (LLM-as-Ranker 4 Shots) 0.614 0.736 0.818 0.828 0.910 0.781
No Compression
- 0.782 0.729 0.837 0.826 0.909 0.817

Table 10: Performance with GPT-4.1 mini across tasks at different compression ratios. Bolded values indicate the
highest score per dataset at each compression ratio.
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G.2 GPT-4.1

Method GSM8K SQuAD HumanEval BBH MMLU Average

Compression Ratio λ = 0.25 (3/4 components removed)

Random Selection 0.004 0.031 – 0.310 0.270 0.154
Vernilla LLM (Baseline) 0.174 0.102 – 0.054 0.166 0.124
Selective Context (Baseline) 0.000 0.215 – 0.000 0.000 0.054
Brute Force (Baseline) 0.860 0.297 – 0.803 0.873 0.708
ProCUT (SHAP) 0.868 0.298 – 0.804 0.876 0.711
ProCUT (Leave-One-Out) 0.866 0.302 – 0.800 0.873 0.710
ProCUT (LASSO) 0.862 0.293 – 0.802 0.871 0.707
ProCUT (Greedy Forward) 0.870 0.300 – 0.802 0.876 0.712
ProCUT (LLM-as-ranker 2 shot) 0.866 0.099 – 0.768 0.778 0.628
ProCUT (LLM-as-ranker 4 shot) 0.868 0.145 – 0.801 0.837 0.663

Compression Ratio λ = 0.5 (2/4 components removed)

Random Selection 0.176 0.141 0.340 0.519 0.642 0.364
Vernilla LLM (Baseline) 0.846 0.774 0.688 0.934 0.928 0.834
Selective Context (Baseline) 0.016 0.322 0.000 0.022 0.000 0.072
Brute Force (Baseline) 0.894 0.766 0.854 0.957 0.926 0.879
ProCUT (SHAP) 0.840 0.771 0.848 0.954 0.920 0.867
ProCUT (Leave-One-Out) 0.854 0.768 0.846 0.927 0.928 0.865
ProCUT (LASSO) 0.854 0.766 0.852 0.942 0.906 0.864
ProCUT (Greedy Forward) 0.840 0.766 0.852 0.951 0.925 0.867
ProCUT (LLM-as-ranker 2 shot) 0.892 0.763 0.862 0.902 0.918 0.868
ProCUT (LLM-as-ranker 4 shot) 0.890 0.764 0.858 0.940 0.925 0.875

Compression Ratio λ = 0.75 (1/4 components removed)

Random Selection 0.534 0.383 0.848 0.637 0.782 0.637
Vernilla LLM (Baseline) 0.842 0.772 0.850 0.961 0.928 0.871
Selective Context (Baseline) 0.012 0.272 0.000 0.016 0.000 0.060
Brute Force (Oracle) 0.886 0.769 0.852 0.957 0.923 0.877
ProCUT (SHAP) 0.850 0.774 0.858 0.958 0.920 0.872
ProCUT (Leave-One-Out) 0.874 0.764 0.858 0.952 0.919 0.873
ProCUT (LASSO) 0.882 0.765 0.858 0.957 0.926 0.878
ProCUT (Greedy Forward) 0.868 0.775 0.850 0.958 0.926 0.875
ProCUT (LLM-as-ranker 2 shot) 0.898 0.774 0.852 0.960 0.925 0.882
ProCUT (LLM-as-ranker 4 shot) 0.896 0.790 0.850 0.952 0.927 0.883
No Compression
- 0.890 0.795 0.865 0.956 0.924 0.886

Table 11: Performance with GPT-4.1 across tasks at different compression ratios. Bolded values indicate the highest
score per dataset at each compression ratio.
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H Prompt Template Compression Performance (Aggregated)

Table 12 and Table 13 report aggregated prompt compression performance under varying compression
ratios, using GPT-4.1 mini and GPT-4.1, respectively.

H.1 GPT-4.1 mini

Compression Ratio

Method 25% 50% 75% Average
Random Selection (Baseline) 0.104 0.359 0.567 0.343
Vanilla LLM (Baseline) 0.064 0.579 0.743 0.462
Selective Context (Baseline) 0.041 0.122 0.106 0.090

Brute Force (Oracle) 0.567 0.847 0.834 0.749

ProCut (SHAP) 0.575 0.841 0.841 0.752
ProCut (Leave-One-Out) 0.570 0.839 0.836 0.748
ProCut (LASSO) 0.573 0.846 0.826 0.748
ProCut (Greedy Forward) 0.569 0.848 0.838 0.752
ProCut (LLM-as-Ranker 2 Shots) 0.570 0.837 0.826 0.744
ProCut (LLM-as-Ranker 4 Shots) 0.561 0.776 0.781 0.706

Table 12: Average performance of compressed prompts with GPT-4.1 mini under different compression ratios. The
no-compression baseline achieves an average performance of 0.817.

H.2 GPT-4.1

Compression Ratio

Method 25% 50% 75% Average
Random Selection 0.154 0.364 0.637 0.385
Vanilla LLM (Baseline) 0.124 0.834 0.871 0.610
Selective Context (Baseline) 0.054 0.072 0.060 0.062

Brute Force (Oracle) 0.708 0.879 0.877 0.822

ProCUT (SHAP) 0.711 0.867 0.872 0.817
ProCUT (Leave-One-Out) 0.710 0.865 0.873 0.816
ProCUT (LASSO) 0.707 0.864 0.878 0.816
ProCUT (Greedy Forward) 0.712 0.867 0.875 0.818
ProCUT (LLM-as-ranker 2 shot) 0.628 0.868 0.882 0.792
ProCUT (LLM-as-ranker 4 shot) 0.663 0.875 0.883 0.807

Table 13: Average performance of compressed prompts with GPT-4.1 under different compression ratios. The
no-compression baseline achieves an average performance of 0.886.
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I Prompt Template Segments Attribution (Task Level)

Table 14 presents the attribution of prompt template segments to task performance across 12 tasks from
five benchmark datasets.

Method General QA Coding BBH Tasks MMLU Tasks

GSM8K SQuAD HumanEval geo. object colored penguins temporal medicine math anatomy astronomy

LLM = GPT-4o mini
Role-playing 0.018 -0.014 -0.007 0.008 0.015 -0.003 0.012 0.003 -0.059 -0.053 -0.038 -0.054
Chain-of-thought 0.002 -0.007 0.003 0.035 0.022 -0.017 -0.002 0.012 -0.033 -0.068 -0.016 -0.053
In-context Learning 0.023 – – 0.125 0.012 0.260 0.263 0.175 0.074 0.146 0.084 -0.009
Context Placeholder – 0.271 – – – – – – – – – –
Question Placeholder 0.837 0.566 0.993 0.432 0.772 0.710 0.657 0.81 0.698 0.404 0.609 0.866
LLM = GPT-4.1 mini
Role-playing 0.009 0.011 0.000 -0.01 0.01 0.018 -0.025 -0.088 -0.047 -0.023 -0.038 -0.016
Chain-of-thought -0.018 -0.002 0.000 0.023 0.103 0.033 0.023 -0.113 -0.035 -0.032 -0.051 -0.024
In-context Learning 0.199 – – 0.075 0.147 0.161 0.208 0.198 0.077 0.075 0.079 0.086
Context Placeholder – 0.232 – – – – – – – – – –
Question Placeholder 0.789 0.519 1.000 0.462 0.72 0.789 0.773 0.443 0.845 0.76 0.739 0.764
LLM = GPT-4.1 nano
Role-playing 0.089 0.015 -0.025 -0.006 -0.01 -0.003 -0.002 0.002 -0.053 -0.062 -0.030 -0.076
Chain-of-thought 0.016 -0.003 -0.025 -0.013 0.057 -0.044 0.007 -0.003 -0.038 -0.067 -0.022 -0.023
In-context Learning -0.084 – – 0.071 0.085 0.064 0.060 0.005 -0.083 0.025 -0.002 -0.151
Context Placeholder – 0.237 – – – – – – – – – –
Question Placeholder 0.269 0.426 0.94 0.248 0.818 0.503 0.135 0.007 0.783 0.723 0.733 0.779

Table 14: Segment-level attribution of the five prompt components across the 12 tasks (mean of five runs). Cells
with |attribution| > 0.1 are bolded; darker red shades mark stronger positive contributions, while darker blue shades
mark stronger negative contributions.
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J TextGrad and ProCut Prompts

In this section, we present illustrative prompts generated after three optimization iterations under two
settings: (i) TextGrad-only (Figure 10 and 11) and (ii) TextGrad with ProCut compression at compression
ratio r = 0.2 (Figure 12). Both runs were conducted with identical hyperparameter settings on the dataset
described in Table 1.

Prompt from TextGrad only (page 1/2)
"You are tasked with performing an extractive question answering (QA) task. Given a question and a context , your goal is to

extract the exact answer phrase from the context that directly answers the question. Please follow these instructions
carefully and exactly:

** Output Format Requirements (Strictly Enforced):**
- Your entire output must be exactly: `<answer >ExactAnswerText </answer >` with no extra characters , spaces , line breaks , tabs

, or invisible characters before , inside , or after the tags.
- The tags must be exactly lowercase and spelled as `<answer >` and `</answer >`, with no variation , no spaces inside the tag

brackets , and no self -closing or alternative forms.
- Do not include any leading or trailing spaces inside the tags. For example , `<answer > answer </answer >` is invalid.
- Use only standard ASCII space characters (U+0020) if spaces are part of the answer text. Do not use tabs , non -breaking

spaces , zero -width spaces , or any other invisible or special whitespace characters anywhere inside or around the tags
or answer text.

- Output nothing else beyond the tagged answer\u2014no commentary , explanations , line breaks , or formatting.

** Answer Extraction Rules :**
1. Extract the answer verbatim from the provided context without adding , omitting , or paraphrasing any words. Preserve all

original capitalization , spacing , punctuation , Unicode characters (including diacritics , macrons , accents), and
special characters exactly as they appear. Do not normalize or alter Unicode characters or punctuation in any way.

2. Provide the shortest possible contiguous text span from the context that fully answers the question. This minimal answer
must include all words (including articles such as \u201ca ,\u201d \u201can ,\u201d \u201cthe\u201d and other function
words) if they are part of the minimal contiguous substring exactly as it appears in the context.

- Minimal answer = shortest contiguous substring from the context that fully answers the question , including all words in
that substring exactly as they appear.

- If the minimal answer includes a leading article such as \u201cthe ,\u201d include it exactly as is.
3. If the question asks for a person\u2019s name , title , or rank , extract only the minimal proper noun phrase (e.g., the

person\u2019s name) as it appears in the context , excluding any preceding titles , ranks , or roles unless explicitly
required by the question.

4. For numeric answers (counts , quantities , dates , ranks), extract only the numeric characters exactly as they appear in the
context , excluding any accompanying units , descriptors , or qualifiers unless explicitly requested by the question.

- Include leading numeric qualifiers such as \u201cat least ,\u201d \u201capproximately ,\ u201d or \u201cabout\u201d if
they appear contiguous with the number and are essential to the numeric meaning.

- Do not include trailing or preceding units , descriptors , or qualifiers such as \u201cdaily readers ,\u201d \u201cpeople
,\u201d \u201ckilograms ,\u201d or \u201cyears\u201d unless explicitly requested.

- For example:
- Question: How many Grammy nominations?
- Correct answer: `<answer >10</answer >`
- Incorrect answer: `<answer >10 Grammy nominations </answer >`
- Question: How big is the audience?
- Correct answer: `<answer >at least 30,000</answer >`
- Incorrect answer: `<answer >at least 30,000 daily readers </answer >`

5. Do not include any examples , elaborations , clarifications , or additional descriptive phrases beyond the minimal answer
phrase , even if they appear in the context. Specifically:

- Exclude any phrases introduced by \u201csuch as ,\u201d \u201cfor example ,\u201d \u201cincluding ,\u201d or similar
expressions , even if they appear contiguous with the minimal answer span.

- The minimal answer must exclude all such expansions or illustrative content unless explicitly requested by the question
.

- Avoid including any potentially misspelled , rare , or suspicious terms that appear only as part of examples or
elaborations.

6. Always extract the exact substring from the context without paraphrasing , synonym substitution , abbreviation expansion ,
or normalization.

7. If the question is ambiguous or no valid answer can be found , output `<answer ></answer >` exactly with no spaces inside
the tags.

** Answer Selection and Minimality :**
8. If multiple valid answers exist , select the one that best matches the expected answer format and is the shortest span

that fully answers the question.
9. When multiple minimal answers are valid , always select the earliest occurrence in the context.
10. To ensure minimality , first locate the full contiguous text span that answers the question , then iteratively remove any

leading or trailing words one at a time that do not affect the completeness of the answer , stopping when further
removal would make the answer incomplete.

11. Include all articles and function words that are part of the minimal contiguous substring exactly as they appear. Do not
add or remove any words beyond the minimal contiguous substring.

Figure 10: Prompt Generated by TextGrad-only (Prompt size is 2272 tokens, Average F1 score over 100 test data
points is 0.803.)

305



Prompt from TextGrad only (page 2/2)
** Formatting and Whitespace :**
12. Avoid any invisible or special whitespace characters (such as zero -width spaces , non -breaking spaces , tabs , or line

breaks) inside or around the tags.
13. There must be no leading or trailing spaces or any invisible characters inside the tags or immediately outside them.
14. Your entire output must be a single line containing only the answer tags and the exact answer text , with no line breaks

or tabs.

**Final Verification Checklist (Perform Mentally Before Outputting):**
- Confirm your extracted answer is the shortest exact substring from the context that fully answers the question.
- Confirm the answer includes any articles or function words that are part of the minimal contiguous substring.
- Confirm no extra words , qualifiers , examples , or punctuation beyond the minimal answer.
- Confirm the tags are exactly `<answer >` and `</answer >`, lowercase , with no spaces or extra characters inside the tag

brackets.
- Confirm there are no spaces , line breaks , tabs , or invisible characters inside or immediately outside the tags.
- Confirm your output contains nothing other than the tags and the exact answer substring.
- Confirm the answer excludes any example phrases or clarifications introduced by \u201csuch as ,\u201d \u201cfor example ,\

u201d or similar.
- Confirm the answer does not include any potentially misspelled or extraneous terms that are not essential to the minimal

answer.
- Confirm all Unicode characters , diacritics , macrons , accents , and special characters are preserved exactly as in the

context.
- Confirm no paraphrasing , abbreviation expansion , or normalization has been applied.

** Additional Notes :**
- Your output will be evaluated by exact string matching against a reference answer. Any deviation in characters , spacing ,

punctuation , Unicode characters , or tag formatting will cause your answer to be marked incorrect. Strict adherence to
these formatting and content rules is essential.

- Invisible or special whitespace characters are a common cause of exact -match failures; be vigilant to exclude them.
- The tags `<answer >` and `</answer >` are fixed tokens and must be output exactly as shown , with no variation or spacing.

- Output nothing other than the tagged answer\u2014no explanations , no commentary , no line breaks , no trailing spaces , no
punctuation beyond what is in the context answer.

- If the question involves multiple related entities or terms that could answer it, select the most precise and specific
entity that directly matches the question\u2019s intent , even if it is longer than a more general term. Prefer
official or full names over abbreviations or umbrella terms unless the question explicitly requests otherwise.

** Examples :**
Question: Who adopted the Total Force Policy?
Context: The Total Force Policy was adopted by Chief of Staff of the Army General Creighton Abrams ...
Answer: `<answer >General Creighton Abrams </answer >` (minimal proper noun phrase)

Question: What is the focus of the Penny Arcade Expo?
Context: Penny Arcade Expo , a gaming convention ...
Correct answer: `<answer >gaming </answer >`
Incorrect answer: `<answer >a gaming convention </answer >` (too long)

Question: How many Grammy nominations did The College Dropout receive?
Context: ...and garnered West 10 Grammy nominations ...
Correct answer: `<answer >10</answer >`
Incorrect answer: `<answer >10 Grammy nominations </answer >` (extra words)

Question: What ocean is Miami adjacent to?
Context: Located on the Atlantic Ocean ...
Correct answer: `<answer >Atlantic </answer >`
Incorrect answer: `<answer >Atlantic Ocean </answer >` (too long)

Incorrect examples to avoid:
- `<answer > Chief of Staff of the Army General Creighton Abrams </answer >` (extra spaces inside tags)
- `<answer >Chief of Staff of the Army General Creighton Abrams </answer > extra text ` (text outside tags)
- `<Answer >Chief of Staff of the Army General Creighton Abrams </Answer >` (incorrect tag casing)
- `<answer >Chief of Staff of the Army General Creighton Abrams.</answer >` (extra punctuation not in context)
- `<answer >10 Grammy nominations </answer >` (extra words beyond minimal answer)
- `<answer >a third party </answer >` (includes article not part of minimal answer)
- `<answer >Atlantic Ocean </answer >` (too long; minimal answer is \" Atlantic \")
- `<answer > third largest </answer >` (leading space inside tags)
- `<answer >third largest </answer >` (trailing space inside tags)
- `<answer >third largest </answer > ` (space after closing tag)
- `<answer >third largest.</answer >` (extra punctuation)
- `<answer >to coordinate and organize their growth and development such as the formation of Marcelia and fruiting bodies </

answer >`"

Figure 11: Prompt Generated by TextGrad-only (Prompt size is 2272 tokens, Average F1 score over 100 test data
points is 0.803.)
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Prompt from TextGrad with ProCut
Before outputting , perform a final verification checklist:

- Confirm your answer is exactly the minimal contiguous text span from the context that fully answers the question , with
no extra words , articles (e.g., \"a\", \"an\", \"the\"), qualifiers , or modifiers.

- Confirm the answer matches the expected answer format , including exact spelling , capitalization , punctuation , and
spacing as in the context.

- Confirm your output consists solely of the <answer > tags enclosing the exact answer text with no leading or trailing
spaces , line breaks , tabs , or invisible characters inside or outside the tags.

- Confirm the tags are exactly lowercase and spelled as <answer > and </answer > with no variation , homoglyphs , or
additional attributes.

- Confirm no zero -width spaces , non -breaking spaces , tabs , or other invisible Unicode whitespace characters exist
anywhere in the output.

- Confirm no leading or trailing whitespace or line breaks exist outside the tags.
- Confirm your answer does not include any leading or trailing articles unless they are explicitly part of the minimal

answer span.
- Simulate the evaluation function performing a strict exact string match on your output and ensure it would pass

perfectly.
- Confirm that removing any word from your selected span would cause the answer to no longer fully answer the question ,

ensuring minimality.

Your answer will be evaluated by exact string matching against the expected answer string. To maximize your score , provide
the minimal exact phrase from the context that exactly matches the expected answer , with no additions or omissions.

Additional instructions and clarifications:
- Invisible characters include zero -width spaces , non -breaking spaces , tabs , directional marks , byte order marks , and any

other non -printing Unicode characters. None of these may appear anywhere in your output.
- The tags must be exactly lowercase `<answer >` and `</answer >`, with no spaces , attributes , or variations. Do not use

homoglyphs or similar -looking characters.
- The minimal contiguous text span is defined as the shortest continuous substring from the context that fully answers the

question , excluding any extraneous words , articles , modifiers , or qualifiers unless explicitly required.
- If multiple minimal spans are valid , always select the earliest occurrence by character offset.
- Do not include any units , descriptors , or common noun phrases unless they are strictly part of the minimal answer span.
- Do not add or remove punctuation , spacing , or capitalization , even if it seems stylistically preferable.
- Do not include any additional line breaks , tabs , or spaces before , after , or inside the tags. Your entire output must be a

single continuous string.
- If uncertain , prefer the shortest valid minimal span that answers the question exactly.
- Do not guess or infer answers not explicitly present in the context.
- Your output must be exactly: `<answer >ExactAnswerText </answer >` with no additional text or formatting.
- Examples of incorrect outputs to avoid:

- Extra spaces inside tags: `<answer > Answer </answer >`
- Incorrect tag casing: `<Answer >Answer </Answer >`
- Additional text outside tags: `<answer >Answer </answer > extra `
- Added punctuation not in context: `<answer >Answer.</answer >`
- Added descriptive words: `<answer >10 Grammy nominations </answer >` when minimal answer is `10`
- Leading or trailing spaces inside tags: `<answer > Answer </answer >` or `<answer >Answer </answer >`
- Line breaks inside tags:

`<answer >Answer
</answer >`

- Inclusion of articles not part of minimal span: `<answer >the European Economic Area </answer >` if minimal answer is `
European Economic Area `

- Example:
Question: Who adopted the Total Force Policy?
Context: The Total Force Policy was adopted by Chief of Staff of the Army General Creighton Abrams ...
Correct answer: `<answer >General Creighton Abrams </answer >`
Incorrect answers to avoid:
- `<answer >Chief of Staff of the Army General Creighton Abrams </answer >` (extra titles)
- `<answer > Chief of Staff of the Army General Creighton Abrams </answer >` (extra spaces)
- `<Answer >General Creighton Abrams </Answer >` (incorrect tag casing)

Please now extract and output the answer accordingly.

Figure 12: Compressed prompt produced by TextGrad with ProCut (896 tokens); average F1 score over 100 test
data points is 0.820.
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K System Diagram

Figure 13 visualizes ProCut’s implementation. The green box represents the core Python interface, which
can be extended via various child classes shown in blue. Data artifacts—including the initial prompt
template, compressed template, and intermediate outputs—are illustrated in yellow.
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Figure 13: System architecture of the ProCut codebase. The green box denotes the core Python interface, blue
boxes represent extensible child classes, and yellow boxes indicate data artifacts such as prompt templates and
intermediate results.
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L User Interface

Figure 14 displays the user interface for interacting with ProCut, built with Gradio.3 For clarity, each
section of the interface is annotated to highlight its functionality. Users input the initial prompt and
specify compression parameters, then click the "Run Optimization" button to begin processing. The right
panel presents the attribution scores for each prompt segment and displays the corresponding compressed
prompt. Additionally, the interface shows an example LLM output generated from the prompt, along with
a visualization of attribution scores rendered using the SHAP library (Lundberg and Lee, 2017).
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Figure 14: The ProCut user interface. Users input a prompt and compression settings to view segment-level
attribution scores, compressed prompts, LLM outputs, and SHAP-based visualizations. Interface sections are
annotated for clarity.

3https://www.gradio.app/
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