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Abstract

Structured information extraction from unstruc-
tured text is critical for emerging Software 3.0
systems where LLM agents autonomously in-
teract with APIs and tools. Recent approaches
apply large language models directly to ex-
traction tasks using existing JSON schemas,
often with constraint decoding or reinforce-
ment learning approaches to ensure syntactic
validity, but treat JSON schemas as static con-
tracts designed for human developers, lead-
ing to suboptimal extraction performance, fre-
quent hallucinations, and unreliable agent be-
havior when schemas contain ambiguous or
incomplete specifications. We recognize that
JSON schemas themselves are a form of nat-
ural language understanding contract that en-
codes rules, relationships, and expectations
about data structure contracts that LLMs should
be able to both interpret and systematically im-
prove. Consequently, we develop PARSE (Pa-
rameter Automated Refinement and Schema
Extraction), a novel system with two syner-
gistic components: ARCHITECT, which au-
tonomously optimizes JSON schemas for LLM
consumption while maintaining backward com-
patibility through RELAY (an integrated code
generation system), and SCOPE, which im-
plements reflection-based extraction with com-
bined static and LLM-based guardrails. We
evaluate PARSE qualitatively and quantita-
tively on three datasets including Schema-
Guided Dialogue (SGD), Structured Web Data
Extraction (SWDE), and internal retail conver-
sation data, and find that it achieves up to 64.7%
improvement in extraction accuracy on SWDE
with combined framework improvements reach-
ing 10% across models, while reducing extrac-
tion errors by 92% within the first retry and and
maintaining practical latency.

1 Introduction

The emergence of Software 3.0 represents a funda-
mental shift from static, form-based applications

to dynamic systems where Large Language Model
(LLM) agents autonomously interact with APIs
and tools to accomplish complex tasks. In this
new paradigm, reliable structured information ex-
traction from unstructured text becomes mission-
critical—agents must accurately parse natural lan-
guage requests, extract precise parameters, and in-
voke the correct tools with valid arguments. Unlike
traditional software where human developers han-
dle data transformation complexity, LLM agents
must perform this extraction reliably at scale, mak-
ing the difference between a helpful assistant and a
system that fails catastrophically in production.

What makes reliable structured extraction so
challenging for LLM agents? Current approaches
face a fundamental mismatch: JSON schemas that
define expected output structures were designed
as contracts between human developers and static
systems, not as instructions for LLM agents. These
schemas often contain ambiguous descriptions, in-
complete validation rules, and structural choices
optimized for human readability rather than ma-
chine comprehension. When LLM agents attempt
extraction using these human-centric schemas, they
struggle with unclear entity boundaries, conflicting
requirements, and insufficient context about field
relationships, leading to frequent hallucinations
and schema non-adherence.

Existing work has focused primarily on forcing
LLMs to conform to existing schema structures
through constraint decoding, reinforcement learn-
ing, and self-correction mechanisms. However,
these approaches treat schemas as immutable con-
tracts rather than optimizing the structures them-
selves for LLM comprehension.

We observe that JSON schemas are themselves
a form of natural language understanding con-
tract—they encode rules, relationships, and ex-
pectations using descriptive text and validation
logic that LL.Ms should be able to both interpret
and systematically improve. Rather than viewing
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Figure 1: Overview of PARSE framework showing schema optimization and extraction pipeline. The system
takes an unoptimized schema and input text (left), processes it through ARCHITECT for schema refinement and
SCOPE for extraction (center), producing accurate structured output (right). The diagram highlights how PARSE
outperforms other information extraction agents by implementing robust schema optimization and validation.

Numbers indicate the sequential flow of operations.

schemas as static artifacts, we can treat them as
evolving interfaces optimized specifically for LLM
consumption while maintaining backward compati-
bility with existing systems.

We present PARSE (Parameter Automated Re-
finement and Schema Extraction), a comprehen-
sive system addressing both sides of the structured
extraction challenge through two synergistic com-
ponents. Together, these components create a vir-
tuous cycle where schema optimization improves
extraction performance, and extraction errors in-
form further schema refinement.

Our main contributions include: (1) ARCHI-
TECT (Automated Refinement and Conversion
Handler for Information Transformation and
EnhanCemenT): A novel automated schema opti-
mization framework that iteratively refines JSON
schemas for LLM consumption by analyzing ex-
traction performance, adding detailed entity de-
scriptions and validation rules, and restructuring
schemas for clearer representation while maintain-
ing backward compatibility through RELAY, our
automated transformation code generator. AR-
CHITECT includes RELAY (Reverse Engineer-
ing Layer for Automated Yoking), which auto-
matically generates Python transformation code
to maintain compatibility with original schema
formats. (2) SCOPE (Schema Compliant Or-
ganized Pattern Extractor): A comprehensive

reflection-based extraction framework that com-
bines static and LLM-based guardrails to enable
systematic error identification and correction, en-
suring reliable structured information extraction
through sophisticated validation mechanisms. Our
evaluation demonstrates that PARSE achieves up
to 64.7% improvement in extraction accuracy com-
pared to state-of-the-art baselines on SWDE, with
combined framework improvements reaching 10%
across SGD, SWDE, and internal retail conversa-
tion datasets, representing a paradigm shift toward
treating structured extraction as a co-optimization
problem between schema design and extraction
mechanisms—enabling the reliable LLM agent sys-
tems that Software 3.0 applications demand.

2 Related Work

Our work builds upon and extends several key re-
search areas in information extraction, schema op-
timization, and LLM applications. This section
provides a comprehensive review of relevant work
across these domains.

LLM-based Structured Extraction and Schema
Compliance: Large Language Models have trans-
formed information extraction from discriminative
to generative approaches that produce structured
outputs directly from unstructured text (Zhang
et al., 2025). Two-stage frameworks combining
general LLMs with domain-specific refinement
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show promise for complex extraction tasks (Zhang
et al., 2024), but current methods face significant
limitations. LLMs struggle with complex schemas,
exhibiting substantial performance gaps compared
to traditional methods, particularly for nested entity
recognition (Deng et al., 2022; Han et al., 2023).
Common error patterns include missing spans, in-
correct types, and schema non-adherence, with
GPT-4 showing an 11.97% invalid response rate for
complex extraction tasks (Han et al., 2023). Tradi-
tional JSON generation approaches have evolved
from simple prompting to sophisticated constraint
enforcement. Constraint decoding methods like
Outlines guarantee schema compliance through
grammar-guided generation but sometimes sacri-
fice output quality (Lu et al., 2025a; Agarwal et al.,
2025). Reinforcement learning approaches achieve
high valid JSON rates (98.7% vs. 82.3% base-
line) by using schemas as training signals (Agar-
wal et al., 2025), while the "Thought of Structure"
paradigm shows substantial improvements (44.89%
gain) by encouraging structural reasoning before
generation (Lu et al., 2025b). However, these ap-
proaches focus on syntactic validity rather than
optimizing schemas for LLM comprehension.
Self-Correction and Agent Frameworks: Self-
correction techniques enhance LLM reliabil-
ity through Chain-of-Thought reasoning, self-
verification, and iterative refinement mecha-
nisms (Kumar et al., 2025). The Chain of Self-
Correction framework embeds correction as an
inherent ability through iterative generation and
verification (Gao et al., 2024). Runtime guardrail
mechanisms like AgentSpec provide lightweight
constraint enforcement through domain-specific
languages (Wang et al., 2025), but existing meth-
ods primarily target general text generation rather
than structured data extraction with strict schema
adherence. LLM agents have emerged as criti-
cal frameworks for autonomous tool manipulation
and API interaction (Luo et al., 2025). The Re-
Act framework demonstrates synergized reason-
ing and acting through interleaved traces and ac-
tions (Yao et al., 2023), while systems like Rest-
GPT enable direct RESTful API interaction (Luo
et al., 2025). Despite advances, agents face reliabil-
ity challenges including high inference latency, out-
put uncertainty, and security vulnerabilities (Liang
and Tong, 2025), with "Agentic ROI" highlighting
fundamental trade-offs between value and opera-
tional costs (Liu et al., 2025).

While substantial progress exists in LLM-based

extraction, JSON schema optimization, and self-
correction mechanisms, existing work treats these
as independent problems. Current schema opti-
mization focuses on syntactic validity rather than
extraction performance, and self-correction mech-
anisms aren’t designed for structured data adher-
ence. Most critically, existing approaches assume
static, human-designed schemas rather than explor-
ing schema optimization for LLM consumption in
Software 3.0 applications where LLLM agents are
primary consumers. Our work addresses this gap
through an integrated approach combining auto-
mated schema optimization specifically for LLM
agents with reflection-based guardrails tailored for
structured extraction tasks.
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Figure 2: Detailed architecture of PARSE’s two main
components: ARCHITECT and SCOPE. The Build
Phase (top) shows ARCHITECT’s workflow for schema
optimization through iterative refinement using syn-
thetic test data generation and validation. The Extract
Phase (bottom) illustrates SCOPE’s extraction pipeline
with built-in guardrails and reflection mechanisms for
ensuring reliable structured output. Numbers indicate
the sequential flow of operations.

3 PARSE: Parameter Automated
Refinement and Schema Extraction

PARSE addresses the challenge of reliable struc-
tured information extraction from unstructured text
through a two-phase approach. Our key insight is
that JSON schemas themselves represent natural
language contracts that can be optimized for LLM
consumption, creating a virtuous cycle where better
schemas lead to improved extraction performance.
PARSE consists of two primary components op-
erating in distinct phases: (1) Build Phase: AR-
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CHITECT optimizes JSON schemas, as a one time
process, specifically for LLM agent consumption
while maintaining backward compatibility through
RELAY, (2) Extract Phase: SCOPE performs reli-
able information extraction using reflection-based
guardrails over the optimised schemas created and
maps it back to original schema through RELAY
transformation code generated in Build Phase. Re-
fer Figure 2 for detailed flow.

3.1 ARCHITECT: Automated Refinement
and Conversion Handler for Information
Transformation and EnhanCemenT

Problem Formulation: Let Sy, represent a user-
provided JSON schema and T represent a natural
language task description. Current schemas are
designed for human developers and static systems,
leading to suboptimal performance when consumed
by LLM agents. We formalize the schema optimiza-
tion problem as:

S* = arg max P(S’, Dsynthetic; Miim)

where P (S’, Dgynihetic; Miim) represents the ex-
traction performance of LLM model M, using
schema S’ on synthetic validation data Dygynthetic-
Schema Generation and Refinement: ARCHI-
TECT begins by analyzing the original schema
structure and generating an optimized version that
enhances LLM comprehension through improved
descriptions, structural clarity, and additional val-
idation rules. The schema optimization process
follows an iterative refinement procedure:

Si+1 — Reﬁne(sia 5(517 Dsynthetic)v T)

where S; is the schema at iteration i, £(-) com-
putes extraction errors on test data Dynhetic and
could be done via SCOPE or any other informa-
tion extraction agent, and Refine(-) represents the
LLM-based schema improvement function. The
optimization process terminates when extraction
accuracy reaches a threshold 7 or maximum itera-
tions K are reached.
Synthetic Test Data Generation: To validate
schema improvements, ARCHITECT generates
synthetic test cases using both the current schema
and a seed dataset of real examples to ensure the
synthetic data reflects realistic extraction scenarios:

D synthetic = Generate(Si 5 T> D seed s nsamples)

where S; is the current schema iteration, 1" is

the task description, ngmples controls the diver-
sity of generated validation examples, and The
seed dataset Dgeeq provides crucial context for gen-
erating realistic adversarial examples: Dgeeq =
{(xz1,11), (x2,92), ..., (Tk, yx)}, where each z;
is unstructured text and y; is the corresponding
ground truth extraction following the schema struc-
ture.
RELAY (Reverse Engineering Layer for Auto-
mated Yoking): To maintain compatibility with
existing systems, ARCHITECT has a sub-module
called RELAY which generates executable Python
code that transforms outputs from the optimized
schema S* back to the original schema format
Suser- The reverse mapping function ensures seman-
tic preservation: RELAY : O(S*) — O(Suser)s
where O(.S) represents the output space of schema
S.

RELAY automatically generates and validates
this transformation code during the Build Phase,
ensuring semantic preservation through: (1) Auto-
mated Python code generation for schema mapping,
(2) Sample data pair generation for testing trans-
formations, (3) Iterative refinement until semantic
preservation is verified. This ensures that down-
stream systems can continue using original schema
formats while benefiting from ARCHITECT’s op-
timizations.

3.2 SCOPE: Schema Compliant Organized
Pattern Extractor

SCOPE implements a systematic validation frame-
work with constrained decoding and static rule
checking, enabling agents to self-correct through
structured reflection. The extraction process with
guardrails follows:

4y = Extract(z, S™, Gyatic)

where z is input text, S* is the optimized schema,
Glatic Tepresents static guardrails and validation
rules in S*.

Multi-Stage Validation Process: SCOPE imple-
ments a systematic three-stage validation that oper-
ate as follows: (1) Missing Attribute Check: Veri-
fies that all required fields specified in the schema
are present in the extracted output (2) Grounding
Verification: Confirms that extracted values can be
found in the original input text (3) Rule Compli-
ance Check: Validates that extracted values adhere
to schema constraints such as patterns, length lim-
its, enumerated values, date format validations, and
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more. Each validation stage returns a status indi-
cator (pass or fail) along with specific error details.
When validation fails, SCOPE generates structured
reflections that guide the extraction agent toward
correct outputs.

4 Discussion

While PARSE focuses on structured extraction
from unstructured text for LLM agent systems, the
framework’s principles extend to related informa-
tion extraction domains. Named Entity Recogni-
tion (NER) (Li et al., 2020; Shrimal et al., 2022),
for instance, can be formulated as schema-based ex-
traction where entity types, spans, and attributes are
defined in a structured schema. Multi-agent orches-
tration frameworks for task automation (Shrimal
et al., 2024) face similar challenges in ensuring reli-
able structured outputs, particularly for tool calling
where agents must extract precise parameters from
natural language to invoke APIs correctly. In such
systems, PARSE’s components can enhance exe-
cution accuracy: ARCHITECT can optimize tool
parameter schemas for clearer LLM comprehen-
sion, while SCOPE’s reflection-based guardrails
can validate parameter extraction and recover from
common errors like parameter hallucination or in-
correct formatting—challenges explicitly identified
in multi-agent systems. This positions PARSE as
complementary to agent orchestration frameworks,
providing the schema optimization and validation
layer needed for reliable tool invocation.

The core insight of PARSE—that schemas them-
selves can be optimized for LLM consumption
rather than treated as static contracts—applies
broadly across structured extraction tasks. Whether
extracting named entities, tool parameters in agent
systems, slot values in dialogue systems, or com-
plex nested structures from web data, the challenge
remains: how do we design and refine the structural
contracts that guide LLM extraction? PARSE’s
automated schema optimization through ARCHI-
TECT and systematic validation through SCOPE
provide a general framework applicable to these
diverse scenarios.

5 Experiments

We evaluate PARSE through comprehensive ex-
periments designed to answer three key ques-
tions: (1) Does ARCHITECT effectively optimize
JSON schemas for LLM consumption? (2) Does
SCOPE’s reflection-based guardrail system im-

prove extraction reliability? (3) How do these com-
ponents work together to enable reliable structured
information extraction for Software 3.0 applica-
tions?

5.1 Experimental Setup

Datasets: We evaluate on three complementary
datasets that test different aspects of structured
extraction: (1) Retail-Conv: A curated internal
dataset of 6 diverse retail conversation schemas
with 40 samples each (240 total), designed to
test extraction from natural business communi-
cations. This dataset captures realistic scenar-
ios where customers describe product issues, re-
quests, and updates in conversational language;
(2) Schema-Guided Dialogue (SGD) (Rastogi
et al.,, 2020): A large-scale dataset of 20,000
annotated task-oriented conversations across 20
domains including banking, events, media, and
travel. (3) Structured Web Data Extraction
(SWDE) (Hao, 2011): A standard benchmark con-
taining 1,600 test samples across 8 verticals (200
test samples per vertical). This dataset tests extrac-
tion from semi-structured web content with varied
formatting.

Baseline: We implement an extraction agent us-
ing best prompting practices and constraint decod-
ing with the original user-provided schemas as our
baseline. This baseline uses clear instructions, few-
shot examples, and standard JSON formatting re-
quests without any guardrails or schema optimiza-
tion. We evaluate across five LLM variants to en-
sure robustness: Claude 3.5/3.7 Sonnet, Claude
3.5 Haiku, Llama 4-Maverick, and DeepSeek-R1-
671B, spanning diverse architectures and capabili-
ties.

Metrics: We measure field-level accuracy where
all required schema fields must be correctly ex-
tracted and properly formatted. This strict metric
reflects real-world requirements where partial ex-
traction often provides little value. We also track
end-to-end extraction time including all reflection
iterations and guardrail checks, providing insight
into the practical trade-offs between accuracy and
speed. For ARCHITECT evaluation, we analyze
schema modification patterns and track accuracy
improvements across optimization iterations.
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Model Retail-Conv SGD Data SWDE Data
Original Schema ~ ARCHITECT Schema  Original Schema  ARCHITECT Schema  Original Schema  ARCHITECT Schema
Baseline SCOPE Baseline SCOPE Baseline SCOPE Baseline SCOPE Baseline SCOPE Baseline SCOPE
Agent Agent Agent Agent Agent Agent
Claude 3.7 Sonnet 75 88.6 77.1 90.01 923 94.2 93.1 94.8 24.5 89.2 31.38 93.14
Claude 3.5 Sonnet V2 75.5 88.6 79.8 91.7 90.9 3.9 92.66 94.1 25.7 90.8 3351 92.99
Claude 3.5 Haiku 72.5 85 76.4 87.3 88.16 1.7 89.09 93.3 25 88.3 32.81 91.67
Llama 4 Maverick 75.5 84 78.8 88.4 83.22 88.9 84.18 91.44 21.3 85.1 28.99 88.32
DeepSeek-R1 76 91 81.2 93.7 87.15 91.22 89.25 92.01 19.3 82.7 25.13 86.16

Table 1: Accuracy comparison for Baseline LLMs and SCOPE with and without ARCHITECT schemas on Retail-
Conv, SGD and SWDE datasets. Bold indicates best result per model per dataset, underline indicates second best.

Retail-Conv

ARCHITECT-Claude ARCHITECT-LLAMA
SCOPE-Claude 93.7 91.11
SCOPE- LLAMA 89.1 88.4

Table 2: Comparison of performance when Optimising
schema using model X in ARCHITECT then applying
the schema in SCOPE with model Y. Claude version
used is Sonnet 3.5 V2.

Number o Retries Number of Retries

Figure 3: Error recovery with and without reflection and
with and without ARCHITECT schemas

5.2 Main Results
5.3 Combined System Performance

Performance and Reliability: Table 1 demon-
strates that PARSE achieves substantial improve-
ments across all datasets, with the combined AR-
CHITECT + SCOPE system showing the strongest
performance. The improvements remain consistent
across different LLMs suggesting our approach
makes sophisticated extraction more accessible
across model scales.

5.4 ARCHITECT Analysis

Iterative Improvement: ARCHITECT’s schema
optimization shows consistent improvement over
iterations, with most gains achieved within the first
5-6 iterations before dipping again. This suggests
the optimization process efficiently identifies and
addresses the most critical schema limitations al-
though doing it for larger durations can lead to
overfitting.

Schema Modification Patterns: Analysis of AR-
CHITECT’s schema changes (Figure 5) reveals

Accuracy
>

~e— Schema 1 (SWDE)

~m- Schema 2 (SWDE)

== Schema 3 (Interal)
Schema 4 (Internal)

5 6 7 8 9 10
Iterations

Figure 4: Performance of schemas on validation sets
over ARCHITECT optimisation iterations

consistent patterns across datasets with: (1) Entity
Description Enhancement (34%): Adding detailed
descriptions and contextual information (2) Struc-
tural Reorganization (55%): Flattening nested
structures and clarifying field relationships (3) Val-
idation Rule Addition (0.08%): Implementing for-
mat constraints and enumerated values (4) Pattern
rules additions (3%): Enforcing strict regex pattern
rules to constrain outputs

Generalization Across Models: Table 2 sug-
gests that schemas optimized using one LLM (e.g.,
Claude 3.5 Sonnet) maintain their performance
benefits when applied with different models (e.g.,
Llama 4), indicating that ARCHITECT identifies
model-agnostic schema improvements rather than
model-specific optimizations.

5.5 SCOPE Guardrail Effectiveness

Reflection-Based Improvement: SCOPE’s multi-
stage validation shows clear benefits over simple
retry mechanisms. On average, SCOPE reduces
extraction errors by 92% within the first retry com-
pared to baseline approach that simply re-prompt
on failures (Figure 3). Moreover, ARCHITECT
optimised schema’s are less prone to have re-tries
as shown in the same figure.

Cost-Accuracy Trade-offs: While SCOPE in-
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Descriptions 16

Min/Max Length 10

Pattern/Regex 9

Validation Rules a

Required Fields a

Change Type

Numeric Constraints 2

Structure Changes 1

Enum Constraints 1

Figure 5: Description of how frequently different types
of changes are done through ARCHITECT to optimise
a schema

Model SWDE Data

Latency with
Original Schema

Latency with
ARCHITECT Schema

Baseline SCOPE Baseline

SCOPE

Agent
Claude 3.7 Sonnet 9.08 25.58 8.80 19.06
Claude 3.5 Sonnet V2 9.00 24.46 8.83 19.54
Claude 3.5 Haiku 8.99 22.26 8.68 14.99
Llama 4 Maverick 0.98 2.30 0.93 1.97
DeepSeek-R1 3.01 11.99 291 10.01

Table 3: Impact on latency for extraction with using
SCOPE and ARCHITECT

creases latency by an average of 10.16 due to
reflection iterations, the corresponding accuracy
gain of +64.7% on SWDE demonstrates substantial
practical value. Importantly, using ARCHITECT-
optimized schemas reduces this latency penalty by
an average of 4.05s as fewer reflection rounds are
needed (Table 3).

5.6 Qualitative Analysis

ARCHITECT consistently transforms ambiguous
field descriptions into precise, context-rich spec-
ifications. For example, a generic "price" field
becomes "newPriceValue: The specific numerical
price value for the product update, excluding cur-
rency symbols" with additional validation rules for
format and range constraints.

SCOPE’s reflection mechanism effectively iden-
tifies and corrects common extraction errors. In
cases where the baseline agent confused similar en-
tities (e.g., "old price" vs. "new price"), SCOPE’s
grounding verification caught the error and guided
correction through structured reflection.

SWDE Dataset Complexity: The substantial im-
provements on SWDE (up to 64.7%) stem from

Component Content

Input HTML

<title>2010 Subaru Legacy 2.5
i 4dr Sedan</title> (truncated)

Baseline Schema  {"model”: {"type"”: "string"}}

PARSE Schema {"model": {"description”:
"Full model name
including year, make
and model”, "pattern”:
"*(19[5-9]1[0-9]|20[0-2][0-91)
[A-Za-z0-9 -+]+$"...3}}

Expected Result "2010 Subaru Legacy"

Baseline Result "2010 Subaru Legacy 2.5 i 4dr Sedan"

PARSE Result "2010 Subaru Legacy"

Table 4: SWDE extraction example demonstrating why
PARSE achieves substantial improvements on HTML-
structured data. The baseline extracts excessive detail
due to insufficient schema guidance, while PARSE’s
optimized schema with pattern constraints and SCOPE’s
validation ensure precise extraction.

the dataset’s HTML structure requiring precise
extraction with specific formatting. Table 4 il-
lustrates a representative case where the baseline
struggles with HTML noise while PARSE’s opti-
mized schema and guardrails enable accurate ex-
traction. The baseline schema’s generic "model” :
{"type": "string"} provides insufficient guid-
ance for parsing complex HTML, while ARCHI-
TECT’s optimized schema adds detailed descrip-
tions and pattern constraints that help the LLM
focus on relevant content. SCOPE’s grounding ver-
ification then ensures extracted values match the
source text, preventing hallucinations common in
HTML extraction tasks.

Refer to Appendix for some qualitative samples
on schema optimisations done by ARCHITECT.

Conclusion

We introduced PARSE, a comprehensive frame-
work that addresses structured information extrac-
tion challenges through schema optimization and
reflection-based guardrails. ARCHITECT automat-
ically refines JSON schemas for LLM consumption
while SCOPE ensures reliable extraction through
multi-stage validation. Our evaluation across three
datasets demonstrates substantial improvements,
with up to 64.7% accuracy gains on SWDE and
92% error reduction within first retry, establishing
PARSE as an effective solution for reliable LLM
agent systems in Software 3.0 applications.
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Limitations

Our approach has several important limitations that
future work should address. The iterative refine-
ment process in ARCHITECT can be computation-
ally expensive for complex schemas with many
attributes. Each refinement iteration requires syn-
thetic data generation, extraction evaluation, and
failure analysis, creating potential scalability bot-
tlenecks for large-scale deployments.

ARCHITECT’s optimization quality depends
heavily on the availability and representativeness of
seed datasets. For entirely new domains or rapidly
evolving schema requirements, obtaining sufficient
high-quality seed data can be challenging. Fur-
thermore, our approach assumes relatively static
schema structures that can be optimized offline,
which can be challenging where schemas evolve
continuously.

Several promising directions emerge from this
work. Multi-modal extension represents a natu-
ral evolution, where schemas could be optimized
for extraction from both textual and visual content.
The same principle of treating schemas as optimiz-
able interfaces applies to multi-modal scenarios,
but would require extending the validation frame-
work to handle cross-modal grounding.
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A Appendix

A.1 Qualitative Samples of SCOPE
predictions

Table 5 gives an overview of how SCOPE performs
against Baselines. Notice that SCOPE is able han-
dle longer contexts better while

A.2  Qualitative Samples of ARCHITECT’s
optimisation

Table 6 shows the qualitative example of how

ARCHITECT’s optimisation process updates the

JSON schema across 5 iterations for various at-

tributes in SWDE dataset.

A.3 RELAY: Ensuring Backward
Compatibility
RELAY (Reverse Engineering Layer for Auto-
mated Yoking) maintains compatibility between
ARCHITECT-optimized schemas and original
user schemas through automated code generation.
When ARCHITECT transforms a schema, RELAY
simultaneously creates Python functions that map
outputs between formats.
Example Transformation:
{"price":

* Original schema: {"type":

"string"}}

* Optimized schema: {"currency_symbol”:

{"type": "string"”, "pattern”:
"[$€¥L]"Y, "price_value”: {"type":
"number”, "minimum”: 0}}

¢ Generated RELAY code:

1 def reverse_transform(optimized_data
)
2 return {
3 "price”: f"{optimized_datal'
currency_symbol '1}"
4 f"{optimized_datal'
price_value']}”

Validation Process: RELAY generates sample
data pairs and tests transformation code iteratively.
If semantic preservation errors are detected, it re-
fines the transformation logic until accuracy is
achieved. Production deployments show consis-
tent transformation accuracy without conversion
errors.
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Dataset Input Context SCOPE Baseline
Schema
SGD Restaurant_2  [USER]: I want to have a table booked for me at a { {
restaurant, because I want to have a meal. "ReserveRestaurant": [ "ReserveRestaurant": [
[ASSISTANT]: Can you tell me the restaurant you are  {"location": {
interested to have a table booked at? "Livermore" }, "restaurant_name": null,
[USER]: Can you check if you can make a booking of {"restaurant_name": "location": "Livermore" ,
a table at Castle Rock? "Mcdonald’s" }, "time": "12:00" ,
[ASSISTANT]: Can you tell me the time that you {"time": "12 pm" } "number_of_seats": null,
want to have the table booked for you? 1 "date": null
[USER]: I prefer to have the booking be made for } }
12:00 . 1
[ASSISTANT]: Is there a specific location you are }
looking for?
[USER]: I am interested in restaurants which are lo-
cated in Livermore .
[ASSISTANT]: Can you please confirm that you want
to book a table for 2 people at Castle Rock Restaurant
in Livermore, and that you want the table to be booked
for you for 12 pm on March 1st?
[USER]: That is not right. Please make a booking at
Mcdonald’s .
SGD Payment_1, [USER]: I am looking to make a payment. { {
Trains_1, [ASSISTANT]: What is the name of the contact and "GetWeather": [ {"city": "GetWeather": [ {"city":
Weather_1 from what account? "San Fran" , "date": | "San Francisco" , "date":
[USER]: I'd like it from my checking account and the ~ "the 14th" } ], "March 14th" } |
name is Mahmoud. "FindTrains": [ }
[ASSISTANT]: How much will it be? {"date_of_journey":
[USER]: The amount is $180. "12th of March" },
[ASSISTANT]: Please confirm you’re making a {"from":
transaction for $180 from your debit card with |"Sacramento, CA" },
Mahmoud and it will be visible to the public. {"journey_start_time":
[USER]: That is correct. "7:30 am" },
[ASSISTANT]: Your payment has been confirmed {"to": "San Fran" }
and the receiver should see the money soon. ]
[USER]: Can you help me find a train for the }
12th of March ?
[ASSISTANT]: From which city are you leaving
from?
[USER]: I'm planning to leave from
Sacramento, CA .
[ASSISTANT]: Where are you going?
[USER]: I'm trying to get to  San Fran .
[ASSISTANT]: I found a train leaving at 7:30 am
for $47 .
[USER]: Which station does this train leave from?
[ASSISTANT]: It is leaving from
Sacramento Valley Station .
[USER]: That works. How will the weather be in
San Fran on the 14th ?
Retail- Sales Data [USER]: Get sales data for "PRODUCTI123" in {NULL} {"sales": [ "asin":
Conv Italy "PRODUCTI123", "time-
[ASSISTANTY: I need a specific timeframe to fetch frame": "MTD", "market-
the sales data. Could you please specify when you place™: "IT" } ]
want to see the sales for? For example: last week, }
MTD, or a specific date range?
Retail- Price update [USER]: For PRODUCT234, the old price is {NULL} {"list_of_asin_price_vendor":
Conv 29.99 USD and I want to maybe change it to either [{

39.99 or 49.99 USD

"asin": |"PRODUCT234" ,
"new_list_price_value":
49.99 ,
"new_list_price_currency":
"USD"}])

Table 5: Qualitative comparison between SCOPE and baselines predictions (both with ARCHITECT) on Claude 3.5

Sonnet V2.
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Iteration automobile_model_year

engine_type

fuel_economy

1 {

"type”: "array”,
"description”: "List of
automobile models with

their corresponding

years",
"items": {

"type": "object"”,
"properties”: {

"model”: {

"type": "string”

}
133

"type": "array”,
"description”: "List of
price information”,

"type”: "object”,
"properties”: {

"type”: "string”,
"description”:
"Currency symbol +

numeric value,

{
"type": "array",
"description”: "List of
engine types”,
"items": {
"type": "object”,
"properties”: {

"engine": {
"type"”: "string”
333}

{
"type": "array",
"items": {

"type"”: "object”,

"properties”: {

"fuel”: {
"type": "string"”

3333

3 {

"type”: "array”,

"description”:

"List of automobile
models with full year,
make and model” |

"items": {

"type": "array”,
"description”: "List of
price information”,

"type": "object”,

{

"type"”: "array”,
"description”: "List of
engine/powertrain
configurations”,
"items": {

"type": "object”,

{

"type"”: "array”,
"description”: "List of
fuel economy ratings”,
"items": {

"type”: "object”,

"required”:
"type": "object”, "required”: ["fuel”] ,
"required”: "properties”: { ["engine"] , "properties”: {
["model”] , "properties”: { "fuel”: {
"properties”: { "type"”: "string”, "engine”: { "type"”: "string”,
"model”: { "type": "string", "minLength”: 5,
"type": "string”, "pattern”: "condition"”: "Must
"pattern”: "~[0-9.1+L include numeric
"A[0-91{4} (2:\s+[A-Za-20-9- value .
‘Fé—Za—ZB-?,-]+" , "minLength”: 2 \s]+)*$" , MPGegith unit (MPG,
minLength”: 10 "minLength”: 3 1133
3333 13133
5 { { {
"type": "array", "type": "array", "type": "array", "type": "array",
"description”: "required”: "required”:
"Full model name ["engine"] , ["fuel"] ,
including year, make, "items": { "items": {
model, hyphens and "engine": { "fuel”: {
plus signs"” , "type": "string”, "type": "string”, "type": "string",
"items": { "pattern”: "minLength”: 5,
"type": "object”, "~[0-9.]1+L "condition”: "Must
"required”: (?:\s+[A-Za-z0-9- include numeric value
["model”] , \sT+)*$" with unit and flexible
"properties”: { "minLength”: 2 "minLength”: 3 separators”
"model”: { 3 3
"type”: "string”, } 3
"pattern”: 1 }
"~[0-9.]+L

(?:\s+[A-Za-z0-9-

\s\+1+)x$" ,

"minLength”: 10

3333

Table 6: Evolution of SWDE Auto schema over iterations. Green highlights new required fields, Blue highlights

pattern changes, Yellow highlights description updates.



A.4 ARCHITECT Agent Prompt

Schema Generator Agent Prompt

You are a specialized schema generation agent that creates precise schemas for information extraction.
The contract must be a valid json schema.
The contracts must strictly adhere to a json format.

Task description: \$task

Use the task description to understand:

- What variables should be included in the schema
- Their data types and structures

- Any constraints or patterns they follow

Please generate the following:
1. A json schema that is optimal for extracting values of attributes mentioned in the schema.
A schema is considered optimal for extraction if it necessarily fulfills the following conditions:

1. The generated schema must be as concise as possible. This is important to
ensure least latency for downstream extraction.

2. The schema must contain non-conflicting attributes which are non-ambiguous
and do not cause any confusion while performing extraction.

This can be achieved through:

a) Coming up with dis-similar names to prevent any confusion

b) Creating clear descriptions for the attribute

c) Creating conditions, rules wherever necessary

Requirements:

- Follow the json format strictly. Keep it as simple as possible.

- Include clear descriptions for each attribute

- Add proper constraints (e.g., required fields, patterns, length, enums)
where appropriate

- Consider edge cases and error scenarios

- Use appropriate data types optimized for the use case

Do NOT add any extra attributes apart from the ones mentioned in the task description
First, analyze the task thoroughly in <thinking></thinking> tags, considering:

- What attributes are needed to complete the task?

- What constraints or validations apply?

- What types best represent each piece of data?

- Are there any optional parameters to consider?

Return your generated schema in <json_schema></json_schema> tags.
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Synthetic Test Data Generator Prompt

You are an expert in creating challenging datasets that expose flaws in attribute extraction systems.
Your task is to generate diverse, edge-case rich examples that will thoroughly test
and potentially break a JSON schema-based attribute extraction system.
User provided json schema: \$schema
The user defined the attribute extraction task as: \$task
## Instructions
1. I will provide you with a JSON schema that defines attributes to be extracted.
2. Analyze this schema carefully to identify potential weaknesses, edge cases, and ambiguities.
3. Generate a comprehensive dataset of examples designed to challenge the extraction system.
4. For each example, provide:
- Input text containing the information to be extracted
- Expected output (what the correct extraction should be, You can give an
empty output as well whenever required)
- If all required fields in the schema are not present, the ground truth
should be empty
- Description of why this example is challenging
5. Consider creating multiple message conversations with back and forth
between USER and ASSISTANT to make the dataset more complex.
Think hard before generating your samples. Include your thinking
in <thinking></thinking> tags.
## Guidelines for Creating Adversarial Examples
Create examples that target these vulnerabilities:
1. **Contextual ambiguityxx*:
- Multiple potential matches for the same attribute
- Contradictory information
- Attribute values embedded in complex sentences
2. **Structural challengesx*x:
- Nested information
- Lists containing relevant attributes
- Tabular data represented in text
3. **xSemantic traps**:
- Similar but incorrect values
- Information that appears to match the schema but doesn't
- Deliberate misinformation or red herrings
4. xxLinguistic complexityxx*:
- Jargon and domain-specific terminology
- Colloquial expressions of values
- Indirect references
5. **Error conditions*x:
- Malformed inputs
- Missing required attributes
- Data type mismatches
Create samples where the current schema is not sufficient to handle the input,
then give ground truth as "INSUFFICIENT_SCHEMA".
## Output Format
For each generated example, structure your output as follows:
<example>
### Example [number]
<input_text>
</input_text>
<ground_truth>

{

"attributel”: "valuel”,

}
</ground_truth>

<challenge> [boundary case/ambiguity/etc.] </challenge>

</example>

Generate atleast TEN diverse and challenging examples based on the provided
schema, each targeting different vulnerabilities.

You can use the following user provided samples: user_samples
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Schema refinement Prompt

You are a schema refinement agent specializing in improving JSON schemas for attribute extraction tasks.
Your goal is to analyze evaluation results and modify the schema to prevent failure
cases while maintaining accuracy on successful extractions.
1. Task which the json schema should be based on: $task
2. The original JSON schema: $schema
3. A set of evaluation samples containing: $eval_samples
For your context, the schema will be passed to the following tool to perform
extraction:
- The tool uses a json schema and passes it to a LLM agent
- This schema defines attributes and their inter-dependent relationships
- The schema contains information about each attribute that has to be extracted
from an unstructured context.
- The LLM agent fills the schema with the relevant values from the context
- The agent also has validation guardrails (applied in the same order):
1. missing attribute check - which checks if the required attributes in the
json schema are missing from the user provided input context or not.
2. Grounding - which checks if the values predicted are present in the
context or not.
3. rules mismatch - which checks if the attribute value adheres to the
specified rules: which can be minLength, maxLength, enums, regex patterns
Analyze the success and failure patterns to propose a refined schema that
addresses the issues identified.
You can change the entire structure of the schema if you think there is a
more optimal approach as well.
The contracts must strictly adhere to a json format. You can only use the following
fields for an attirbute in the schema:
[name, description, type, enum, properties, title, pattern,
minLength, maxLength, condition].
You CANNOT USE these keys: if, else, anyof, allof.
Grounding of dates happen through LLM based prompting to handle different
prompts if each date attribute has the following fiels in it:
"date": {

"allowed_date_formats”: [

"MM/DD/YYYY"
]Y

"delimiter”: "/"

"condition” key in the schema should contain a natural language condition only.
Do NOT add any extra attributes apart from the ones mentioned in the
task description
## Output Format
Present your analysis and solution as follows:
<failure_analysis>
[Detailed analysis of failure patterns observed in the evaluation samples]
</failure_analysis>
<issues>
[List of specific schema issues that need to be addressed]
</issues>
<improvements>
[Specific changes recommended to address each issue]
</improvements>
<refined_schema>
{
// Your complete refined schema here
}
<refined_schema>
Ensure your refined schema is backward compatible with successful
cases while extending to cover the failure cases.
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A.5 SCOPE Agent prompt

SCOPE Base prompt

You are an attribute extractor whose task is to extract the value for the given
attributes from the user input.

<attributes>
$attribute_schema
</attributes>

Things to keep in mind:

1. An attribute can be a complex attribute, meaning, it can have multiple
attributes nested within it.

If an attribute is a complex attribute, then all attributes in it are
related to one another and the values must be extracted accordingly.

2. You have to return the attribute values within <attribute_values>
</attribute_values> in the following format:

$attribute_val_format

Steps to follow to extract the values are as follows:

<steps>

1. Identify the required attribute: Identify the attributes mentioned in
<attributes></attributes> and focus on one attribute at a time.

2. If a condition is mentioned along with an attribute, then carefully

follow the condition and extract only that value which satisifies the condition.
4. Handle uncertain/missing/false-condtion values: If the value for a required
attribute is missing or if you are not sure about the value of a required attribute
or if no value satisfies the condition, set the value as “null".

Do not assume any value for any attribute or do not give values for which

the condition is false.

5. Repeat the above steps for each attribute.

</steps>

Before giving your final answer, think about the information which is

relevant for constructing your answer within <thinking></thinking> XML tags.

Then, Put your final answer within <attribute_values></attribute_values> XML tags.
Mention how you conclude on your answer. Answer should be aligned with what's
inside <thinking> tags.

Extract the values step-by-step using the steps mentioned in <steps></steps>

Put your response in the following format only:
<response>

<thinking></thinking>
<attribute_values></attribute_values>
</response>

Below is the conversation with latest user message at the end:
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