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Abstract

Interpreting visual scenes with high-level rea-
soning is essential for many real-world ap-
plications, such as autonomous systems and
content moderation, but training and main-
taining Vision—Language Models (VLMs) re-
mains resource-intensive and opaque. In this
work, we present CAPSTONE, a lightweight,
modular framework designed for industrial set-
tings. Instead of relying on multimodal train-
ing or fine-tuning large models, CAPSTONE
transforms outputs from off-the-shelf vision
models into structured text prompts that can
be interpreted by a frozen Large Language
Model (LLM). This plug-and-play architec-
ture enables reasoning over visual input with-
out access to raw pixels, dramatically reduc-
ing computational cost and complexity. On
the POPE dataset, our system, using a 7B
LLM, outperforms several fully trained VLMs
in zero-shot evaluations, while on the VSR
benchmark, the 4B model achieves competitive
results, together demonstrating strong gener-
alization without retraining. CAPSTONE of-
fers a scalable and interpretable alternative for
companies looking to integrate visual reason-
ing capabilities without the burden of full-scale
VLM pipelines. Our code is available at https:
//github.com/ismail31416/CAPSTONE.

1 Introduction

Generative Al has advanced rapidly with Large
Language Models (LLMs) and Vision-Language
Models (VLMs) (Li et al., 2025b; Hamadi, 2023),
achieving strong results in language and vision
tasks (Cao et al., 2020; Dey et al., 2021). Yet,
real-world understanding often requires integrat-
ing modalities, as text- or vision-only systems re-
main limited (Liang et al., 2024). While joint vi-
sion—language training is promising (Ghosh et al.,
2024), most frameworks rely on full retraining or
task-specific fine-tuning (Hu et al., 2025), demand-
ing large datasets (Chen et al., 2025), high com-
pute (Sharshar et al., 2025), and significant cost
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Figure 1: Comparison between Vision-Language
Models (VLMs) and the proposed CAPSTONE
framework. (a) Standard VLMs tightly couple visual
encoders with text embeddings, leading to high cost and
limited interpretability. (b) CAPSTONE instead uses
lightweight vision modules to extract structured descrip-
tions and generate prompts for a frozen LLM, enabling
cost-effective zero-shot reasoning.

(Parthasarathy et al., 2024). Such infrastructure is
unevenly available, making large-scale multimodal
models inaccessible for many regions.

Beyond cost, enterprise adoption of multimodal
Al faces challenges of interpretability and integra-
tion (Chen et al., 2024b). Industries such as retail,
healthcare, and finance need modular, auditable
systems that avoid black-box behavior (Agarwal,
2025). Neural-symbolic VQA has shown how dis-
entangling vision from reasoning improves trans-
parency (Agarwal, 2025; Yi et al., 2018). Applica-
tions include retail attribute reasoning, explainable
defect detection, and privacy-sensitive healthcare
analytics. This gap between research advances and
enterprise needs motivates modular approaches that
reuse specialized vision tools already deployed in
production (Munikoti et al., 2024).

Over the past decade, computer vision has
produced efficient models—object detectors,
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classifiers, OCR, pose and segmentation net-
works—trained on benchmarks like ImageNet
(Deng et al., 2009) and COCO (Lin et al., 2014).
These systems excel at discrete tasks (Mittal, 2024)
but usually operate in isolation and lack integra-
tive reasoning (Luo et al., 2024b). This raises a
key question: can outputs from modular vision
systems be transformed into symbolic descriptions
that enable an LLM to reason over images without
pixel-level fusion or multimodal training?

We hypothesize that reasoning-capable LLMs
can interpret images from structured symbolic
prompts alone. CAPSTONE (Composable
Attribute-Prompted Scene Translation for Zero-
Shot Vision—-Language Reasoning) operationalizes
this idea. It detects objects with YOLOv11, ex-
tracts attributes like colors via KNN clustering, and
encodes geometry such as shape and relative size.
These attributes are compiled into prompts that
query a frozen LLM for tasks like captioning or
VQA.

Our experiments on the POPE and VSR datasets
show that CAPSTONE achieves state-of-the-art
accuracy—using the 7B Qwen2 model on POPE
and the 4B Qwen3 model on VSR—outperforming
several specialized VLMs trained end-to-end on
vision-language tasks. On VSR, CAPSTONE at-
tains 55.24% accuracy and 67.30% F1, signifi-
cantly improving recall compared to prior meth-
ods. Smaller LLMs perform worse, underscoring
the importance of reasoning strength. CAPSTONE
enables zero-shot generalization, removes depen-
dence on Q-formers or multimodal encoders, and
offers transparency and scalability. Beyond com-
petitive performance, CAPSTONE addresses criti-
cal industry needs by offering a transparent, cost-
effective alternative to traditional VLMs.

Our contributions are:

* We propose CAPSTONE, a modular pixel-free
framework that converts symbolic vision out-
puts into prompts for a frozen LLM.

* We show strong zero-shot results on POPE
and VSR, matching or surpassing LVLM base-
lines without multimodal training.

* We provide a cost-efficient recipe with in-
terpretable outputs, hot-swappable backends,
and easy industrial integration.

2 Related Work

Modular and tool-use pipelines:
Flamingo (Alayrac et al., 2022) and BLIP-
2 (Li et al.,, 2023a) leverage frozen encoders
but still rely on costly multimodal training.
Tool-routing systems (e.g., MM-REACT (Yang
et al., 2023), LayoutLLM (Luo et al., 2024a),
VPD (Hu et al., 2024)) delegate perception to
expert models for efficiency, and Align-KD (Feng
et al., 2025) distills alignment into compact
students. CAPSTONE differs by fully decoupling
vision and language: classic CV modules emit
structured attributes that a frozen LLM consumes
directly, avoiding multimodal finetuning.

Symbolic prompts and scene graphs: Scene-
graph—inspired approaches (AAPL, LLM4SGG,
role-playing/compose strategies (Kim et al.,
2024a,b; Chen et al., 2024a; Nagar et al., 2024)) in-
ject attribute-level structure to aid grounding. Clos-
est to our setting, Img2L.LLLM and prompt-only zero-
shot reasoning (Guo et al., 2023; Nagar et al., 2024;
Chen et al., 2024c¢) expose latent reasoning but un-
derperform on spatial relations. CAPSTONE tar-
gets this gap by converting labels, boxes, depth,
pose, and OCR into declarative, metric, and rela-
tional sentences for explicit spatial checks.

End-to-end VLMs and spatial reasoning: Re-
cent VLMs (Qwen2-VL, InternVL 2.5, LLaVA-
OneVision (Wang et al., 2024; Lu et al., 2025;
Li et al., 2025a)) advance broad multimodal ca-
pability; our design is complementary, empha-
sizing deployability, interpretability, and spatial
robustness without paired training. In parallel,
grounded spatial benchmarks (Cheng et al., 2024)
highlight persistent failures in relational ground-
ing; CAPSTONE addresses these with explicit
order/overlap/containment cues while retaining a
simple, hot-swappable modular stack.

3 Methodology

This paper introduces CAPSTONE, a modular
framework that bridges the gap between specialized
computer vision models and large language models
(LLMs) for multimodal reasoning. Our approach
leverages the discrete outputs of vision modules to
create structured, symbolic representations that can
be processed by frozen LLMs without the need for
end-to-end multimodal training. Figure 2 depicts
the complete architecture.
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Figure 2: Architecture of the CAPSTONE framework for zero-shot visual reasoning. The pipeline accepts an
image—question pair as input (a) and employs a frozen perceptual stack of classical vision models (b) to extract four
complementary modalities: depth distributions, OCR-based text signals, human pose interactions, and color—spatial
scene attributes. These frozen modules produce structured outputs, which are converted into intermediate textual
descriptions. These descriptions are aggregated by a frozen module into a unified chain-of-thought prompt. (c),
serving as input to a frozen LLM (e.g., Qwen, Deepseek, LLaMA). The LLM performs zero-shot inference via an
internal, multi-stage reasoning pipeline comprising Premise Extraction, Relational Encoding, Chain-of-Thought
Generation, and Answer Synthesis. The final output (d) includes object presence, spatial localization, and visibility

attributes.

Hypothesis: Let Z be the space of all possible
images, Q be the space of all possible natural lan-
guage queries, and A be the space of all possible
answers. We define: V : 7 — F, as a set of vi-
sion modules that map an image to feature space
Fu T : Fy — D as a transformation function that
maps visual features to symbolic descriptions D
L :D x Q@ — A as a frozen language model that
maps descriptions and queries to answers.

We hypothesize that for an image I € 7
and query ¢ € @, the function composition
L(T(V(I)),q) = a can approximate the per-
formance of end-to-end vision-language models
M I x Q — A trained explicitly on multi-
modal data, such that E(; g o+)p,, [ (0@ = a*)] >
E(7,g,01)~Dex W (M(I,q) = a*)] — ¢, where a*
represents the ground truth answer, Dy is a test
distribution of image-question-answer triples, and
€ is a small error margin.

Visual Perception Pipeline: CAPSTONE imple-
ments a modular visual perception pipeline that
extracts structured information from images us-
ing lightweight, specialized vision models. We
employ YOLOV11 for object detection, partition-
ing each image [ into overlapping 640 x 640
tiles with 20% stride overlap to maximize recall.
Detection outputs are thresholded at confidence
7 = 0.1 and merged using Non-Maximum Sup-
pression (IoU = 0.5), yielding object set O(I) =
(ci,bi,si) | i € [1, N], where ¢; is the class label,

b; € R* the bounding box, s; the confidence score,
and N the number of detected objects. To im-
prove detection of small or ambiguous objects,
we classify additional horizontal/vertical stripes
and crops using an ImageNet-1000 classifier. For
each detected object, we extract visual attributes
such as dominant colors via K-means clustering
in HSV space (K = 3), computing dcolor(0;) =
(hj,s5,v5.p5) | € [1, K], where (hy,s5,v;) is
the cluster centroid and p; its proportion. For ob-
jects labeled as people, we apply pose estimation to
infer activity, and depth estimation is used to better
understand spatial relationships among all objects,
enhancing relational reasoning.

Symbolic Representation: The extracted visual
features are transformed into structured natural lan-
guage descriptions through our translation function
T. This function maps the raw perception outputs
to a composite scene description D = T (V(I)) =
dobject87 drelationsa dscene’ where dobjects describes
individual objects and their attributes, d,cjotions
captures spatial relationships between objects, and
dscene provides a high-level scene overview. Ob-
ject descriptions include color distribution sum-
maries, relative size characterizations (e.g., “large,"
“medium," "small"), and positional information
(e.g., “center," “top-left"). Spatial relationships
are defined as 7gpqatiai (04, 05) € {“left of", “right
of", “above", “below", "overlapping"} based on
bounding box geometry. This symbolic representa-
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POPE Category

Method LLM (Params)

Random Popular Adversarial
LLaVA-1.5 (Leng et al., 2024) Vicuna-7B 83.29 81.88 78.96
InstructBLIP (Leng et al., 2024) Vicuna-7B 80.71 78.22 75.84
Qwen-VL (Leng et al., 2024) Qwen-7B 84.73 84.13 82.26
mPLUG-OwI2 (Qu et al., 2024) LLaMA2-7B 86.70 83.66 81.73
MultiModal-GPT (Li et al., 2023b) Unknown 50.03 50.00 50.00
MiniGPT-4 (Li et al., 2023b) Vicuna-7B 77.83 68.30 66.60
Ovis2-8B(Neuhaus and Hein, 2025) 8B 86.60 86.00 85.90
LLaVa-NeXT-Mistral(Neuhaus and Hein, 2025) Mistral-7B 86.20 85.90 85.90
LLaVa-NeXT-Vicuna(Neuhaus and Hein, 2025) Vicuna-7B 85.90 85.60 85.60
Ovis2-4B (Neuhaus and Hein, 2025) 4B 86.20 86.10 85.50
CAPSTONE (Ours) LLaMA-3.2-1B 55.85 52.68 53.77
CAPSTONE (Ours) Qwen2.5-1.5B 76.90 73.67 71.67
CAPSTONE (Ours) DeepSeekR1-1.5B 70.67 67.00 65.41
CAPSTONE (Ours) Qwen2.5-7B 87.47 (0.15) 87.17 (£0.12) 85.93 (+0.10)

Table 1: Comparison of model performance on the POPE dataset across three evaluation settings: Random, Popular,
and Adversarial. Accuracy scores for existing baselines are reported from prior work. The final row presents the
best-performing variant of CAPSTONE (Ours), which achieves state-of-the-art results across all settings.

tion serves as the bridge between visual perception
and language understanding components.

Zero-shot Reasoning: Given a question g € Q
about image I, we construct a reasoning prompt
P = C(D,q) = [instruction; D; q] that incorpo-
rates the symbolic scene description and the query.
This prompt is passed to a frozen LLM L to gener-
ate the answer @ = £(P) without any task-specific
training or fine-tuning. The LLM performs multi-
hop reasoning over the symbolic description, lever-
aging its inherent capabilities to interpret structured
visual information. Our framework enables three
key reasoning types: (1) spatial reasoning for un-
derstanding geometric relationships between ob-
jects, (2) attribute reasoning for analyzing object
properties like color and size, and (3) contextual in-
ference for applying world knowledge to interpret
the scene. This modular design offers significant
advantages over conventional VLMs, including full
transparency of components, extensibility through
new perception modules without retraining, and
computational efficiency through zero-shot opera-
tion that eliminates costly multimodal training.

Prompt Engineering and Query Optimization:
CAPSTONE relies on transforming symbolic de-
scriptions into structured prompts that maximize
LLM comprehension. Our design follows a hi-
erarchical scheme: Context Establishment with
global attributes (colors, spatial layout, object den-
sity), Object Enumeration listing detected entities
with confidence, coordinates, and attributes, and
Relational Encoding expressing spatial relations

Tspatial (0i, 0) in natural language also in raw ge-
ometry. To manage complexity, we use adaptive
truncation that retains high-confidence objects and
summarizes weaker detections, and query-aware
filtering that selects features based on query type
(spatial, attribute, existential). This ensures the
symbolic-to-textual transformation 7" : F;, — D
preserves key visual information in a format opti-
mized for LLM reasoning, enabling effective zero-
shot inference without task-specific tuning.

4 Experiments and Results

4.1 Settings

Datasets and Implementation Details: We
evaluate CAPSTONE on two datasets. First,
POPE (Li et al., 2023b), a binary object-presence
detection task for hallucination resistance, with
accuracy reported across Random, Popular, and
Adversarial regimes. Second, VSR (Visual Spa-
tial Reasoning) (Liu et al., 2023), which measures
relational understanding with Accuracy, Precision,
Recall, and FI. Results are averaged over four
seeds, reported as mean + std.

We use frozen LLMs as reasoning backends,
with no multimodal finetuning-LLaMA-3.2-1B,
Qwen2.5-1.5B, DeepSeek-R1-1.5B, Qwen2.5-7B,
and Qwen3-8B. Perception relies on off-the-shelf
CV modules (YOLOvV8/YOLOvV11 for detection,
instance segmentation, monocular depth, human
pose, OCR, and color/texture cues). A rule-based
aggregator, with no trainable parameters, composes
a single textual prompt for the LLM.
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Visual Spatial Reasoning Benchmark

Method LLM (Params)

Accuracy (%) Precision (%) Recall (%) F1 Score (%)
InstructBLIP (Dai et al., 2023) Vicuna-7B (7B) 52.05 53.99 50.71 38.59
BLIP (Li et al., 2021) ViT-B/16 + BERT-base 45.25 39.70 44.27 37.72
ALBEEF (Sun et al., 2025) ViT-B/16 + BERT-base 51.47 50.74 50.01 34.43
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B (7B) 53.44 58.30 52.17 41.98
PaliGemma (Beyer et al., 2024) Gemma-3B (3B) 53.58 54.86 52.40 46.11
LLaVA-v1.5-7b (Liu et al., 2024) Vicuna-7B (7B) 52.95 57.99 51.63 40.27
LLaVA-v1.5-13b (Liu et al., 2024)  Vicuna-13B (13B) 52.37 54.79 51.08 39.94
Spatial-LLaVA-7b (Sun et al., 2025) Vicuna-7B (7B) 53.60 54.77 52.61 47.08
CAPSTONE (Ours) Qwen3-4B-Thinking (4B) 55.24 (0.12) 53.92 (£0.15) 89.51 (£0.10) 67.30 (+0.11)

Table 2: Performance comparison on the Visual Spatial Reasoning Benchmark. Results are reported across
Accuracy, Precision, Recall, and F1 Score. Only the CAPSTONE row is highlighted.

Comparison Methods: For benchmarking, we
compare CAPSTONE against a diverse set of es-
tablished vision—language models. On POPE (Li
et al., 2023b), baselines include LLaVA-1.5 (Leng
et al., 2024), InstructBLIP (Leng et al., 2024),
Qwen-VL (Bai et al., 2023), mPLUG-OwI2 (Qu
et al., 2024), MiniGPT-4 (Li et al., 2023b),
Ovis2 (Neuhaus and Hein, 2025), and LLaVA-
NeXT (Neuhaus and Hein, 2025), representing
both early alignment-based systems and more
recent instruction-tuned LVLMs. For the VSR
benchmark (Liu et al., 2023), we compare against
BLIP (Li et al.,, 2021), ALBEF (Sun et al.,
2025), InstructBLIP (Dai et al., 2023), Qwen-VL-
Chat (Bai et al., 2023), PaliGemma (Beyer et al.,
2024), LLaVA (Liu et al., 2024), and Spatial-
LLaVA (Sun et al., 2025), covering contrastive-
pretrained, generative, and spatially enhanced ar-
chitectures. Evaluation follows standard protocols,
accuracy across Random, Popular, and Adversar-
ial splits for POPE, and accuracy, precision, recall,
and F1 for VSR, ensuring fair comparisons under
matched inference conditions.

4.2 Zero-shot reasoning on POPE

We first assess CAPSTONE'’s object-presence rea-
soning ability on POPE. As shown in Table 1,
CAPSTONE+Qwen2.5-7B achieves strong per-
formance across all aplits: 87.36 +0.15 (Ran-
dom), 87.21 £0.12 (Popular), and 85.89 =0.10
(Adversarial). This surpasses competitive LVLM
baselines such as Ovis2-4B/8B, LLaVA-NeXT-
Mistral/Vicuna, and Qwen2.5-VL under matched
inference settings by +2—4 points.

The adversarial setting, designed to confuse
models with rare or out-of-context objects, reveals
CAPSTONE’s robustness. By structuring fine-
grained scene attributes into interpretable prompts,

our system enables the LLM to reason about
presence and absence through logical grounding
rather than pattern memorization. Notably, this
is achieved without any paired image—text train-
ing. On the other hand, a comparatively smaller
model could not achieve similar results in the same
context due to fewer reasoning capabilities.

4.3 Results on the VSR Benchmark

Table 2 presents the performance of CAPSTONE
in comparison with existing vision-language mod-
els on the Visual Spatial Reasoning Benchmark.
Across all reported metrics, our method demon-
strates clear improvements, particularly in recall
and F1 score, while maintaining competitive accu-
racy and precision.

In terms of accuracy, CAPSTONE achieves
55.24%, surpassing widely used baselines such
as InstructBLIP (52.05%) and LLaVA-v1.5-13B
(52.37%). Although Qwen-VL-Chat attains a
slightly higher precision (58.30%) compared to
CAPSTONE’s 53.92%, our model substantially
outperforms others in recall with 89.51%. This
high recall indicates that CAPSTONE can capture
a broader range of correct spatial relations, reduc-
ing the likelihood of missed detections.

The improvement in recall translates into a sig-
nificantly higher F1 score of 67.30%, establishing
a new state-of-the-art on this benchmark. This is a
notable margin compared to the strongest baseline,
Spatial-LLaVA-7B, which achieves 47.08%. The
balanced combination of accuracy, precision, and
recall highlights the robustness of our approach in
handling the complex reasoning patterns required
by the benchmark. An additional observation is
that CAPSTONE achieves these results with a rela-
tively modest parameter size (Qwen3-4B-Thinking,
4B), compared to larger models such as LLaVA-
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Model / Latency Throughput Params Size CPU Module Training Data Cost (USD
Pipeline Task (ms) (FPS/tok/s) ™M) (MB) Friendly Replaceable Requirement / 1B imgs)
(a) End-to-End VLM
3B VLM-Model Vision-Language Understanding ~ 66.3+6.3 15.1 FPS 3750.0 7143.0 X X Multi-module paired  18,395.9
8B VLM-Model Vision-Language Understanding ~95.0£8.0 ~10.5FPS  8290.0 ~15,200.0 X X Multi-module paired  26,455.0
(b) Individual CV + LLM
YOLOv111 Object Detection 8.7+2.4 115.0 FPS 25.3 96.8 v v Single-module 24155
Pose Estimation Human Pose Estimation 4.443.0 224.8 FPS 26.2 89.9 v v Single-module 1,235.7
EasyOCR Text Detection/Recognition 45429 223.4 FPS 38 14.7 v v Single-module 1,243.4
Qwen-Model (3B)  Text Generation (LLM) 43.3+7.3 115.5tok/s  3090.0 7600.0 X X Single-module NA
(c) CAPSTONE Pipeline (CV + LLM)
CAPSTONE (Ours) CV Modules + 3B LLM 60.9+8.8 16.1 FPS 31453 7801.4 v v NA 17,2747

Table 3: This table presents an analysis of deployment costs, where the cost per 1B images is estimated assuming
a GPU hourly rate of $1.00. The comparison includes latency, throughput, parameter count, model size, CPU-
friendliness, modularity, training data requirements, and the overall estimated cost.

Error Source

Cases Example Query Notes

Attributes Accuracy Interpretability
W/o (Qwen2.5-VL)  88.0% None
W (CAPSTONE) 90.0%  CV/LLM/Mixed

CV Module 6%
LLM Reasoning 3%
Mixed/Ambiguous 1%

“Is there a bed in the image?”
“Is there a person in the image?”
“Is there a sandwich in the image?”

Object not detected, LLM followed CV
Detected person ignored
CV partial + LLM hallucination

Table 4: Overall accuracy and interpretability Table 5: Error attribution showing which module (CV or LLM) was

comparison between a black-box VLM base-
line and CAPSTONE with attributes.

v1.5-13B (13B). This suggests that our prompt con-
struction and reasoning-oriented design contribute
more significantly to performance than raw param-
eter scaling alone.

4.4 Industrial Deployment Considerations

Since training budgets for modern VLMs and
LLMs are difficult to estimate due to unknown data
scale, compute resources, and optimization strate-
gies, we restrict our analysis to inference-level cost.
We compute the deployment cost per billion im-
ages by combining measured throughput with an
assumed GPU hourly rate of $1.00. Specifically,
cost is estimated as:

1B

Cost =
o8 Throughput 8 3600

x GPU Rate (USD/hr)

This formula assumes batch-level inference under
uniform conditions, with throughput measured in
frames per second (FPS). While absolute costs may
vary across hardware and deployment settings, this
provides a fair relative comparison across models.

Quantitative Efficiency Comparison: As
shown in Table 3, CAPSTONE achieves lower de-
ployment cost and latency compared to end-to-end
VLMs of comparable size. Relative to a 3B VLM,
CAPSTONE reduces latency by 8.1% (60.9 ms vs.
66.3 ms) and cost by 6.1% (17,274.7 vs. 18,395.9
USD per 1B images), while maintaining a similar
parameter count (3145M vs. 3750M). Compared
to an 8B VLM, CAPSTONE yields a 34.7%

responsible for incorrect answers.

reduction in cost (17,274.7 vs. 26,455.0 USD per
1B images) with 62% fewer parameters (3.2B
vs. 8.3B). Throughput also remains competitive:
while end-to-end VLMSs sustain ~10-15 FPS, our
modular pipeline achieves 16.1 FPS, demonstrating
that modularity does not come at the expense of
inference speed.

Modularity and Deployment Advantages: Be-
yond efficiency, CAPSTONE’s modular CV +
LLM design provides structural benefits. All CV
modules (YOLOv11, Pose Estimation, EasyOCR)
are lightweight, CPU-friendly, and individually re-
placeable, unlike monolithic VLMs. This mod-
ularity allows upgrading or swapping individual
components without retraining the entire system.
Furthermore, each module can be trained on single-
modal datasets, avoiding reliance on large-scale
paired image-text corpora, which are both costly
and difficult to obtain.

4.5 Interpretability and Attribute Analysis

A core motivation behind CAPSTONE is offering
interpretability through explicit attribute grounding.
To evaluate this, we conducted a targeted study on
100 POPE test cases. As shown in Table 4, the
baseline VLM (Qwen2.5 VL) without attributes
achieves 88% accuracy but provides no diagnostic
trace of its 12% errors. By contrast, our attribute-
based framework achieves 90% accuracy and, more
importantly, enables error provenance.
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Query Attribute Evidence Decision Interpretation

“Is there a cat in the im- Detection: Cat (conf. 0.92), BBox: YES Correct, traceable via detection evidence.
age?” top-left

“Is there a sandwich in Detection: Plate, brown color; no YES (wrong) LLM hallucination despite correct CV input.
the image?” sandwich

“Is there a person in the Detection: Person x2, poses: stand- NO (wrong) LLM ignored valid detections.

image?” ing

“Is there a car in the im- Detection: None; OCR: “STOP” YES (wrong) CV missed the object; LLM propagated er-
age?”’ TOf.

“Is there a bus in the im- Detection: Bus, depth=background,
age?” bbox bottom-right

YES Correct, transparent chain of evidence.

Table 6: Qualitative cases showing module-level interpretability of CAPSTONE’s decisions.

Error Attribution: Table 5 provides a break-
down of the error sources, showing how CAP-
STONE can disentangle perception and reasoning
failures. Approximately 6% of errors originate
from the CV module (e.g., missed detections), 3%
from the LLM reasoning (e.g., ignoring detected
entities), and 1% from mixed cases where both
modules contributed. Unlike the baseline, which
presents opaque failures, CAPSTONE’s decompo-
sition offers actionable debugging signals.

Attribute Contribution: To better understand
the role of individual attributes, we performed an
analysis (Table 7). The strongest contributors were
bounding box and quadrant cues (72.9%) along
with spatial relations (70.2%), while depth, pose,
OCR, and color attributes added complementary ro-
bustness in specific contexts. Crucially, combining
all attributes yielded the best performance (90%)
along with interpretability. These findings high-
light that explicit structural cues provide a stable
foundation for reasoning, while auxiliary signals
strengthen generalization.

Attribute Type (Cue) # Cases Using Accuracy
Bounding Box / Quadrant 48 72.9%
Spatial Relations 67 70.2%
Depth Distribution 19 63.1%
Pose Estimation 13 61.5%
OCR / Text Evidence 11 58.2%
Color Attributes 32 55.0%
All Attributes Combined 100 90.0%
No Attributes (baseline) 100 88.0%

Table 7: Ablation of attribute cues, showing their contri-
bution to performance.

Qualitative Interpretability: Table 6 presents
qualitative examples that demonstrate CAP-
STONE’s transparency. Correct predictions can
be traced back to bounding box evidence, spa-
tial cues, or detected entities, making the decision
chain fully interpretable. Conversely, when errors

occur—such as an LL.M hallucinating a sandwich
or propagating a missed car detection—the source
is clearly identifiable. For instance, a false pos-
itive ‘sandwich” arose because the LLM halluci-
nated from a plate despite correct CV input, while
a missed ‘car” was due to CV failure propagated
by the LLM. In contrast, correct cases show how
attributes like bounding boxes and pose evidence
directly ground predictions.

5 Conclusion

CAPSTONE presents a lightweight, interpretable
framework for zero-shot vision-language reason-
ing using structured symbolic prompts and frozen
LLMs. By decoupling visual perception from lan-
guage understanding, it achieves state-of-the-art
results without multimodal training. This work
explores new avenues for creating efficient, modu-
lar VLM pipelines that focus on transparency, ac-
cessibility, and extensibility, introducing a novel
evaluation framework for assessing LLM reasoning
capabilities.

6 Limitations

While CAPSTONE demonstrates strong zero-shot
performance, it currently operates using a standard
object detector and a limited set of basic attributes,
which may constrain its ability to capture nuanced
or abstract scene information. More advanced de-
tection models with richer class vocabularies and
semantic capabilities could provide detailed scene
descriptions, allowing the language model to better
demonstrate its reasoning potential.
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A Appendix
A.1 Ablation Study

To understand the individual contributions of our
model components, we perform an ablation study
on CAPSTONE. We systematically analyze the
effects of prompt structure, perception modules,
and reasoning errors to identify their impact on
overall performance.

Prompt Sensitivity: We evaluated the effect of
prompt structure on the performance of CAP-
STONE (Table 8 ). Specifically, we compared the
standard direct answer prompts against Chain-of-
Thought (CoT) reasoning. Incorporating CoT rea-
soning substantially improves recall (89.50% vs.
52.70%) and F1 score (67.30% vs. 53.38%) on the
VSR test set, while accuracy and precision remain
largely comparable. This indicates that CoT mainly
enhances the model’s reasoning capabilities over
structured computer vision outputs, enabling the
LLM to better infer complex relations and coun-
terfactual scenarios, rather than improving basic
detection metrics.

Precision Recall F1

54.10 5270 53.38
53.93 89.50 67.30

Configuration Accuracy

53.84
55.24

Direct Answer
CoT

Table 8: VSR results (zero-shot) with and without chain-
of-thought (CoT) prompting.

Perception Module Contributions: To isolate
the contributions of individual computer vision
modules, we conducted a series of ablations (Table
9). Removing the depth module unexpectedly in-
creases accuracy (57.33% vs. 50.67%), likely due
to the elimination of noisy depth signals that can oc-
casionally mislead reasoning. Removing segmenta-
tion results in a slight accuracy drop (56.26%), re-
flecting the moderate importance of object mask de-
tails for relational reasoning. Using only YOLOv11

achieves 55.42%, demonstrating that upgrading to
YOLOVS8 and combining all perception modules
provides richer contextual information for the LLM.
These results highlight the complementary nature
of multiple perception streams, where each module
contributes differently to overall reasoning perfor-
mance.

Configuration DET DEP SEG C&T Acc (%)
YOLOvVS w/ All v v v v 50.67
w/o Depth v - v v 57.33
w/o Segmentation v - - v 56.26
Only YOLOv11 v - - v 55.42

Table 9: Ablation study on VSR showing the effect
of removing individual perception modules. DET =
detection, DEP = depth, SEG = segmentation, C&T =
color & texture. Reported values are accuracy (%) for
CAPSTONE in the zero-shot setting.

Error Analysis: We further analyzed 300 VSR
test cases to understand the sources of errors in our
modular architecture. Errors are broadly catego-
rized into perception-related and reasoning-related
failures. Perception errors are predominantly asso-
ciated with spatial relationships (topology, 45.7%)
and depth relations (46.2%), arising from limita-
tions such as imperfect bounding box overlaps and
noisy monocular depth estimates. On the reason-
ing side, the LLM exhibits a YES-bias, produc-
ing 87.3% positive predictions compared to 53.3%
ground truth, sometimes overriding weak visual
signals. This bias contributes to the observed trade-
off between high recall (91.88%) and moderate
precision (56.11%).

Relation  Cases Accuracy Failure Mode
Topology 35 45.7% Box overlap issues
Depth 13 46.2%  Noisy depth estimates
Directional 68 55.9% Relation flips
Contact 64 70.3% Edge/contact limits
Distance 18 61.1%  Adjacency thresholds

Table 10: VSR errors by relation type with dominant
failure modes.

Replacing older CV modules with newer ver-
sions, such as YOLOv8 over YOLOvVI11, consis-
tently reduces detection errors and provides the
LLM with more reliable contextual cues. Further-
more, simple architectural or inference adjustments,
including topology gating and contradiction guards,
can improve precision without significant sacrifice
to recall. Overall, the ablation study and error anal-

2849


https://proceedings.neurips.cc/paper_files/paper/2018/file/5e388103a391daabe3de1d76a6739ccd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5e388103a391daabe3de1d76a6739ccd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/5e388103a391daabe3de1d76a6739ccd-Paper.pdf

ysis confirm that CAPSTONE’s modular design
allows for flexible trade-offs between efficiency,
accuracy, and reasoning robustness, and that each
module and prompt strategy plays a distinct role in
system performance.

A.2 Prompt Templates
Prompt Templates for POPE dataset:

Prompt Template for POPE (Visual Reason-
ing)

Prompt: You are a visual reasoning assistant tasked with
answering real-world questions about an image using
detected objects and scene context.

Image Analysis: {detection_results}

Question:
Instructions:

» Use object names, locations, and relationships to
reason about the scene.

* Apply commonsense and spatial reasoning to answer
correctly.

Think step-by-step if needed, but keep the final re-
sponse short.

Return only the final answer.

» Format the output as: Answer: [YES/NO]
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Visual Question Answering Example

Question:

Is there a person in the
image?

FULL IMAGE ANALYSIS:

Primary class: trolleybus (0.4479). QUADRANT ANALYSIS: Top Left: dogsled (0.5302), Top Right: stove (0.2138), Bottom Left: fire_engine
(0.3521), Bottom Right: fire_engine (0.2476).

HORIZONTAL STRIPS ANALYSIS: Top Half: amphibian (0.3015), Top Third: amphibian (0.2679), Middle Third H: passenger_car
(0.8187), Bottom Third: combination_lock (0.1508), Bottom Half: trolleybus (0.4961).

VERTICAL STRIPS ANALYSIS: Left Half: fire_engine (0.3017), Left Third: mobile_home (0.3715), Middle Third V: trolleybus (0.5686),
Right Third: trolleybus (0.4670), Right Half: fire_engine (0.5166).

SUMMARY OF DETECTED CLASSES:

passenger_car: 1 crop (Max 0.8187, Avg 0.8187); trolleybus: 4 crops (Max 0.5686, Avg 0.4949); dogsled: 1 (Max 0.5302); fire_engine: 4 (Max
0.5166, Avg 0.3545); mobile_home: 1 (Max 0.3715); amphibian: 2 (Max 0.3015, Avg 0.2847); stove: 1 (Max 0.2138); combination_lock: 1
(Max 0.1508).

OBJECT DETECTION RESULTS:

DETECTION #1: BUS - Conf.: 95.35% (very high); Colors: {#dcd8d7:25%, #595972:35%, #14143e:40%}; BBox: (202,35)—(543,391); Ctr:
(372,213); Quad: bottom-right.

DETECTION #2: PERSON - Conf.: 77.81% (high); Colors: {#e9e5e2:31%, #6c6b7b:23%, #212536:46%}; BBox: (285,44)-(317,85); Ctr:
(301,64); Quad: top-left.

DETECTION #12: PERSON - Conf.: 26.26%(low); Colors: {#2f363e:50%, #bcc1c6:14%, #646d76:35%}; BBox: (85,254)-(93,280); Ctr:
(89,267); Quad: bottom-left.

Model Responses
Quen 155

Step-by-Step Reasoning: Step-by-Step Reasoning: 1. The image contains multiple
1. The primary object identified in the image is a trol- detections labeled as “person” at various confidence levels.
leybus. 2. No other human-like detections were found 2. There are a total of 12 detections classified as persons,
among the listed classes. 3. The context of the question ranging from very high (77.81%) to low (26.26%) con-
asks about presence of a person, not just any object. 4. fidence. 3. These detections are spread across different
Therefore, considering the absence of any person-related quadrants and vertical/horizontal strips of the image, indi-
detections alongside the presence of a trolleybus, we can cating that people are present in diverse areas. 4. The pres-
conclude that there is no evidence supporting the presence ence of multiple persons at different locations suggests
of a person in the image. 5. It’s important to note that that the image indeed includes individuals. 5. Even though
while the image may contain people who are not detected, some detections have lower confidence levels, the overall
this does not necessarily imply the presence of persons presence and distribution of these detections strongly sup-
beyond what was observed. port the conclusion that people are depicted in the image.
Final Answer: NO Final Answer: YES

2851



