Efficiency-Effectiveness Reranking FLLOPs for LLM-based Rerankers

Zhiyuan Peng*!, Ting-Ruen Wei', Tingyu Song?, Yilun Zhao®
'Santa Clara University, “Independent Researcher, *Yale University

Abstract

Large Language Models (LLMs) have recently
been applied to reranking tasks in informa-
tion retrieval, achieving strong performance.
However, their high computational demands
often hinder practical deployment. Existing
studies evaluate the efficiency of LLM-based
rerankers using proxy metrics such as latency,
the number of forward passes, input tokens,
and output tokens. However, these metrics de-
pend on hardware and running-time choices
(e.g., parallel or not, batch size, etc), and of-
ten fail to account for model size, making it
difficult to interpret and obscuring the evalua-
tion of the efficiency-effectiveness tradeoff. To
address this issue, we propose E2R-FLOPs!
for LLM-based rerankers: RPP (ranking met-
rics per PetaFLOP), measuring how much rank-
ing quality (e.g., NDCG or MRR) a method
achieves per PetaFLOP, and QPP (queries per
PetaFLOP), measuring how many queries can
be processed per PetaFLOP. Accompanied by
the new metrics, an interpretable FLOPs esti-
mator is developed to estimate the FLOPs of an
LLM-based reranker even without running any
experiments. Based on the proposed metrics,
we conduct comprehensive experiments to eval-
uate a wide range of LLM-based rerankers with
different architectures, studying the efficiency-
effectiveness trade-off and bringing this issue
to the attention of the research community.

1 Introduction

A typical search system balances efficiency and
quality with a two-stage pipeline: a lightweight
retriever retrieves hundreds of documents from a
vast corpus, prioritizing efficiency, and then a more
powerful but computationally expensive reranker
refines their order. Thanks to the rapid progress
of LLMs (Brown et al., 2020; Grattafiori et al.,
2024; Anil et al., 2023), LLM-based rerankers have

*Correspondence: zpeng@scu.edu
"https://github.com/zhiyuanpeng/EER-FLOPs.

achieved impressive gains in reranking metrics,
such as NDCG; however, these gains often come at
the cost of substantial computational expense, mak-
ing them difficult to deploy at scale in production.
This underscores the need for evaluation metrics
that consider not only reranking quality but also
computational efficiency.

Existing studies evaluate the efficiency of LLM-
based rerankers using proxies such as latency (Jin
et al., 2025), the number of LLM calls (i.e., for-
ward passes) (Zhuang et al., 2024), and input and
output token usage (Chen et al., 2025b). How-
ever, these metrics lack the computational granu-
larity needed to distinguish differences in internal
compute per token or per model call. Specifically,
latency is heavily dependent on hardware and run-
time choices (GPU vs. CPU, batch size, paral-
lelism), making it an inconsistent basis for com-
paring algorithms across studies. The number of
LLM calls ignores the model size: a single call to a
70B LLM costs orders of magnitude more compute
than a call to a 3B model, yet both appear identical
under this metric. Similarly, token usage overlooks
the model size and is difficult to interpret as the
cost of the input token and the output token can be
different.

Inspired by the scaling law in LLMs that stud-
ies the connection between total compute and
performance (Kaplan et al., 2020), we employ
floating-point operations (FLOPs) as a fundamen-
tal measure of cost for each forward pass or
LLM call. The total number of FLOPs required
by a model to rerank documents is a hardware-
agnostic, intrinsic metric of computational work
(Sukthanker et al., 2024). Building on this in-
sight, we introduce E?R-FLOPS, Efficiency-
Effectiveness Reranking FLOPS for LLM-based
rerankers: ranking metrics per PetaFLOP (RPP) for
relevance per compute and queries per PetaFLOP
(QPP) for hardware-agnostic throughput. The pro-
posed metrics thus enable fair comparisons be-

2782

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 2782-2791
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/zhiyuanpeng/EER-FLOPs

tween methods that might utilize different LLMs,
reranking algorithms, and running-time choices.
Accompanied by the proposed metrics, an inter-
pretable FLOPs estimator was built to estimate the
FLOPs of an LLM-based reranker even without
running any experiments.

Based on the proposed metrics, we conduct com-
prehensive experiments to evaluate a wide range
of LLM-based rerankers, examining the efficiency-
effectiveness trade-off and drawing attention to this
issue within the research community. Our key con-
tributions include:

* We derive a closed-form, interpretable formula
for the FLOPs of LLM-based rerankers and
provide an open-source calculator covering up-
to-date models and decoding settings.

* We propose two efficiency-effectiveness met-
rics: RPP for relevance per compute and QPP
for hardware-agnostic throughput.

* We conduct the first large-scale study of the ef-
ficiency—effectiveness trade-off in LLM-based
rerankers, bring this issue to the attention of
the research community.

¢ All code, data, and the FLOPs estimator are
publicly released for reproducible research on
computationally efficient rerankingEfficiency-
Effectiveness Reranking FLOPs.

2 Related Work
2.1 LLM-based Rerankers

Based on how the documents are compared
with each other, LLM-based rerankers can be
categorized as pointwise, pairwise and listwise.
Pointwise methods primarily compute the
query-document relevance score by either the
likelihood of generating the query conditioned on
the document (Ponte and Croft, 2017; Zhuang and
Zuccon, 2021; Zhuang et al., 2021; Peng et al.,
2024) or the normalized possibility of generating
the “Yes” when prompting the LLM whether the
query-document pair is relevant or not (Liang et al.,
2023; Nogueira et al., 2020). The ranking can be
easily accomplished by sorting the relevance score
of each document. Pairwise methods compare the
relevance of a pair of documents to a given query
and output the document ID of the more relevant
one. To rank a list of documents, sorting (Qin
et al., 2024) and sampling (Gienapp et al., 2022;
Mikhailiuk et al., 2020) methods are proposed.

Sorting uses the pairwise comparison to replace
the comparison operation in sorting algorithms,
such as bubble sorting and heap sorting. In
contrast, sampling methods reduce the number
of comparisons by repeatedly drawing random
pairs (or small subsets), aggregating wins, and
estimating a global ranking. Sorting methods are
more efficient for getting the top-K documents
as they do not need to compare all the pairs.
Setwise (Zhuang et al., 2024) extends the pairwise
comparison utilized in heapsort and bubblesort to
output the best one from three or more documents
in one LLM call and thus reduces the number
of LLM calls. To rank a list of documents,
setwise build Listwise methods directly output a
ranked list of document IDs. Most of the existing
listwise methods are zero-shot (Ma et al., 2023)
or few-shot (Sun et al., 2023; Ma et al., 2023;
Pradeep et al., 2023) prompting methods. Recently,
researchers (Zhang et al., 2025) have resorted
to adopting reinforcement learning to fine-tune
LLMs to generate reasoning followed by ranked
document IDs to tackle reasoning-intensive tasks
like BRIGHT (Su et al., 2025). To get a full rank
list, listwise methods usually adopt strategies like
sliding-window (Sun et al., 2023) and tournament
ranking (Chen et al., 2025b) to get a full rank list
with a limited window size.

2.2 FLOPs Calculation

Several FLOPs profilers exist for deep learning
models. Still, most are limited to standard for-
ward passes and do not support token-level gener-
ation with KV-cache, which is essential for accu-
rate LLM inference estimation. PyPAPI> measures
CPU-level FLOPs for general Python code but is
not designed for PyTorch or GPU workloads. pt-
flops® and fvcore* compute FLOPs by running a
model’s “forward” function, but do not support
autoregressive decoding. DeepSpeed’s FLOPs pro-
filer (Rasley et al., 2020) and calflops’ both support
the FLOPs of the decoding process, but they also
require full forward execution. All existing tools
require model execution and lack closed-form sup-
port for generation-aware FLOPs estimation. For

2https://github.com/f'lozz/pypapi

3https://github.com/sovrasov/flops—counter.
pytorch

*https://github.com/facebookresearch/fvcore

5https://github.com/MrYxJ/calculate—flops.
pytorch

2783

https://github.com/flozz/pypapi
https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch
https://github.com/facebookresearch/fvcore
https://github.com/MrYxJ/calculate-flops.pytorch
https://github.com/MrYxJ/calculate-flops.pytorch

reranking, prior studies utilize coarse FLOP esti-
mates, e.g., double the total parameter count (Shao
etal., 2025) or open-source tooling (Abdallah et al.,
2025), which lack interpretability regarding the spe-
cific facts that impact the FLOPs count. Our work
differs from theirs in that our FLOPs estimator is
well-interpretable, and we propose new metrics to
comprehensively evaluate the efficiency and effec-
tiveness of LLM-based rerankers.

3 Method

We first introduce the metrics we designed to mea-
sure the efficiency-effectiveness tradeoff of LLM-
based rerankers. Then we elaborate the FLOPs esti-
mator that estimates the number of FLOPs needed
for one LLM call. To rank a set of documents for
a given LLM-based reranker, the number of LLM
calls can be estimated, allowing for the estimation
of total FLOPs, which can then be compared with
those of different LLM-based rerankers.

3.1 Maetrics

We report two FLOPs-normalized metrics to com-
pare different LLM-based rerankers, thereby effec-
tively evaluating the effectiveness-efficiency trade-
off without being tied to a specific hardware.

3.1.1 Ranking metrics per PetaFLOP (RPP)

m(q)

RPP = — 4 _
Cq/1075

ey
where m(q) can be any ranking metric for query
q (e.g., NDCG, MRR, MAP). RPP therefore ex-
presses ranking metrics per peta-FLOP; a higher
value indicates better ranking quality for a fixed
compute budget.

3.1.2 Queries per PetaFLOP (QPP)

1

PP—
P = Ve, /10

2)
QPP measures throughput: how many queries can
be processed with one peta-FLOP. Together, RPP
and QPP trace a method’s efficiency—effectiveness
frontier: RPP weights quality per compute, while
QPP captures raw FLOPs-normalized throughput.

3.2 FLOPs Estimator

We parameterize a Transformer with four hyper-
parameters: the number of layers njayer, the
residual-stream width dyoge, the hidden size of
the feed-forward block dg, and the dimension of

attention output d,y, which is the dimension of Q,
K, V projections before splitting into multiple heads
and by default dyn = dmodel- Because decoder-
only and encoder—decoder designs dominate LLM-
based rerankers, we derive estimates for both. To
keep the analysis general yet concrete, we adopt
the baseline decoder-only configuration of Kaplan
et al. (2020) and the T5 encoder—decoder architec-
ture (Raffel et al., 2020). In a typical reranking call,
the model receives a prompt (the context, denoted
ctx) and produces an output sequence (opt). The
prompt concatenates a task-specific prefix p, the
query ¢, and a list of w documents, resulting in a
length of n¢. The generated sequence has length

Topt-

3.2.1 Decoder-only

Following Kaplan et al. (2020), we ignore sub-
leading costs such as nonlinearities, biases, and
layer-normalization. The number of attention and
feedforward relevant parameters Nye. is:

Nyec = 2dmodel Nlayer (2dattn + dff) (3)

Given an LLM with KV cache enabled, we now
compute the FLOPs of generating a sequence
named opt (short for “output”), consisting of
Nopt tokens, conditioned on a prompt ctx (short
for “context”) of length nx. The context in-
cludes a task-specific prompt p, a query ¢, and
a list of w documents. Each token within ctx
requires 2Ngec + 4njayer Netx@aywn FLOPs, where
2Ngec comes from the fact that each parameter
in N4 has one addition and one multiplication
operation and 4njayer Nexdaun 18 taken by the ba-
sic multi-head attention operation (Kaplan et al.,
2020). The total FLOPs for n tokens C'(ctx) is:

C (CtX) = 2NgecNerx + 4nlayer ngtxdattn “

When generating token opt;, the total sequence
length seen by LLM is n¢ + (¢ — 1) and the FLOPs
for token i is:

C (Opti) = 2Ngec + 4nlayer [nctx + (1 - 1)] dattn
%)
The FLOPs of generating nop tokens is computed
by summing over all the nqy tokens:

C(opt) = 2NgecNopt

+ 2nlayt:r attn [2n0ptnctx + nopt(nopt - 1)]

(6)

2784

| Multi-head Attention |

Grouped-query Attention

Ops | Parameters FLOPs per Token | Parameters FLOPs per Token

Atten: QKV nlayerdmodel3datm inayerdmodelgdatm nlayerdmodel (1 + 21y /nq) dattn 2nlayerdmodel (1 + 2nKV/nQ) dattn
Atten: O nlayerdatln Amodel 2nlayerdattn dmodel nlayerdattn Amodel inayerdatln Amodel

Atten: Mask - 4nlayerdatmdmodel - 4nlayernctx (nKV/nQ)datm
Feedforward nlayeermodel ddff 2n]ayer2dmodel ddff TMlayer 2dmodel ddff 2nlayer 2dmode] ddff

Table 1: FLOP count for the attention mechanism for multi-head attention and grouped-query attention

The total FLOPs of taking prompt ctx and generat-
ing opt is:

C(ctx 4 opt) = C(ctx) + C(opt) (7)

For LLM-based reranker, n¢y consists of task-
specific prompt p, query ¢, and a list of w doc-
uments. By approximating the length of each doc-
ument as the average document length Lgoc, Netx
can be estimated as:

Netx = Np + Ng + Wldoc (8)

Suppose nq represents the number of heads for Q
and ngy denotes the number of heads for K and
V. Compared to multi-head attention, the number
of parameters and the FLOPs per token changed
accordingly, as shown in Table 1. The equations
are rewritten as:

nkv
Nec = 2dmodel TNayer <(1 + 7)dattn + dff)

nQ
(€))

n
C (CtX) = 2NgecNetx + 4nlayer ngtx nLQVdattn (10)

nKv
C(Opt) = 2N, decopt 1 2n1ayerEdattn : 2noptnctx

nKv
+ 2nlayer attn - nopt(nopt - 1)
nQ
(11)

For models with MoE, only the parameter count
of the “Feedforward” component in Table 1 needs
to be adjusted. Suppose there are nexperr €xperts,
each with intermediate size dgfmop. Then the
number of “Feedforward” parameters is njayer -
2dmodel * Nexpertdafi-MoE- Equivalently, substitut-
ing dgr With Nexpertdatt-MoE yields the updated Ngec
for MoE models. Because Nge. appears in both
C(ctx) and C'(opt), these expressions are auto-
matically updated once Ny is replaced. For in-
stance, Qwen1.5-MoE-A2.7B® has one expert ac-
tivated for each token, and for each token, there

6https ://huggingface.co/Qwen/Qwen1.5-MoE-A2.
7B

are four additional experts selected from a pool of
60 experts. Thus, the number of the parameters of
“Feedforward” is njayer2dmode1dddst-MoE- Qwenl.5-
MOoE-A2.7B adopts intermediate size 5632 for each
shared expert and 1408 for each of the remaining
60 experts, so da-mor = (5632 + 1408 x 4)/5 =
2252.8 on average.

3.2.2 Encoder-Decoder

Decoder-only LLMs, such as GPT (Radford et al.,
2019), do not include encoder-decoder attention
and therefore share a similar structure with the en-
coder component of encoder-decoder models. The
main difference lies in the attention masking strat-
egy, which, however, does not affect the FLOPs
required to process the prompt. Although decoder-
only models are designed to compute attention only
over previous tokens, in practice, they compute full
self-attention (e.g., Qprompt X Kprompt) and apply
a causal mask to prevent attending to future to-
kens. So, for encoder-decoder LLLMs, the FLOPs
of consuming prompt ctx is the same as that of
encoder-only LLMs:

C (CtX) - 2Nencnctx + 4nlayer n?;txdattn (12)

Where Nepc is same as Ny in Equation 3. The
decoder employs a different attention mechanism
from that of the encoder, utilizing an encoder-
decoder attention mechanism followed by self-
attention. In an encoder—decoder model, each de-
coder layer must, once per prompt, project the en-
coder outputs to cross-attention keys and values.
This setup cost is calculated as:

Ceross-Kv = 4 Niayer Tletx dmodel attn (13)

Even, it has two attentions, when generating token
opt,, it only goes through two Q projections, two O
one K projection, and one V projection, as the left Q

and K projections are for prompt “ntx”, so
Nec = 2dmodel Niayer (3dattn + dff) (14)

The total sequence length seen by self-attention is
(¢—1) and the attention operation takes 47ayer (7 —

2785

https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B
https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B

1)dan FLOPs. The sequence length seen by
the following encoder-decoder attention is fixed
as Ne, which requires 4njayer Nexdawn for com-
puting attention. The total attention FLOPs is
4Niayer (Netx + % — 1)dan Which is the same as that
of decoder-only models as shown in the right part
of equation 5 and thus the total FLOPs at generat-
ing token opt, is also same as equation 5 and the
only difference is that the value of N, is differ-
ent. Similary, the C(opt) is same as equation 6
but with a different value of Ng. The cost of
encoder-decoder model is:

C(ctx+opt) = C(ctx)+Ceross- kv +C (0pt) (15)

4 Experiment Setup

Following the setwise setup in Zhuang et al. (2024),
we utilize the Flan-T5 (Chung et al., 2024) as the
backbone for most of the LLM-based rerankers
except for IRL (Chen et al., 2025a) and Tour-
rank (Chen et al., 2025b) as these two methods
require a longer context than Flan-T5’s input limita-
tion allows. For IRL and Tourrank, we employ the
Llama-3.1-8B-Instruct’ model. To compare our es-
timated FLOPs with those reported by open-source
packages, we also include Qwen2.5 (Yang et al.,
2025) (3B3, 7B?, 14B!%), which implements group
query attention instead of multi-head attention. For
all LLM-based rerankers, we report their perfor-
mance using the new metrics on the TREC-DL19,
TREC-DL20 (Craswell et al., 2020), and two other
datasets from BEIR (Thakur et al., 2021). The
top 100 documents are retrieved using Pyserini’s
BM25 (Lin et al., 2021).

We utilize DeepSpeed’s FLOPs profiler (Rasley
et al., 2020) and calflops to compute the measured
FLOPs and get identical results, so we only report
one kind of measured FLOPs. We also present the
FLOPs of BM25 in Appendix A.1.

5 Experimental Results and Analysis

We conduct extensive experiments to study four
key research questions. Our results and analysis
are as follows:

7https://huggingface.co/meta—llama/Llama—3.
1-8B-Instruct

8https://huggingface.co/Qwen/Quwen?2.
5-3B-Instruct

9https://huggingface.co/Qwen/QwenZ.
5-7B-Instruct

10https://huggingface.co/Qwen/QwenZ.
5-14B-Instruct

Q1: Can E2R-FLOPs overcome the limita-
tions of existing efficiency proxies? Existing
efficiency proxies for LLM-based rerankers, such
as latency (Jin et al., 2025), number of LLM calls
(i.e.,, forward passes) (Zhuang et al., 2024), and
token counts (Chen et al., 2025b), are weak surro-
gates for actual compute. Latency is confounded by
hardware, parallelism, etc.; the same algorithm can
appear faster or slower across different platforms.
LILM-call counts discard model size and sequence
length, for instance, one call on a 70B model is or-
ders of magnitude more expensive than one call on
a 3B model, yet both count as “1.” Token counts ig-
nore model size and the prefill-decode asymmetry
(quadratic attention during prefill versus near-linear
growth during decoding), so equal token totals can
yield very different FLOPs.

These limitations surface empirically in Table 2.
With Flan-T5-large on DL19, pointwise.yes_no
and pointwise.qglm each use 100 calls but dif-
fer in RPP (72.67 vs. 61.89). Fewer calls do
not imply proportional gains. On DL19 (Flan-
T5-large), setwise.heapsort (125.4 calls) vs
setwise.bubblesort (460.5 calls) yields RPP
26.8 vs 7.45. Holding the call count at 100,
scaling the backbone from Flan-T5-large to -xl1
to -xxI collapses RPP/QPP (72.67—18.06—4.50;
111.1—-27.78—6.99), reflecting the sharp FLOPs
growth from wider/deeper attention. Similar pat-
terns are observed across different LLMs and

datasets (Appendix A.2)
FLOPs, in contrast, 1is an intrinsic,
hardware-agnostic measure of work. Nor-

malizing reranking metrics and throughput by
FLOPs (RPP/QPP) enables fair, interpretable
comparisons across different LLMs. Additionally,
it aligns with trends in measured FLOPs and
latency (Section 3, Figure 1, Figure 2).

Q2: What are the LLM-based reranker per-
formances under the E2R-FLOPS? Table 2
reports the efficiency—effectiveness trade-offs of a
broad set of LLM-based rerankers under the pro-
posed RPP and QPP metrics. Overall, these sys-
tems perform poorly once computation is taken into
account. Across all LLMs and methods, TourRank
with Llama-3.1-8B-Instruct achieves the highest
NDCG on both DL19 and DL20, albeit at the cost
of almost the lowest RPP and QPP. Beyond this
result, several additional insights emerge.
Pointwise methods dominate the RPP and
QPP metrics across different LLMs and datasets.

2786

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct

| TREC DL 2019 | TREC DL 2020

| Methods | NDCG #LLM In Out #FLOPs RPP QPP | NDCG #LLM In Out #FLOPs RPP QPP

| BM25 | 506 - - - - - -] 480 - - - - - -
pointwise.qlm 557 100 152.12 0 0.009 61.89 111.1* .567 100 152.85 0 0.009 63.0 111.1*
pointwise.yes_no .654 100 161.12 0 0.009 72.67¢ 111.1* .615 100 161.85 0 0.009 68.33* 111.1*

) listwise.generation .561 245 486.21 10.54 0.076 7.38 13.16 547 245 488.28 10.04 0.076 7.2 13.16
3 | listwise.likelihood .669 245 38449 0 0.058 11.53 17.24 .626 245 388.61 0 0.058 10.79 17.24
vy | pairwise.allpair .666 9900 304.48 5 1.865 0.36 0.536 622 9900 304.47 5 1.865 0.33 0.536
g pairwise.heapsort .657 230.3 455.72 10 0.066 9.95 15.15 619 2268 459.62 10 0.066 9.38 15.15
) pairwise.bubblesort 636 8442 451.77 10 0.242 2.63 4.132 589 778.5 459.03 10 0.227 2.59 4405
setwise.heapsort 670 1254 322.65 5 0.025 26.80 40.0 618 1242 3255 5 0.025 24.72 40.0
setwise.bubblesort 678 460.5 320.90 5 0.091 7.45 10.99 624 4574 325.63 5 0.092 6.78 10.87
pointwise.qlm 542 100 152.12 0 0.034 1594 2941 542 100 152.85 0 0.034 1594 2941
pointwise.yes_no .650 100 161.12 0 0.036 18.06 27.78 .636 100 161.85 0 0.036 17.67 27.78
listwise.generation .569 245 486.38 11.87 0.282 2.02 3.546 547 245 489.04 1149 0.283 1.93 3.534

E listwise.likelihood .689 245 385.49 0 0.216 3.19 4.629 672 245 388.97 0 0.218 3.08 4.587
‘; pairwise.allpair 7139900 298.33 5 6.826 0.10 0.146 682 9900 297.93 5 6.817 0.10 0.147
E pairwise.heapsort 705 2419 455.26 10 0.259 2.72 3.861 692 2443 455.76 10 0.262 2.64 3.817
pairwise.bubblesort .683 8869 451.42 10 0.942 0.73 1.061 662 8639 457.18 10 0.930 0.71 1.075
setwise.heapsort 693 129.5 321.74 5 0.096 7.22 10.42 678 127.8 325.27 5 0.096 7.06 10.42
setwise.bubblesort 705 4469 33553 5 0.346 2.04 2.890 676 4635 326.32 5 0.349 1.94 2865
pointwise.qlm .506 100 152.12 0 0.135 3.75 7.407 492 100 152.85 0 0.136 362 7352
pointwise.yes_no .644 100 161.12 0 0.143 4.50 6.993 632 100 161.85 0 0.144 4.39 6.944

_ | listwise.generation .662 245 487.08 11.53 1.105 0.60 0.904 .637 245 489.60 11.05 1.110 0.57 0.901
; listwise.likelihood 701 245 385.87 0 0.851 0.82 1.175 .690 245 389.73 0 0.860 0.8 1.162
‘2 | pairwise.allpair 699 9900 282.32 5 25510 0.03 0.039 688 9900 282.32 5 25510 0.03 0.039
E pairwise.heapsort 708 2394 456.98 10 1.010 0.70 0.990 699 2405 458.26 10 1.017 0.69 0.983
= pairwise.bubblesort 679 870.5 453.06 10 3.642 0.19 0275 681 8429 459.56 10 3.577 0.19 0279
setwise.heapsort 706 130.1 32343 5 0.383 1.84 2.610 .688 128.1 325.01 5 0.379 1.82 2.638
setwise.bubblesort 11 468.3 321.94 5 1.375 0.52 0.727 .686 467.9 326.37 5 1.393 0.49 0.717

— | IRL .649 2 4469.12 0 0.096 6.76 10.42 .639 2 4556.31 0.0 0.098 6.52 10.20
3 | Tourrank J57* 130 1651.62 27091 2.274 0.33 0.440 77 130 1659.93 26.79 2.284 0.34 0438

Table 2: Results on TREC DL. All the methods re-rank the top 100 documents retrieved by BM25. #LLM represents the average
number of LLM calls per query for reranking 100 documents. “In” and “Out” denote the average input tokens and output tokens
per LLM call. #FLOPs is the estimated FLOPs per query for reranking 100 documents. Bold value is the best within each LLM,
and starred value is the best across different LLMs. “L3.1” represent Llama-3.1-8B-Instruct model. We report NDCG@10 for

the NDCG metric.

pointwise.yes_no of Flan-T5-large yields
the highest RPP of 72.67 (DL19) and 68.3
(DL20) and achieves the maximum QPP of 111
queries/PetoFLOPs. The variant pointwise.qglm
obtains a similar QPP metric but 5~10 worse
RPP points. These methods obtain 10% to 30%
relative NDCG gains over the baseline BM25 with
negligible FLOPs consumption compared with
other LLM-based rerankers.

Scaling up hurts efficiency far more than it helps
effectiveness. Most LLM-based rerankers gain
NDCG when moving from Flan-T5-large to Flan-
T5-x1, yet see only marginal improvement from x1
to xxl. For example, setwise. Heapsort rises from
0.670 to 0.693 and then to 0.706 in NDCG. Mean-
while, efficiency collapses: RPP plunges from 26.8
to 7.22 and then to 1.84, while QPP falls from 40.0
to 10.42 and finally to 2.61. In short, scaling boosts
quality slowly but sacrifices RPP and QPP on a
much larger scale.

Pairwise and listwise methods are intensely
FLOP-hungry. Allpair sorting, although it delivers
the highest NDCG on Flan-T5-x1 (0.713), issues
9,900 LLM calls per query; its RPP collapses to

In
o

lel3

el2

Qwen-3B / A T5-large ‘/
® Qwen-7B / e T5-xI
0.8 o Qwen-14B / e T5-xxI
" ® Qwen-moe / 3 //
a a
Q0.6 / o
z / z 7
foa 7 & '
1 p 2
0.2 ” / /’
/, o
0.2 0.4 0.6 0.8 1.0 1.2) 1 2 3 4 5
Measured FLOPs lel3 Measured FLOPs lel2
(a) Decoder (b) Encoder-Decoder

Figure 1: Linear trends between estimated and measured
FLOPs for decoder (left) and encoder-decoder (right) models
of various sizes on DL19. The same is observed for the DL20
dataset.

around 0.10, and it processes barely 0.15 queries
per petaFLOPs, making large-scale deployment im-
practical. Heapsort- and bubblesort-based variants
cut the number of calls by roughly 90%, yet re-
main about orders of magnitude less efficient than
pointwise methods on both RPP and QPP.

Q3: Do the estimated FLOPs reflect the mea-
sured FLOPs? Figure 1 shows the relationship
between the estimated and measured FLOPs on

2787

DL19 for models of various sizes. The comparison
contains both decoder-only and encoder-decoder
architectures, providing a comprehensive view of
scaling trends. In both cases, the estimated and
measured FLOP counts scale with the model size,
reflecting the expected rise in computational cost
with increasing model parameters. The linear pat-
tern across models illustrates that the estimated
FLOPs correlate linearly with the measured FLOPs
and are consistent across model families and archi-
tectural types, suggesting that our FLOPs estima-
tor is accurate and reliable. The close alignment
between the two quantities provides empirical jus-
tification for the FLOPs estimator described in Sec-
tion 3, affirming its reliability as a proxy when real
measurements are unavailable.

Q4: How does latency relate to the FLOP
counts? Figure 2 shows the relationship between
latency and FLOP counts for two representative
models: Qwen-7B (a decoder-only architecture)
and Flan-T5-XXL (an encoder-decoder architec-
ture), evaluated on the DL19 dataset. For both
models, we observe that latency increases in ac-
cordance with the number of FLOPs. Importantly,
the estimated FLOP counts exhibit a correlation
with latency that closely mirrors the relationship
between measured FLOP counts and latency. The
Pearson correlation coefficients between latency
and estimated FLOP counts are 0.88 for Qwen-7B
and 0.94 for Flan-T5-XXL. This alignment indi-
cates that our FLOPs estimator approximates com-
putational cost accurately and can serve as a reli-
able predictor of real-world latency trends. This
means that the estimator can be used to anticipate
inference time without requiring direct hardware
profiling, which is particularly useful when compar-
ing models in a platform-agnostic setting or during
early-stage architecture design.

QS5: What is the relationship between prompt
length and FLOPs? Figure 3 shows the rela-
tionship between prompt length and FLOPs. As
expected, both the estimated and actual FLOPs
increase with longer prompts, reflecting the greater
computational cost required to process more input
tokens. Notably, the estimated FLOPs exhibit
a strong correlation with prompt length, which
closely mirrors the pattern observed in the actual
FLOPs. The Pearson correlation coefficient
between prompt length and FLOP counts is 1. As
the prompt becomes longer, the estimator reliably
tracks the resulting increase in computation,

lel2 el2
6.6

Measured 5.2 Measured
6.0/ @ Estimated a8l © Estimated
5.4
4.4
4.8 4.0 .‘r.
i . oo
£ F A e W
g2 ’y— 936 ik"r'\ —
“3.6 '. b 32 £
° -
3.0 .ir 2.8 » b
24 4, 2.4 !
B »
ot 2.0{
1.8{ % .
7 30 33 36 39 42 45 48 00 110 120 130 140 150 160 170 180

Time (ms) Time (ms)

(a) Decoder (b) Encoder-Decoder

Figure 2: Latency in milliseconds increases with FLOPs
on Qwen-7B (left) and Flan-T5-XXL (right). The Pearson
correlation coefficients between latency and estimated FLOP
counts are 0.88 for Qwen-7B and 0.94 for Flan-T5-XXL.

consistent with what is observed empirically.
This result provides additional validation for the
robustness of our FLOPs estimator, demonstrating
its ability to respond to changes in input length in
a manner consistent with measured FLOPs.

lel2 1.41€12

Measured Measured
6/ e Estimated 1.2 e Estimated
5 //
" »1.0
a / a /
Q4 Z S /
= ;e =
w / Lo.s /
3 S /
Vg 0.6 P
px -
2, .1
. 0.4 "
200 250 300 350 400 450 50! 200 250 300 350 400 450

Input Length

(b) Encoder-Decoder

Input Length

(a) Decoder

Figure 3: FLOPs increases with prompt length for Qwen-7B
(left) and Flan-T5-XL (right) on the DL19 dataset.

6 Conclusion and Future Works

Due to the limitations of existing metrics in evaluat-
ing the efficiency-effectiveness tradeoff of large lan-
guage models as rerankers, we propose two metrics,
RPP and QPP, to quantify the model performance.
In addition, we provide a calculator based on a
closed-form and interpretable formula to compute
the FLOPs, and validate this estimation through
experiments on existing decoder-only and encoder-
decoder model architectures. The estimated FLOP
count exhibits a strong linear correlation with the
actual measured values, allowing it to approximate
real-world computational cost even without model
execution. Future work includes conducting a lin-
ear regression between the measured and estimated
FLOP counts to refine our estimation and adapting
to more advanced architectures.

2788

Limitations

The FLOP estimation relies on model architec-
ture specifications and assumes consistent imple-
mentation across different frameworks, which may
not hold in practice due to library-level optimiza-
tions or kernel differences. Although the estimator
shows strong linear correlation with actual FLOP
measurements, the approximation may be less accu-
rate for models with more advanced architectures
in the future. While FLOPs offer a more stable
proxy than latency or token counts, they do not cap-
ture other real-world constraints such as memory
bandwidth, energy consumption, or inference-time
variability under dynamic system loads.

References

Abdelrahman Abdallah, Jamshid Mozafari, Bhawna
Piryani, and Adam Jatowt. 2025. ASRank: Zero-
shot re-ranking with answer scent for document re-
trieval. In Findings of the Association for Computa-
tional Linguistics: NAACL 2025, pages 2950-2970,
Albuquerque, New Mexico. Association for Compu-
tational Linguistics.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil-
lican, David Silver, Slav Petrov, Melvin Johnson,
Ioannis Antonoglou, and et al. 2023. Gemini: A
family of highly capable multimodal models. CoRR,
abs/2312.11805.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877-1901.

Shijie Chen, Bernal Jimenez Gutierrez, and Yu Su.
2025a. Attention in large language models yields
efficient zero-shot re-rankers. In The Thirteenth In-
ternational Conference on Learning Representations,
ICLR 2025, Singapore, April 24-28, 2025. OpenRe-
view.net.

Yiqun Chen, Qi Liu, Yi Zhang, Weiwei Sun, Xinyu Ma,
Wei Yang, Daiting Shi, Jiaxin Mao, and Dawei Yin.
2025b. Tourrank: Utilizing large language models
for documents ranking with a tournament-inspired
strategy. In Proceedings of the ACM on Web Confer-
ence 2025, WWW 2025, Sydney, NSW, Australia, 28
April 2025- 2 May 2025, pages 1638—-1652. ACM.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert
Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex

Castro-Ros, Marie Pellat, Kevin Robinson, and 16
others. 2024. Scaling instruction-finetuned language
models. J. Mach. Learn. Res., 25:70:1-70:53.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel
Campos, and Ellen M Voorhees. 2020. Overview
of the trec 2019 deep learning track. arXiv preprint
arXiv:2003.07820.

Lukas Gienapp, Maik Frobe, Matthias Hagen, and Mar-
tin Potthast. 2022. Sparse pairwise re-ranking with
pre-trained transformers. In ICTIR ’22: The 2022
ACM SIGIR International Conference on the Theory
of Information Retrieval, Madrid, Spain, July 11 - 12,
2022, pages 72-80. ACM.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Can Jin, Hongwu Peng, Anxiang Zhang, Nuo Chen, Ji-
ahui Zhao, Xi Xie, Kuangzheng Li, Shuya Feng, Kai
Zhong, Caiwen Ding, and Dimitris N. Metaxas. 2025.
Rankflow: A multi-role collaborative reranking work-
flow utilizing large language models. In Companion
Proceedings of the ACM on Web Conference 2025,
WWW 2025, Sydney, NSW, Australia, 28 April 2025 -
2 May 2025, pages 2484-2493. ACM.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. CoRR,
abs/2001.08361.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, and 31 others. 2023. Holistic evaluation of
language models. Trans. Mach. Learn. Res., 2023.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A python toolkit for reproducible
information retrieval research with sparse and dense
representations. In Proceedings of the 44th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 2356—
2362.

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and
Jimmy Lin. 2023. Zero-shot listwise document
reranking with a large language model. CoRR,
abs/2305.02156.

Aliaksei Mikhailiuk, Clifford Wilmot, Maria Pérez-
Ortiz, Dingcheng Yue, and Rafal K. Mantiuk. 2020.
Active sampling for pairwise comparisons via approx-
imate message passing and information gain maxi-
mization. In 25th International Conference on Pat-
tern Recognition, ICPR 2020, Virtual Event / Milan,
Italy, January 10-15, 2021, pages 2559-2566. IEEE.

2789

https://doi.org/10.18653/v1/2025.findings-naacl.161
https://doi.org/10.18653/v1/2025.findings-naacl.161
https://doi.org/10.18653/v1/2025.findings-naacl.161
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://openreview.net/forum?id=yzloNYH3QN
https://openreview.net/forum?id=yzloNYH3QN
https://doi.org/10.1145/3696410.3714863
https://doi.org/10.1145/3696410.3714863
https://doi.org/10.1145/3696410.3714863
https://jmlr.org/papers/v25/23-0870.html
https://jmlr.org/papers/v25/23-0870.html
https://doi.org/10.1145/3539813.3545140
https://doi.org/10.1145/3539813.3545140
https://doi.org/10.1145/3701716.3717575
https://doi.org/10.1145/3701716.3717575
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=iO4LZibEqW
https://openreview.net/forum?id=iO4LZibEqW
https://doi.org/10.48550/ARXIV.2305.02156
https://doi.org/10.48550/ARXIV.2305.02156
https://doi.org/10.1109/ICPR48806.2021.9412676
https://doi.org/10.1109/ICPR48806.2021.9412676
https://doi.org/10.1109/ICPR48806.2021.9412676

Rodrigo Nogueira, Zhiying Jiang, Ronak Pradeep, and
Jimmy Lin. 2020. Document ranking with a pre-
trained sequence-to-sequence model. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, Online Event, 16-20 November 2020,
volume EMNLP 2020 of Findings of ACL, pages
708-718. Association for Computational Linguistics.

Zhiyuan Peng, Xuyang Wu, Qifan Wang, Sravanthi Ra-
janala, and Yi Fang. 2024. Q-PEFT: query-dependent
parameter efficient fine-tuning for text reranking with
large language models. CoRR, abs/2404.04522.

Jay M. Ponte and W. Bruce Croft. 2017. A language
modeling approach to information retrieval. SIGIR
Forum, 51(2):202-208.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy
Lin. 2023. Rankvicuna: Zero-shot listwise document
reranking with open-source large language models.
CoRR, abs/2309.15088.

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang,
Junru Wu, Le Yan, Jiaming Shen, Tianqi Liu, Jialu
Liu, Donald Metzler, Xuanhui Wang, and Michael
Bendersky. 2024. Large language models are effec-
tive text rankers with pairwise ranking prompting. In
Findings of the Association for Computational Lin-
guistics: NAACL 2024, Mexico City, Mexico, June
16-21, 2024, pages 1504—-1518. Association for Com-
putational Linguistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, and 1 others. 2019.
Language models are unsupervised multitask learn-
ers. OpenAl blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1-140:67.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. Deepspeed: System opti-
mizations enable training deep learning models with
over 100 billion parameters. In KDD *20: The 26th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, Virtual Event, CA, USA, August
23-27, 2020, pages 3505-3506. ACM.

Stephen Robertson, Hugo Zaragoza, and 1 others. 2009.
The probabilistic relevance framework: Bm25 and
beyond. Foundations and Trends® in Information
Retrieval, 3(4):333-389.

Rulin Shao, Rui Qiao, Varsha Kishore, Niklas Muen-
nighoff, Xi Victoria Lin, Daniela Rus, Bryan
Kian Hsiang Low, Sewon Min, Wen-tau Yih,
Pang Wei Koh, and Luke Zettlemoyer. 2025. Rea-
sonir: Training retrievers for reasoning tasks. CoRR,
abs/2504.20595.

Hongjin Su, Howard Yen, Mengzhou Xia, Weijia Shi,
Niklas Muennighoff, Han-yu Wang, Haisu Liu, Quan
Shi, Zachary S. Siegel, Michael Tang, Ruoxi Sun,

Jinsung Yoon, Sercan 0. Arik, Danqgi Chen, and
Tao Yu. 2025. BRIGHT: A realistic and challeng-
ing benchmark for reasoning-intensive retrieval. In
The Thirteenth International Conference on Learning
Representations, ICLR 2025, Singapore, April 24-28,
2025. OpenReview.net.

Rhea Sukthanker, Arber Zela, Benedikt Staffler, Aaron
Klein, Lennart Purucker, Jorg K. H. Franke, and
Frank Hutter. 2024. Hw-gpt-bench: Hardware-aware
architecture benchmark for language models. In Ad-
vances in Neural Information Processing Systems
38: Annual Conference on Neural Information Pro-
cessing Systems 2024, NeurIPS 2024, Vancouver, BC,
Canada, December 10 - 15, 2024.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaigiang
Wang, Pengjie Ren, Zhumin Chen, Dawei Yin, and
Zhaochun Ren. 2023. Is chatgpt good at search?
investigating large language models as re-ranking
agents. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 14918-14937. Association for Computational
Linguistics.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogenous benchmark for zero-shot evalu-

ation of information retrieval models. CoRR,
abs/2104.08663.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, and 1 others.
2025. Qwen3 technical report. arXiv preprint
arXiv:2505.09388.

Le Zhang, Bo Wang, Xipeng Qiu, Siva Reddy, and
Aishwarya Agrawal. 2025. Rearank: Reasoning
re-ranking agent via reinforcement learning. arXiv
preprint arXiv:2505.20046.

Shengyao Zhuang, Hang Li, and Guido Zuccon. 2021.
Deep query likelihood model for information re-
trieval. In Advances in Information Retrieval - 43rd
European Conference on IR Research, ECIR 2021,
Virtual Event, March 28 - April 1, 2021, Proceedings,
Part 11, volume 12657 of Lecture Notes in Computer
Science, pages 463-470. Springer.

Shengyao Zhuang, Honglei Zhuang, Bevan Koopman,
and Guido Zuccon. 2024. A setwise approach for
effective and highly efficient zero-shot ranking with
large language models. In Proceedings of the 47th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
2024, Washington DC, USA, July 14-18, 2024, pages
38-47. ACM.

Shengyao Zhuang and Guido Zuccon. 2021. TILDE:
term independent likelihood model for passage re-
ranking. In SIGIR ’21: The 44th International ACM
SIGIR Conference on Research and Development in
Information Retrieval, Virtual Event, Canada, July
11-15, 2021, pages 1483-1492. ACM.

2790

https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.63
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.63
https://doi.org/10.48550/ARXIV.2404.04522
https://doi.org/10.48550/ARXIV.2404.04522
https://doi.org/10.48550/ARXIV.2404.04522
https://doi.org/10.1145/3130348.3130368
https://doi.org/10.1145/3130348.3130368
https://doi.org/10.48550/ARXIV.2309.15088
https://doi.org/10.48550/ARXIV.2309.15088
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.97
https://doi.org/10.18653/V1/2024.FINDINGS-NAACL.97
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.48550/ARXIV.2504.20595
https://doi.org/10.48550/ARXIV.2504.20595
https://openreview.net/forum?id=ykuc5q381b
https://openreview.net/forum?id=ykuc5q381b
http://papers.nips.cc/paper_files/paper/2024/hash/6ffdbf064df51857eb802a904aaaba63-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/6ffdbf064df51857eb802a904aaaba63-Abstract-Datasets_and_Benchmarks_Track.html
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.923
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.923
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.923
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://arxiv.org/abs/2104.08663
https://doi.org/10.1007/978-3-030-72240-1_49
https://doi.org/10.1007/978-3-030-72240-1_49
https://doi.org/10.1145/3626772.3657813
https://doi.org/10.1145/3626772.3657813
https://doi.org/10.1145/3626772.3657813
https://doi.org/10.1145/3404835.3462922
https://doi.org/10.1145/3404835.3462922
https://doi.org/10.1145/3404835.3462922

| TREC-COVID | Robust04
Methods ‘ NDCG #LLM In Out #FLOPs RPP QPP ‘ NDCG #LLM In Out #FLOPs RPP QPP
BM25 595 - - - - - - 407 - - - - - -
pointwise.qlm 0.664 100 160.78 0 0010 6640 100.00 | 0.439 100 163.23 0 0.010 4390 100.00
pointwise.yes_no | 0.664 100 169.78 0 0010 6640 100.00 | 0.456 100 172.23 0 0.010 4560 100.00
g | listwise.generation | 0.692 245 51155 515 0.080 12.50 | 0.441 245 51239 499 0.080 551 12.50
& | listwise.likelihood | 0.756 245 475.11 0 0073 1036 13.70 | 0.475 245 476.64 0 0073 651 1370
vy | pairwise.heapsort | 0.761 241.32 630.77 10.00 0.099 7.69 10.10 | 0.402 18236 63495 10.00 0.075 536 1333
g | pairwise.bubblesort | 0.714 880.18 630.84 10.00 0361 198 277 | 0439 52848 63406 10.00 0218 2.01 4.59
T | setwise.heapsort 0.768 129.62 44959 500 0.037 2076 27.03 | 0.462 120.84 45273 500 0.034 1359 2941
setwise.bubblesort | 0.761 46842 45022 500 0.133 572 7.52 | 0497 46236 45286 500 0.132 377 7158
pointwise.qlm 0.679 100 160.78 0 0036 1886 27.78 | 0.427 100 163.23 0 0037 1154 27.03
pointwise.yes_no | 0.698 100 169.78 0 0038 1837 2632 0.479 100 172.23 0 0039 1228 2564
listwise.generation | 0.65 245 51144 508 0293 222 341 | 0475 245 51199 493 0293 162 341
E listwise.likelihood | 0.736 245 474.00 0 0268 3.73 | 0.526 245 476.40 0 0209 19 3.72
T | pairwise.heapsort | 0778 25228 629.13 10.00 0377 206 265 | 055 241.30 63546 1000 0364 151 275
£ | pairwise.bubblesort | 0.763 914.34 62855 10.00 1365 0.56 073 | 0553 771.66 634.93 10.00 1164 048 0386
setwise.heapsort 0.757 1358 44953 500 0.142 7.04 | 052 12938 45273 500 0.136 382 735
setwise.bubblesort | 0.756 468.96 44938 500 0491 154 2.04 | 0537 45244 45286 500 0477 113 210
pointwise.qlm 0.707 100 160.78 0 0143 494 699] 044 100 163.23 0 0146 301 685
pointwise.yes_no | 0.691 100 169.78 0 0152 455 658 0515 100 172.23 0 0154 334 649
_ | listwise.generation | 0.664 245 51144 519 1147 058 0.87 | 0.495 245 51198 501 1.148 043 0.87
% | listwise.likelihood | 0.749 245 47473 0 1052 0.95 | 0.518 245 47643 0 1056 049 095
‘Q | pairwise.heapsort | 0.738 243.08 629.60 10.00 1416 052 071 | 0.543 244 63542 1000 1434 038 0.70
& | pairwise.bubblesort | 0.733 887.98 630.01 10.00 5175 0.14 0.9 | 055 85926 63505 10.00 5049 0.11 020
B | setwise.heapsort 0.752 135.66 44948 500 0.557 135 1.80 | 0513 13212 45272 500 0546 094 183
setwise.bubblesort | 0.768 470.88 449.89 500 1935 040 0.52 | 0.534 45623 452.86 500 1887 028 0.53

Table 3: Results on TREC-COVID and Robust04. All the methods re-rank BM25 top 100 documents. #LLM represents average
number of LLM call per query for reranking 100 documents. “In” and “Out” denote the average input tokens and output tokens
per LLM call. #FLOPs is the estimated FLOPs per query for reranking 100 documents. Bold value is the best within each LLM
and stared value is the best across different LLMs. “L3.1” represent Llama-3.1-8B-Instruct model. We report NDCG @10 for the

NDCG metric.

A Appendix

A1l BM25
i=1 f(gi, D) + k (1 —b+ bavgdl)

BM25 (Robertson et al., 2009) computes a rele-
vance score between a query and a document with
Equation 16 where IDF denotes the inverse docu-
ment frequency, f(g;, D) represents the frequency
of the i*" query token in the document, |D| is the
length of the document, avgdl is the average docu-
ment length in the corpus, and k£ and b are hyperpa-
rameters. Assuming that the term frequencies and
the inverse document frequencies are precomputed
and do not contribute to the runtime FLOP count,
the upper bound on the FLOPs required for BM25
scoring can be estimated as:

C(BM25)=11-Lg - Np 17)
where L is the length of the query and Np is the
number of documents, which is 100 for reranking
top-100 documents in our experiments. This repre-
sents an upper bound because it assumes that every
query token appears in every document. In cases

where a query token does not appear in a docu-
ment, the corresponding numerator becomes zero,
resulting in zero FLOPs for that term-document
pair instead of 11.

A.2 BEIR results

We conduct extra experiments on two more
datasets from BEIR: TREC-COVID and Robust04
to strengthen generalizability. The results are
shown in Table 3. We observe the same effi-
ciency—effectiveness patterns as in Table 2. Point-
wise rerankers consistently deliver the strongest
RPP and the highest QPP, whereas stronger models
get the better performance at the cost of RPP
and QPP. On TREC-COVID (Flan-T5-large),
setwise.heapsort vs. setwise.bubblesort
yields RPP 20.76 vs. 5.72 (QPP 27.03 vs. 7.52); on
Robust04 the gap is 13.59 vs. 3.77 (29.41 vs. 7.58).
Scaling the backbone collapses FLOPs-normalized
efficiency: pointwise.yes_no QPP falls
100.00—26.32—6.58 on TREC-COVID (RPP
66.40—18.37—4.55) and 100.00—25.64—6.49
on Robust04 (RPP 45.60—12.28—3.34), while
NDCG gains remain modest. For both Table 2
and Table 3, setwise.heapsort achieves top-tier
performance while maintaining good efficiency.

2791

