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Abstract

Reliable data quality is crucial for downstream
analysis of tabular datasets, yet rule-based vali-
dation often struggles with inefficiency, human
intervention, and high computational costs. We
present a three-stage framework that combines
statistical inliner detection with LLM-driven
rule and code generation. After filtering data
samples through traditional clustering, we it-
eratively prompt LLMs to produce semanti-
cally valid quality rules and synthesize their
executable validators through code-generating
LLMs. To generate reliable quality rules, we
aid LLMs with retrieval-augmented genera-
tion (RAG) by leveraging external knowledge
sources and domain-specific few-shot exam-
ples. Robust guardrails ensure the accuracy
and consistency of both rules and code snippets.
Extensive evaluations on benchmark datasets
confirm the effectiveness of our approach.

1 Introduction

Data quality (DQ) is vital for business decisions;
poor data quality costs organizations an average of
$12.9 million annually (Sakpal, 2021), underscor-
ing the need for rigorous DQ management. Data
errors stem from sensor faults, entry mistakes, and
poor data integration, producing inconsistencies in
the current high-dimensional tabular data sets from
various domains, which often contain millions of
rows and numerous columns.

Statistical profiling—encompassing distribution
shifts, outliers, and functional dependency (FD) vi-
olations—remains a foundational technique for de-
tecting data quality issues (Bohannon et al., 2006;
Fan et al., 2010; Krishnan et al., 2016; Geerts et al.,
2020; Livshits et al., 2020; Rezig et al., 2021; Pena
et al., 2022; Bachinger et al., 2024; Qin et al.,
2024a; Boeckling and Bronselaer, 2025). Bayesian
extensions enhance this approach by modelling ex-
pected cell-value posteriors (Azzalini et al., 2023;
Qin et al., 2024b). While such methods effectively

flag structural anomalies, they often lack the se-
mantic understanding required to detect context-
dependent errors or violations that rely on external
knowledge, leading to overlooked or misclassified
issues.

Deep learning approaches learn latent space rep-
resentations for data cleaning (Heidari et al., 2019;
Jäger and Biessmann, 2024; Reis et al., 2024) or
train on constraint-compliant subsets to boost ac-
curacy (Biessmann et al., 2018; Nasfi et al., 2025).
Liu et al. (2021) explore self-supervised learning,
while Reis et al. (2024) propose an active learning-
based framework to improve DQ. These methods,
however, presuppose clean labels or stable con-
straints, struggle on heavily noisy tables, and be-
come costly on large datasets. Rule-based data
cleaning approaches (Cong et al., 2007; Chiang
and Miller, 2008; Boeckling et al., 2022a,b) out-
perform purely statistical techniques, but fail to
capture semantic inconsistencies.

Large Language Models (LLMs) offer signif-
icant promise for data-quality tasks due to their
ability to assess contextual correctness and identify
anomalies that traditional FD rules often miss. Yet,
existing LLM-based solutions—such as fine-tuned
models, prompt-driven detectors (Heidari et al.,
2019; Mehra et al., 2024; Zhang et al., 2024), or in-
context repair mechanisms (Chung et al., 2017; Bi-
ester et al., 2024; Ni et al., 2024a,b)—remain com-
putationally expensive, either requiring per-row in-
ference or dataset-specific training. Bendinelli et al.
(2025) combine an LLM with Python to address
cell-level and row-level data quality issues; their
approach requires strong hints on the errors in the
dataset and fails to address data errors dependent
on external domain knowledge. Therefore, an effec-
tive solution must balance LLM adaptability while
scaling efficiently and incorporate domain-specific
knowledge to detect semantically complex errors.

Data quality is typically organized into dimen-
sions such as accuracy, completeness, conformity,
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Figure 1: System architecture illustrating the end-to-end pipeline for data quality assessment.

and consistency (Wand and Wang, 1996; Pipino
et al., 2002; Loshin, 2010; Carlo and Monica, 2016;
Ehrlinger and Wöß, 2022), as these categories re-
flect how researchers and practitioners diagnose
defects and prioritize remediation. Building on
this taxonomy, we define targeted rule types (see
Appendix A.2) under each dimension and gener-
ate rules accordingly (see Table 1). This design
enables granular data quality reports, precise and
unambiguous LLM prompts, and modular down-
stream filters and evaluation metrics.

2 Framework

Our framework shown in Figure 1 breaks down the
data quality assessment into three stages. First, it
uses statistical analysis on the given tabular dataset
to categorize each row as either an inlier or an
outlier. Then, we perform off-the-shelf LLM in-
ference via automated prompts to generate data
quality rules tailored to the dataset. Finally, we gen-
erate executable code for each quality rule through
an off-the-shelf code-generating LLM inference.
We engage only the inlier dataset from the first
stage in subsequent stages to ensure reliable analy-
sis utilizing data that is less likely to have errors or
inconsistencies.

2.1 Inlier–Outlier Detection
Our system initiates preprocessing to identify a sub-
set of non-noisy rows from the input dataset using

a traditional clustering technique, executed effi-
ciently through distributed processing on Apache
Spark. The pipeline performs multivariate outlier
detection at the row level using the Sparx algo-
rithm (Zhang et al., 2022), which scales linearly
with the dataset size. For rows flagged as outliers, a
finer-grained analysis determines whether specific
cells are true outliers or are statistically influenced
by other cells, based on the profile of each col-
umn. String columns are embedded using BERT
(Devlin et al., 2019) and evaluated with a univari-
ate distance-based outlier test, while numeric and
categorical columns are analyzed using detectors
tailored to their respective data types. A row is
ultimately marked as an outlier if the number of
its outlier cells surpasses a predefined threshold.
This preprocessing step significantly enhances data
quality by retaining only the inlier subset, thereby
enabling more accurate rule generation and code
synthesis in later stages.

2.2 Generation and Enrichment of DQ Rules

Our system appropriately prompts the Gemma-3-
12B (Team et al., 2025) LLM to elicit DQ Rules
for each Rule Type from the given dataset. For
each Rule, Gemma initially formulates a canonical
(draft) rule description, followed by a rule enrich-
ment phase to incorporate essential specification
and a concise set of pseudocode clauses that pre-
cisely capture the validation logic.
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DQ Dimension DQ Rule Type Sample DQ Rules (Rule Cards)
Accuracy Reference Table Verification ∀x ∈ state,∃r ∈ Cities such that x = r.state

Conformity
Format Compliance ∀x ∈ beer_name, ¬isNull(x) ∧ ˆ[A-Za-z0-9’ ]+

Data Type Validation ∀x ∈ Single Epithelial, ¬isNull(x) ∧ x ∈ Z
∀x ∈ Marginal Adhesion, ¬isNull(x) ∧ x ∈ Z

Completeness Missing Value Identification ∀x ∈ Clump Thickness,¬isNull(x)
∀x ∈ Bare Nuclei,¬isNull(x)

Consistency Value Set Constraint ∀x ∈ Uniformity of Cell Shape,¬isNull(x) ∧ x ∈
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Cross-Column Validation ∀r ∈ dataset,NormalNucleoli(r) < Mitoses(r)

Table 1: Examples of DQ Rules categorized by different DQ Dimensions (more Rules in Table 10 of Appendix).
Reference Table Verification and Format Compliance are using Beers while rest using Breast Cancer dataset.

We capture each DQ Rule as a Rule Card—a
structured JSON object comprising of fields, such
as: Rule Name (a concise title), Rule Description,
Target Columns (the columns involved in the rule),
Specification, and Pseudocode. Organizing rules in
this structured format simplifies data quality evalu-
ation by clearly defining the relevant columns and
the specific validation objective. Figure 2 illustrates
a draft and enriched Rule Card.

Rule Card (draft):

{
"Rule Type": "Reference Table Verification",
"Rule Name": "State Must Follow US State Code Format",
"Rule Description": "The `state` column must be a
two-letter valid US state code (e.g., NY, CA). Any
non-standard two-letter combinations should be flagged.",
"Target Columns": ["state"],
"Reference Table": ["uscities.csv", "Phone_codes.csv"]

}

Rule Card (enriched):

{
"Rule Type": "Reference Table Verification",
"Rule Name": "State Must Follow US State Code Format",
"Rule Description": "The `state` column must contain a
two-letter abbreviation (e.g., NY, CO, CA, FL).
Any value not on the official list is invalid.",
"Target Columns": ["state"],
"Reference Table": "uscities.csv",
"Additional Information": {

"Specification": "Validate using the two-letter stateId
field in `uscities.csv`; ignore `Phone_codes.csv`.",
"Pseudocode": ["if state is null → flag",

"if len(state) != 2 → flag",
"if state.upper() not in us_state_abbrevs_csv → flag"]

}
}

Figure 2: Draft and Enriched Rule Cards by Gemma-3-
12B on Beers dataset (Hould, 2017)

Pipeline to generate Rules. It begins by prompt-
ing an LLM to generate a schema description
(shown in Figure 6 inspired from (Zhang et al.,
2025)) to incorporate into rule-type-specific prompt
templates (refer to Figure 8 in Appendix) to guide
rule generation.

Each rule-generation prompt follows a struc-
tured, three-part format. The first part is the task
header, which specifies the target rule type (e.g.,
Format Compliance or Cross-Column Validation)
and includes a detailed description of its intent. The
second part comprises task blocks that incorporate

contextual elements such as domain-specific ex-
amples, previously generated rules (if available),
and a knowledge section along with an enumer-
ation of allowed and disallowed behaviors. The
third part provides the table schema. For wide ta-
bles, the schema is split into manageable batches
to fit within Gemma’s context window while still
preserving column-level details.

Domain-aware few-shot examples. We main-
tain a repository of rule-card examples, either hand-
crafted or harvested from diverse application do-
mains. At run time we embed the table description
and every stored domain descriptor with the all-
MiniLM-L6-v2 model (Wang et al., 2020). Cosine
similarity selects the nearest domain; its represen-
tative rule cards for each rule type are then added
to the prompt. This domain-specific few-shot con-
text steers Gemma to generate rules with vocabu-
lary and constraint patterns aligned with the target
dataset.

Few-shot examples from previous iterations.
We employ an iterative prompting strategy inspired
by the self-consistency technique in CoT (Wang
et al., 2023) reasoning. During the first iteration,
the LLM is provided with only the schema frag-
ment and a few domain-specific few-shot examples,
from which it generates a first batch of rule cards.
In subsequent iterations, a randomly selected sub-
set of these generated cards is included as addi-
tional exemplars in the prompt, progressively refin-
ing the model output.

Pipeline to enrich Rules. A rule-type-agnostic
enrichment further refines each generated rule card
to enhance specificity and reliability. The enrich-
ment prompt is composed of components, such as:
(i) Column Profile: A JSON summary automati-
cally derived from the dataset, detailed in Figure 7.
These column statistics provide the model with con-
crete and data-driven context. (ii) Draft Rule Card:
The preliminary version of the rule generated in the
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earlier phase. It includes a tentative rule name, de-
scription, and target columns—describing the con-
straint for the model to refine. (iii) Clean vs. Noise
Sample: Two short lists of values extracted from
the same column—one from inlier (clean) rows and
the other from outlier (noisy) rows. Presenting this
contrast helps the model recognize practical dif-
ferences between valid and erroneous data. These
components are integrated into the rule enrichment
prompt template (see Figure 10 in Appendix) and
submitted to Gemma-3-12B.

2.2.1 Multi-Layer Gaurdrails.
Before the code generation stage, the provisional
set of enriched DQ rules passes through a series of
validation filters designed to eliminate redundancy,
logical inconsistencies, and low-value constraints.

Conflict-Resolution Filter. Early pilot evalua-
tions revealed that the LLM occasionally produced
conflicting or mutually exclusive rules. These con-
tradictions stemmed primarily from two sources:
(i) inconsistencies in the sample data frames used
across iterations; (ii) LLMs hallucinations (see Ap-
pendix A.3 for examples). To resolve this, the draft
rule set specific to ‘Target Columns’ are passed
to an LLM (Gemma) using a dedicated conflict-
detection prompt for semantic parsing (see Figure
12 in Appendix). The model returns a structured
JSON report consisting of conflicting rule groups,
overlapping target columns, a concise explanation
of the conflict, and a recommendation on which
rules to discard. Rules flagged for removal are
purged before any rubric scoring or downstream
validation. While ours is a rule-type-agnostic con-
flict detector, there exist logic-programming solu-
tions (Corea and Thimm, 2020) limited to conflict
detection among FD rules (e.g., Cross-Column De-
pendency or Dependency Constraints) but they do
not generalize to rules of arbitrary rule types.

Rubric-Based Rule Evaluation An eight-point
rubric (Hashemi et al., 2024) assesses each surviv-
ing rule card. Using a small data sample and the
complete table schema, Gemma-3-12B assigns one
of these labels to each rule: Duplicate (identical to
another rule), Redundant (subsumed by a stricter
rule), Trivial (enforced already by schema or data
types), Risk-false-positive (likely to break as valid
data evolves), Miscategorized (tagged under the
wrong DQ category), Ambiguous (unclear word-
ing or missing logic), Hallucinated-overly-specific
(overly narrow, often unrealistic constraints; e.g.,
Latitude must be exactly between 40.71271 and

40.71279), High-value, Correct, or Correct-fixable.
Only rules categorized as High-value, Correct, or
Correct-fixable proceed to the next deterministic
filtering phase (prompt in Figure 15).

2.3 Python Code Generation

In the final stage, each rule card is translated into
executable Python code using Qwen-2.5-Coder (32
B) (Bai et al., 2023), an LLM specialized for code
generation. This translation enables fine-grained,
cell-level validation by producing a Boolean error
mask when the generated code is run on the dataset,
allowing comparisons against ground truth labels.

To perform this translation, the system con-
structs a comprehensive prompt for each rule card,
integrating five key context components: (i) ta-
ble schema, (ii) column-summary block containing
profiles for all attributes listed in the rule’s Target
Columns, (iii) the enriched rule card including both
specification and pseudocode, (iv) a representative
sample of rows from the dataset, and (v) few-shot
examples drawn from a curated library of domain-
and rule-type–specific code snippets. We dynami-
cally select these few-shot examples by embedding
both the current table description and all stored
code snippets using sentence embeddings, ranking
them by cosine similarity, and inserting the most
relevant samples into the prompt. The fully as-
sembled prompt is submitted to the LLM, which
generates check(df) function to find invalid cells
based on the specified rule. We run each snippet
on a few rows; if it errors, the exception is fed back
and the model repairs the code (see Figure 3).

Code Snippet

import pandas as pd
REF_FILE = "external_knowledge_base/uscities.csv"

def check(df: pd.DataFrame) -> list[int]:

"""
Flag rows where `state` is null, not two characters, or not
found in the two-letter USPS list from uscities.csv.
"""
# Load reference abbreviations (uppercase for exact match)
ref_states = (

pd.read_csv(REF_FILE, usecols=["state_id"], dtype=str)
["state_id"].str.strip().str.upper().unique()

)
# Normalise the target column
col = df["state"].astype(str).str.strip().str.upper()
# Build invalid mask
invalid_mask = (

col.isna() | # null
(col.str.len() != 2) | # not two letters
(~col.isin(ref_states)) # not in reference list

)
# Return offending row indices
return sorted(df.index[invalid_mask].tolist())

Figure 3: Executable code snippet generated by Qwen-
2.5-Coder on Beers dataset (Hould, 2017).
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2.4 End-to-End DQ Assessment Workflow

The framework accepts a single noisy CSV file
and sequentially executes each check(df) function
generated earlier. Each function returns the row
indices that violate its Rule Card’s target column.
We aggregate these indices into a unified error mask
that captures all identified invalid cells across the
dataset. Leveraging this mask, the system generates
a comprehensive Quality Assessment Report that
enumerates every flagged cell, along with the name
of the triggering rule and the exact Python snippet
responsible for its detection to help data stewards
in data inspection (see Appendix A.4 example).

3 Experiments

Our assessment begins with clean benchmark ta-
bles from the ED2 (Neutatz et al., 2019a) and
RAHA (Mahdavi et al., 2019a) studies, as well
as popular public datasets, into which we systemat-
ically inject synthetic errors using the standardized
REIN (Abdelaal et al., 2023) corruption model.
This unified corruption strategy ensures consis-
tency across datasets, allowing fair comparisons
with baseline methods widely used in prior work.
Then we compare the performance of our frame-
work with baseline approaches under various noise
conditions. Subsequently, we assess the contribu-
tion of the inlier detection module, evaluate the
impact of incorporating domain-specific few-shot
examples, and benchmark our approach against
established error detection frameworks.

3.1 Benchmark clean data with unified noise

We begin with clean versions of ten well-known
tabular datasets spanning both transactional and
sensor-like sources—namely Adult (Becker and Ko-
havi, 1996), Beers (Hould, 2017), Bikes (Fanaee-T
and Gama, 2013), Breast Cancer (Wolberg, 1992),
HAR (Anguita et al., 2013), Movies (Das et al.,
2015), Nasa (Brooks et al., 2014), Rayyan (Ouz-
zani et al., 2016), Soil Moisture (Riese and Keller,
2018), and Tax (Mahdavi et al., 2019b).

To create a balanced yet challenging testbed, we
apply the five-component error-injection frame-
work from REIN to each dataset. It introduces
diverse error types: keyboard-based typos, explicit
and implicit missing values, cell swaps, and Gaus-
sian noise. Each error type is injected indepen-
dently at three noise levels—10%, 20%, and 30%
of cells—resulting in 30 corrupted datasets. A set
of baseline error detection techniques—ED2, FA-

HES, KATARA (Chu et al., 2015), OUTLIER IQR
(Zhang, 2013), OUTLIER IF (Liu et al., 2012),
OUTLIER SD (Zhang, 2013), MAX-ENTROPY

(Abedjan et al., 2016), and MIN-K (Abedjan et al.,
2016)—alongside our proposed approach execute
on all the corrupted datasets. Table 2 captures the
reported F1 scores (See Appendix A.8).

3.2 Ablation: Role of the Inlier Module
We re-ran the pipeline (in Section 3.1) with the
statistical inlier filter turned off, keeping all down-
stream components unchanged. As shown in Ta-
ble 3, F1 scores declined significantly across all
datasets under varying noise levels (10%, 20%,
and 30%), emphasizing the filter’s critical role in
providing a clean context to the LLM to reduce
false-positive rule generation. With increased noise
in the datasets, we observe that the significance
of the Inlier Detection module increases (i.e., the
jump in accuracy with the Inlier Detection module
increases as the noise level increases in the dataset).
At low noise levels (like 10% noise), the ablation
also reveals that the advantage of having the Inlier
Detection module is not significant (in some cases,
the F1 scores without Inlier Detection at low noise
are even better, arising from the inconsistencies in
the sample data frames used for analysis).

In our framework, the subsequent pipeline stages
are agnostic to the internal design of the inlier/out-
lier detection stage, treating it as a black box.
Therefore, this stage can incorporate a variety of al-
gorithms—whether clustering-based or other tech-
niques—executed sequentially to detect and filter
inliers/outliers. Such an approach enhances the
robustness of the overall framework by ensuring
that downstream stages operate on a cleaner dataset
with minimal noise, albeit at the cost of additional
computational overhead.

3.3 Cross-Domain Robustness Evaluation
To gauge robustness across domains, we inject
synthetic errors (using the five-component error-
injection strategy in Section 3.1) to 4 datasets that
cover manufacturing (3D Printer (Okudan, 2019)),
environmental monitoring (Water-Quality (Poch,
1993)), scholarly communication (Citation (Das
et al., 2015)), and energy consumption (Power (He-
brail and Berard, 2012)) with 30% noise. We run
the tests in two modes—one using domain-specific
few-shot examples and one without—and report the
resulting F1 scores side-by-side in Table 7, high-
lighting the merit of domain-specific examples.
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Dataset / Noise ED2 FAHES KATARA IQR IF SD Max Entropy Min-K Ours

Adult
10% 0.96 0.01 0.03 0.00 0.00 0.00 0.92 0.05 0.94
20% 0.56 0.01 0.01 0.00 0.00 0.00 0.59 0.00 0.80
30% 0.36 0.02 0.06 0.00 0.00 0.00 0.00 0.02 0.63

Beers
10% 0.64 0.05 0.59 0.00 0.00 0.00 0.61 0.61 0.72
20% 0.80 0.04 0.52 0.00 0.00 0.00 0.75 0.55 0.82
30% 0.71 0.03 0.52 0.00 0.00 0.00 0.53 0.53 0.85

Bikes
10% 0.16 0.01 0.13 0.00 0.00 0.00 0.00 0.01 0.82
20% 0.39 0.01 0.23 0.00 0.00 0.00 0.00 0.00 0.83
30% 0.39 0.02 0.24 0.00 0.00 0.00 0.00 0.10 0.82

Breast Cancer
10% 0.13 0.01 0.14 0.00 0.00 0.00 0.00 0.00 0.90
20% 0.46 0.09 0.09 0.00 0.06 0.00 0.36 0.19 0.74
30% 0.34 0.04 0.32 0.00 0.00 0.00 0.33 0.41 0.89

HAR
10% 0.32 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.42
20% 0.53 0.00 0.05 0.10 0.00 0.00 0.10 0.07 0.54
30% 0.49 0.00 0.12 0.00 0.00 0.00 0.31 0.00 0.55

Movies
10% 0.75 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.71
20% 0.76 0.11 0.02 0.00 0.00 0.00 0.54 0.32 0.71
30% 0.77 0.07 0.03 0.00 0.00 0.00 0.00 0.00 0.68

Nasa
10% 0.88 0.03 0.00 0.00 0.00 0.00 0.80 0.05 0.89
20% 0.74 0.14 0.00 0.00 0.00 0.00 0.65 0.14 0.85
30% 0.91 0.05 0.00 0.00 0.00 0.00 0.93 0.05 0.91

Rayyan
10% 0.94 0.16 0.35 0.00 0.00 0.00 0.94 0.42 0.94
20% 0.95 0.22 0.35 0.00 0.00 0.00 0.95 0.47 0.97
30% 0.95 0.17 0.35 0.00 0.00 0.00 0.95 0.47 0.96

Soil Moisture
10% 0.01 0.00 0.00 0.00 0.00 0.00 0.08 0.01 0.80
20% 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.80
30% 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.80

Tax
10% 0.13 0.01 0.02 0.00 0.00 0.00 0.01 0.00 0.29
20% 0.25 0.02 0.11 0.00 0.00 0.00 0.01 0.00 0.34
30% 0.24 0.01 0.06 0.00 0.00 0.00 0.00 0.00 0.32

Table 2: F1 scores for error detection on tabular datasets corrupted with unified noise levels of 10%, 20%, and 30%,
using the REIN error-injection strategy.

Dataset Accuracy (with, without) Inlier Detection
10% noise 20% noise 30% noise

Adult (0.94, 0.72) (0.80, 0.77) (0.63, 0.48)
Beers (0.72, 0.68) (0.82, 0.68) (0.85, 0.43)
Bikes (0.82, 0.81) (0.83, 0.81) (0.82, 0.81)
Breast Cancer (0.90, 0.85) (0.74, 0.72) (0.89, 0.72)
HAR (0.42, 0.51) (0.54, 0.52) (0.55, 0.53)
Movies (0.71, 0.69) (0.71, 0.69) (0.68, 0.66)
Nasa (0.89, 0.73) (0.85, 0.71) (0.91, 0.32)
Rayyan (0.94, 0.94) (0.97, 0.94) (0.96, 0.74)
Soil Moisture (0.80, 0.75) (0.80, 0.55) (0.80, 0.04)
Tax (0.29, 0.25) (0.34, 0.23) (0.32, 0.31)

Table 3: Inlier Detection boosts error detection F1 score.

3.4 Evaluation on Standard DQ Benchmarks

We benchmark our framework on three data corrup-
tion suites, using the corresponding noisy datasets
provided by each source. (i) We begin with the
REIN benchmark (Abdelaal, 2024), which applies
the five-component error-injection on six domain-
diverse tables. Our results, compared with base-
lines including ED2, FAHES (Qahtan et al., 2018),
KATARA, outlier detectors (IQR, IF, and SD),
Max-Entropy, and Min-K, are presented in Table
4 (matching our reported results, Abdelaal et al.
(2024) also observe that the outlier detectors are
not efficient on datasets like Beers, Flights, Hos-
pital, and Nasa). (ii) We then evaluate on the six
datasets from the ED2 benchmark (Neutatz et al.,

2019b), using the same set of baselines; results
appear in Table 5. (iii) Finally, we test on the five
datasets from RAHA (Mahdavi et al., 2019b), with
comparative performance reported in Table 6. Our
results for the datasets Beers, Flights, and Hospital
differ on ED2 and Raha due to the difference in
their noise.

Observations: Across ten data sets and three
noise levels (refer to Table 2), our method records
the highest F1 in 26 of 30 settings, markedly sur-
passing the next best detector on challenging tables
such as Bikes, Breast Cancer, and Soil-Moisture.
With domain-tailored few-shots (refer to Table 7),
the Power-Consumption table’s F1 rises from 0.61
to 0.71, showing a clear gain over the generic
prompt. On the REIN benchmark (refer to Ta-
ble 4) our system posts the top score on 9 of 10
data sets—often by wide margins on Bikes, Breast
Cancer and Soil Moisture—while conceding only
Hospital to ED2.

Moreover, we conducted a systematic confidence
analysis (refer to Appendix A.1) to assess the reli-
ability of LLM-generated rules. We observed that
providing few-shot example guidance would not
only improve the overall quality of generated rules
but also lead to higher model confidence (or lower
hallucinations) and broader schema coverage.
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Dataset ED2 FAHES KATARA IQR IF SD Max Entropy Min-K Ours
Adult 0.57 0.00 0.02 0.00 0.00 0.00 0.57 0.00 0.59
Beers 0.99 0.59 0.03 0.00 0.00 0.00 0.91 0.69 1.00
Bikes 0.65 0.14 0.30 0.27 0.14 0.22 0.27 0.31 0.77
Breast Cancer 0.49 0.09 0.09 0.00 0.00 0.06 0.48 0.28 0.89
Flights 0.86 0.03 0.11 0.00 0.00 0.00 0.84 0.65 0.89
HAR 0.48 0.00 0.05 0.00 0.11 0.00 0.47 0.41 0.60
Hospital 0.99 0.01 0.08 0.00 0.00 0.00 0.74 0.5 0.86
Mercedes 0.32 0.00 0.00 0.00 0.01 0.01 0.21 0.00 0.73
Nasa 0.76 0.05 0.13 0.00 0.00 0.00 0.32 0.22 0.96
Soil Moisture 0.05 0.00 0.00 0.00 0.04 0.02 0.03 0.03 0.59

Table 4: REIN Benchmark Evaluation: Error Detection Accuracy (F1) of Our Approach vs. Baselines

Dataset ED2 Ours
Beers 0.98 1.00
Flights 0.86 0.88
Hospital 1.00 0.82
Restaurant 0.76 0.61
Soccer 0.81 0.81

Table 5: ED2 benchmark (F1 scores).

Dataset RAHA Ours
Beers 0.99 0.95
Flights 0.82 0.89
Hospital 0.75 0.86
Movies 0.84 0.85
Rayyan 0.78 0.75

Table 6: RAHA benchmark (F1 scores).

Dataset Few-shot examples
With domain-
specific

Without domain-
specific

3D Printer 0.68 0.66
Citation 0.80 0.78
Power-Consumption 0.71 0.61
Water-Quality 0.21 0.17

Table 7: Error detection F1 scores with vs. without
domain-specific few-shot examples.

4 Conclusion

We introduced a fully automated, three-stage frame-
work that integrates large-scale statistical inlier de-
tection, LLM-based semantically valid rule gen-
eration, and code synthesis to produce executable
data-quality validators for tabular datasets. Each
quality rule is encapsulated as a structured, human-
readable rule card, promoting transparency and ex-
pert oversight. Conflicts among generated DQ rules
are resolved agnostically to rule types and consoli-
dated using a rubric for consistency. Our approach
scales to large tabular datasets by eliminating the
need for cell-level LLM inference calls. Evalu-
ated on both REIN synthetic stress benchmarks
and standard datasets from ED2 and RAHA, our
approach consistently outperforms existing detec-
tors in accuracy. By incorporating external domain
knowledge and domain-specific few-shot examples
in the prompts, our approach allows reliable and
domain-agnostic data quality assurance.

5 Limitations

Our current framework operates in a single-table
setting. However, in practice, data is often orga-
nized into multiple related tables rather than being
stored in a single large table. It is not feasible to
directly apply the framework independently to each
table in a multi-table schema, since dependencies
between tables must be considered and incorpo-
rated into the generated rules. Our framework is ex-
tensible and can support new DQ rule types by sim-
ply providing their corresponding prompt templates
and example rule cards. While we demonstrated
Python code generation for rule enforcement on
datasets, the framework also supports source code
generation in SQL.
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A Appendix

A.1 Confidence Analysis with and without
few-shot examples

To assess the reliability of the rules generated by
the large language model (LLM), we conducted a
systematic confidence analysis across four datasets:
Beers (Hould, 2017), SmartFactory (Birgelen and
Niggemann, 2018), NASA (Brooks et al., 2014),
and Adult (Becker and Kohavi, 1996) under two
prompting conditions: (i) with few-shot exemplars
and (ii) without few-shot exemplars. Our hypoth-
esis was that providing few-shot guidance would
not only improve the overall quality of generated
rules but also lead to higher model confidence and
broader schema coverage.

For each given prompt LLM produces multiple
candidate rules per rule type. To make comparisons
fair across datasets and rule types, we evaluated the
confidence and coverage for each LLM response
and then aggregated across datasets.

• Per-rule Confidence: We captured the log prob-
abilities produces at token level in a the generated
rule. The obtained log-probabilities are then used
to compute Linear probability.

• Coverage of Target Columns: To measure the
breadth of the generated rules, we defined cover-
age as the proportion of schema columns touched
by at least one rule (where we consider the final
set of rules post the guardrail filter processing).
Given X as the set of unique target columns ref-
erenced in generated rules and Y as the set of
columns in the dataset schema, coverage was
computed as:

Coverage =
|X ∩ Y |

|Y | (1)

• Dataset-level Aggregation: Because the num-
ber of rules varied across conditions and datasets,
we adopted a macro-averaging strategy: coverage
and confidence were computed per dataset and
per rule type, then averaged across datasets. This
normalization ensures that datasets with larger
schema or more generated rules do not dominate
the analysis.

The results of confidence and coverage of differ-
ent rule types are shown in Table 8. Confidence
values are averaged linear probabilities expressed
on a scale from 0 to 100, where higher values indi-
cate greater model certainty. Coverage values range

from 0 to 1 and represent the fraction of schema
columns targeted by at least one generated rule.

Here are our observations from this analysis:

• When compared to the without few-shot exam-
ples scenario, the confidence metric for DQ Rule
generation across Rule Types is more under the
few-shot examples scenario. This demonstrates
that the model hallucinations can be contained
with the use of few-shot examples.

• When compared to the without few-shot exam-
ples scenario, the coverage metric for DQ Rule
generation across Rule Types is more under the
few-shot examples scenario. This demonstrates
that the model diversity can be enhanced with the
use of the few-shot examples.

Please note that the few-shot examples referred
to here also consist of domain-specific examples.

A.2 Background of DQ Rules
Table 9 presents an example dataset illustrating
different types of data quality issues discussed in
our paper.

• Reference Table Validation: Each ZIP Code in
the Warehouse column should be a valid entry of
the reference table with postal codes.

• Missing Value Identification: The Product-
Name value is missing for the record with Pro-
ductID P2002.

• Pattern Matching: The LastRestock date for the
record with ProductID P2004 does not follow the
YYYY-MM-DD format.

• Value Set Constraint: Category col-
umn cannot allow values outside of set
{Electronics,Accessories}.

• Range Constraints: Stock TurnoverRate must
consist of values in the range [0, 100]. Quantity
should be a positive integer.

• Uniqueness Constraint: The ProductID value
P2001 should not repeat.

• Format Compliance: The ProductID should be
of the form P ([0− 9]){4} , e.g: P1011, P3002,
etc.

• Data Type Validation: The ‘LastRestock’ col-
umn must be a date type.
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Rule Type Conf. (Linear, With FS) Conf. (Linear, Without FS) Coverage (With FS) Coverage (Without FS)
CROSS_COLUMN_VALIDATION 96.17 91.67 0.494 0.480
DATA_TYPE_VALIDATION 98.23 93.73 0.848 0.875
DEPENDENCY_CONSTRAINTS 97.03 91.14 0.665 0.565
FORMAT_COMPLIANCE 96.40 92.85 0.678 0.278
RANGE_CONSTRAINTS 96.13 81.95 0.490 0.324
TEMPORAL_CONSISTENCY_CHECKS 97.20 86.69 0.510 0.414
Average 96.86 89.67 0.614 0.489

Table 8: Average rule confidence (linear probabilities) and target-column coverage across Beers, SmartFactory,
NASA, and Adult datasets. Results are reported per rule type under two prompting conditions: with few-shot
examples and without few-shot examples. Coverage is normalized by schema size.

ProductID ProductName Price Quantity Category LastRestock Warehouse TurnoverRate
P2001 Laptop Pro 15 1299.99 50 Electronics 2024-12-15 948102 45.0
P2002 89.99 200 Accessories 2025-30-10 30301 82.5
P2001 Phone Charger 99999.50 300 Bike 2025-06-15 60601 68.5
P2004 Bluetooth Speaker 45.50 -5 Electronics 03-14025 60601 56.5

PPX2001 Laptop Pro 15 1299.99 50 Electronics 2024-12-15 30301 75.0
P2005 Gaming Mouse 59.99 100 Electronics 2025-05-20 60601 9059.5

Table 9: A sample Product Inventory dataset. Error cells are colored.

DQ Dimension DQ Rule Type Sample DQ Rules (Rule Cards)

Conformity Pattern Matching
∀x ∈ article_pagination, x |=
[0-9]+-[0-9]+
∀x ∈ article_language, x |= [a-z]{3}

Validity

Business rule validation
Discount ≤ 0.2×Order_V alue

Discount_Amount
Original_price ≤ 0.5

Computation Consistency Order_Total =∑n
i=1 Item_Pricei ×Quantityi

Dependency Constraints
order_status == ’Returned’ ⇒
return_initiation_date ̸= NULL

Range Constraints
0% ≤ discount ≤ 90%
6 ≤ warranty_months ≤ 60

Temporal Consistency
order_date ≤ estimated_delivery_date
actual_delivery_date ≤ return_date

Table 10: Additional examples of DQ Rules categorized by DQ Dimensions and DQ Rule Types (Movies dataset).

A.3 Examples of Conflicting Rules

Conflicts may arise both within and across rule
types among the generated DQ rules. Figure 4 de-
picts contradictory rules of the same rule type aris-
ing from inconsistencies in the sample data frames
used across iterations (e.g., one sample might in-
clude only ‘Male’ and ‘Female’ in a gender column,
while another might also include ‘Other’) during
the generation of the rule cards.

Figure 5 depicts contradictory rules across rule
types arising from language model hallucinations
(e.g., conflicting rules such as one requiring trans-
action_date to follow the ‘YYYY-MM-DD’ format,
and another limiting it to just a 4-digit year).

We could resolve conflicts among DQ rules ei-
ther by incorporating user preferences on the pri-
orities of DQ rule types, or by using the reasoning
capabilities of LLMs to retain only the semantically
relevant DQ rules, or even by dropping DQ rules
one by one that are in conflict.

A.4 Prompts used in our End-to-End pipeline
system

A multi-stage prompting strategy generates the rule
cards, where each stage enriches the context pro-
vided to the language model incrementally. The
process begins with a TASK header, which speci-
fies the rule category, its intended scope, and the
required JSON structure. Followed by are an ex-
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Rule Card
{

"Rule Type": "Value Set Constraints",
"Rule Name": "Gender Must Be Binary",
"Rule Description": "`gender` must be either `Male` or `Female`",
"Target Columns": [

"gender"
]

}

Rule Card
{

"Rule Type": "Value Set Constraints",
"Rule Name": "Gender Must Include Non-Binary Options",
"Rule Description": "`gender` must be one of [`Male`, `Female`, `Other`
]",
"Target Columns": [

"gender"
]

}

Figure 4: Conflicting rules due to inconsistencies in the sampled data frames of the Hospital dataset (Neutatz et al.,
2019b)

Rule Card
{

"Rule Type": "Format Compliance",
"Rule Name": "Timestamp Format for Transaction Date",
"Rule Description": "`transaction_date` must follow the format
'YYYY-MM-DD HH:MM:SS'",
"Target Columns": [

"transaction_date"
]

}

Rule Card
{

"Rule Type": "Range Constraints",
"Rule Name": "Transaction Date Must Be a Year",
"Rule Description": "`transaction_date` must only contain a 4-digit
year (e.g., 2023), without time or day information",
"Target Columns": [

"transaction_date"
]

}

Figure 5: Conflicting rules due to language model hallucinations of the Hospital dataset (Neutatz et al., 2019b)

ample schema and several worked rule examples to
establish a concrete pattern for the model to emu-
late. To adapt to the target domain, we dynamically
append domain-specific few-shot examples, rules
generated from previous iterations, and relevant
knowledge-base snippets (e.g., ZIP codes, phone
formats) to ensure alignment with the target domain
and vocabulary. Finally, we add a live schema frag-
ment from the current batch of columns (example
schema is shown in Figure 6), keeping the prompt
within the model’s context window while allowing
for column-specific rule generation. An example
column summary is shown in Figure 7.

Figure 8 shows the complete prompt used for
the Format Compliance rule type. The initial rule
cards generated for the Beers dataset (Hould, 2017)
appear in Figure 9. These are refined through
an enrichment prompt (Figure 10), resulting in
the enhanced rule cards shown in Figure 11. A
conflict-resolution stage follows (prompt in Figure
12), with input and resolved rules shown in Figure

13 and Figure 14, respectively. Finally, we perform
a rubric-based filtering using the prompt in Fig-
ure 15, yielding the final rule cards in Figure 16.
The code generated corresponding to these rules is
shown in Figure 17.

Rubric-based analysis can also help assign pri-
ority levels to generated rules based on rubric rec-
ommendation labels such as ‘high-value‘. And
we can use the high-priority rules for data quality
assessment in resource-constrained environments.

Appendix A.5, Appendix A.6 and Appendix A.7
shows different rules generated by our system for
Breast Cancer (Wolberg, 1992), Bike (Fanaee-T
and Gama, 2013) and Rayyan (Ouzzani et al., 2016)
datasets.

A.5 Generated Rules for the Breast-Cancer
Dataset

Table 11, Table 12, Table 13 and Table 21 list all
rules produced by our pipeline for the breast-cancer
data set, grouped by rule type. Each entry reflects
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Table Schema:
CREATE TABLE ( instant INTEGER -- Index of the data in the

dataset. Eg. 1, 11592, 11578, 11579, 11580
dteday DOUBLE -- time interval of the given data. Eg.
359399.01666666666, 368207.06666666665, 368807.06666666665,
368831.06666666665, 368855.06666666665
season INTEGER -- seasonal attribute. Belongs to the set: [1, 2,
3, 4]
yr INTEGER -- year attribute of the data. Belongs to the set:
[0, 1]
mnth INTEGER -- month of the data. Eg. 5, 7, 12, 8, 3
hr INTEGER -- hour of the data. Eg. 17, 16, 13, 15, 14
holiday INTEGER -- whether day was holiday or not. Belongs to
the set: [0, 1]
weekday INTEGER -- which day of the week. Belongs to the set:
[6, 0, 1, 2, 3, 4, 5]
workingday INTEGER -- whether it is working day or not. Belongs
to the set: [0, 1]
weathersit INTEGER -- attribute describing weather conditions.
Belongs to the set: [1, 2, 3, 4]
temp DOUBLE -- temperature of the day. Eg. 0.62, 0.66, 0.64,
0.7, 0.6
atemp DOUBLE -- temperature in the morning of the day. Eg.
0.6212, 0.5152, 0.4091, 0.3333, 0.6667
hum DOUBLE -- humidity of the day. Eg. 0.88, 0.83, 0.94, 0.87,
0.7
windspeed DOUBLE -- speed of the wind. Eg. 0.0, 0.1343, 0.1642,
0.194, 0.1045
casual INTEGER -- type of customer. Eg. 0, 1, 2, 3, 4
registered INTEGER -- users that have registered through
application. Eg. 4, 3, 5, 6, 2
cnt INTEGER -- count of something that is recorded. Eg. 5, 6, 4,
3, 2

)

Figure 6: An example schema generated by the system on Bike dataset (Fanaee-T and Gama, 2013).

Column Profile:
{
"Name": "weekday",
"Expected Type": "int",
"Unique Values": [0, 1, 2, 3, 4, 5, 6],
"distinct_count": 7,
"Min Value": 0.0,
"Max Value": 6.0,
"Duplicates %": 99.96

}

Figure 7: An example column profile for weekday gen-
erated by the system on Bike dataset (Fanaee-T and
Gama, 2013).

the enriched version of the rule—including the clar-
ified description and pseudocode — after conflict
resolution and rubric filtering.

A.6 Generated Rules for the Bike Dataset

Table 18 lists all rules produced by our pipeline
for the breast-cancer data set, grouped by rule
type. Each entry reflects the enriched version of
the rule—including the clarified description and
pseudocode — after conflict resolution and rubric
filtering.

A.7 Generated Rules for the Rayyan Dataset

Table 19 and Table 20 lists all rules produced by
our pipeline for the Rayyan data set, grouped by
rule type. Each entry reflects the enriched version
of the rule—including the clarified description and
pseudocode — after conflict resolution and rubric
filtering.

A.8 Results with Precision, Recall and F1
Score.

Table 22 shows the earlier F1 comparison with
precision-recall breakdowns, offering a fuller view
of detector performance across all datasets and
noise levels.
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Task:
Generate Format Compliance for the schema below. A rule must flag any value that does not match the expected data type of its column and may add length, format, or categorical

constraints when appropriate. Avoid vague comparisons (e.g. “higher” without a reference point) and do not impose string rules on numeric columns.

What is Format Compliance?
- Some columns must follow a specific format (e.g., phone numbers, email addresses, date formats, or identification numbers).
- If a value does not match the expected format, it should be flagged as invalid.
- Format compliance rules help maintain consistency and enable seamless data processing.
- Do Not enforces a strict format on a naturally diverse column (e.g., names, addresses, product descriptions).
- Do Not impose arbitrary constraints without a clear logical basis (e.g., restricting email domains, forcing specific city names).
- Do Not rule unnecessarily limits valid values where variation is expected (e.g., requiring specific phone numbers).

Example Schema:

```sql
CREATE TABLE employee_records (

employee_id VARCHAR(10) -- "EMP12345"
email VARCHAR(255) -- john.doe@example.com
phone_number VARCHAR(15) -- +1-202-555-0173
date_of_birth DATE -- 1985-06-15
postal_code VARCHAR(10) -- 10001 / SW1A 1AA
ssn VARCHAR(11) -- 123-45-6789

)
```

Example Format Compliance Rules:

```json
[

{"Rule Name":"Employee ID Follows 'EMP' + Digits",
"Rule Description":"`employee_id` must begin with 'EMP' and

be followed by digits (e.g., EMP12345).",
"Target Columns":["employee_id"]},
{"Rule Name":"Email Must Follow Standard Format",
"Rule Description":"`email` must contain one '@' and a valid

domain (e.g., john.doe@example.com).",
"Target Columns":["email"]}, ..

```

Domain Specific Few-Shot Examples:

```json
[

{
"Rule Name": "ICD-10 Code Must Follow Standard Pattern",
"Rule Description": "The `icd10_code` column must match the ICD-10
format: one uppercase letter, two digits, optionally a period and
one to four alphanumeric characters (e.g., 'E11.9', 'M54.50').
Any value outside this pattern should be flagged as invalid.",
"Target Columns": ["icd10_code"]

}...

Rules From Previous Iterations For Test Schema:
```json

[
{

"Rule Name": "State Must Be Two-Letter Lowercase Code",
"Rule Description": "The `State` column must contain a valid two-letter
U.S. state abbreviation in lowercase (e.g., 'al', 'ak').",
"Target Columns": ["State"]

},
{

"Rule Name": "Phone Number Must Be 10 Digits",
"Rule Description": "The `PhoneNumber` column must contain exactly
ten numeric digits with no separators (e.g., '2053258100').",
"Target Columns": ["PhoneNumber"]

}...

Instructions:

Instructions:
1. Use the schema provided to generate format compliance rules.
2. Follow the example format to define how values should be structured.
3. Ensure that every column with a predefined format has a corresponding rule.
4. Use clear descriptions so that the format requirements are well understood.
5. MAKE SURE TO GENERATE PROPER JSON FORMAT.
Write atleast 15 rules. Do not write anything other than rules.
Test Input:

Test Schema:
“‘sql
...
“‘
Start generating 15 rules in the specified JSON format.

Figure 8: Prompt Template to generate Rule Cards for Rule Type ‘Format Compliance’ for Beers dataset (Hould,
2017)
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Rule Card 1:
{

"Rule Name": "ABV Must Follow 0.XXX Decimal Format",
"Rule Description": "The `abv` column must be a decimal between 0 and
1 with a leading zero and up to three decimal places (e.g., 0.050,
0.090).",
"Target Columns": ["abv"]

}

Rule Card 2:
{

"Rule Name": "State Must Be Two-Letter Uppercase Code",
"Rule Description": "The `state` column must contain a valid two-
letter U.S. state abbreviation in uppercase (e.g., \"OR\", \"IN\").",
"Target Columns": ["state"]

}

Rule Card 3:
{

"Rule Name": "Beer Name Should Contain Letters, Numbers, or Spaces",
"Rule Description": "The `beer-name` column may include letters,
numbers, apostrophes, or spaces but no other special characters.",
"Target Columns": ["beer-name"]

}

Figure 9: Generated rule cards for Rule Type ‘Format Compliance’ for Beers dataset (Hould, 2017)
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Task:
TASK
For the given COMPARE_TABLE, COLUMN_PROFILE, and RULE:
1. Decide the rule’s usefulness and assign a rule **Status** from the table.
2. Explain briefly (≤ 30 words).
3. Always supply ‘Additional Information‘ (see rules below).

| Status label | When to use |
|——-|————-|
| **correct** | Rule fits the profile and adds value. |
| **incomplete** | Rule is conceptually right but missing details.|
| **incorrect_fixable** | Rule conflicts with data but can be repaired. |
| **incorrect_not_fixable** | Rule conflicts with data and cannot be salvaged. |
| **irrelevant** | Rule adds no value (e.g., metadata only). |
| **redundant** | Rule duplicates another (rare in single-rule mode). |
| **unimplementable** | Requires external data that is unavailable. |

Additional Information Requirements

Additional Information requirements
- If status is correct or incorrect_fixable, provide the Specification (optional) and Pseudocode bullets:

"Additional Information": { "Specification": "<clear rule text>", "Pseudocode": ["condition 1 → flag", "condition 2 → flag"]}

Otherwise use the ‘DROP RULE – . . . ’ string in Specification.

Value-set constraints:
- Only propose an explicit list of allowed values if the column’s ‘distinct_count’ is ≤ 30 (or the ‘Unique Values’ sample shows 30 or fewer items).
- Otherwise:
* mark the rule **incomplete** (needs different constraint), *or* propose a pattern / range / format check instead.

Pattern Matching constraints:
- Do not apply regex constraints to purely numeric columns;
- Avoid over-fitting: include only character classes that appear in all clean examples and omit hard-coded constants unless they are present in every value.

Few-shot Example COLUMN_PROFILE

Few-shot Example 1 — Incomplete rule fixed
COLUMN_PROFILE

{
"Name": "flight",
"Expected Type": "str",
"Pattern": "Unrecognized",
"distinct_count": 100,
"Some Unique Values": ['AA-3859-IAH-ORD', 'AA-1733-ORD-PHX', 'AA-1640-MIA-MCO', 'AA-518-MIA-JFK', 'AA-3756-ORD-SLC']

}
Few-shot Example COMPARE_TABLE

COMPARE_TABLE
| Correct | Noise |
| ————— | ————– |
| AA-3823-LAX-DEN | AA3823-LAX-DEN |
| AA-1165-JFK-MIA | AA-1165-JFKMIA |
| AA-3063-SLC-LAX | AA-3063SLC-LAX |
Few-shot Example

RULE

{
"Rule Name": "Flight Must Be a Valid String",
"Rule Description": "The `flight` column must contain only valid string values.",
"Target Columns": ["flight"]

}

EXPECTED JSON

```json
{

"Rule Name": "Flight Must Be a Valid String",
"Status": "incorrect_fixable",
"Reason": "Needs concrete airline-number-origin-dest pattern.",
"Additional Information": {

"Specification": "flight must match airline-number-origin-dest pattern.",
"Pseudocode": [
"if flight is null → flag",
"if flight does not match ^[A-Z]\\{2\\}-\\d{1,4}-[A-Z]{3}-[A-Z]{3} → flag"

]
}

}
```
Test
COMPARE_TABLE ...
COLUMN_PROFILE ...
RULE

{
"Rule Type": "Format Compliance",
"Rule Name": "Flight Must Follow Airline-FlightNumber-Origin-Destination Format",
"Rule Description": "The `flight` column must follow the format: Airline Code (2-3 letters) - Flight Number (1-4 digits) -
Origin Airport Code (3 letters) - Destination Airport Code (3 letters). Examples include 'AA-59-JFK-SFO', 'UA-664-ORD-PHL'.
Any values not conforming to this pattern should be flagged as invalid.",
"Target Columns": ["flight"]

}

Figure 10: Prompt template to enrich Rule Cards (agnostic to Rule Type).
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Rule Card 1:
{

"Rule Type": "Format Compliance",
"Rule Name": "ABV Must Follow 0.XXX Format",
"Rule Description": "The `abv` column must be a decimal
between 0 and 1 with a leading zero and up to three
decimal places (e.g., 0.050).",
"Target Columns": ["abv"],
"Additional Information": {

"Specification": "Regex ^0\\.[0-9]{2,3}$ ; numeric
range 0 < abv < 1.",
"Pseudocode": [
"if abv is null → flag",
"if not re_match(^0\\.[0-9]{2,3}$, abv) → flag",
"if float(abv) <= 0 or float(abv) >= 1 → flag"

]
}

}

Rule Card 2:
{

"Rule Type": "Format Compliance",
"Rule Name": "State Must Be Two-Letter Uppercase Code",
"Rule Description": "The `state` column must hold a valid two-letter
U.S. state abbreviation in uppercase (e.g., \"OR\", \"IN\").",
"Target Columns": ["state"],
"Additional Information": {

"Specification": "Use states.csv state list for validation.",
"Pseudocode": [
"if state is null → flag",
"if len(state) != 2 → flag",
"if state.upper() not in states.csv → flag"

]
}

}

Rule Card 3:
{

"Rule Type": "Format Compliance",
"Rule Name": "Beer Name May Contain Letters, Numbers, Spaces",
"Rule Description": "The `beer-name` column may include letters,
numbers, spaces, and apostrophes but no other special characters.",
"Target Columns": ["beer-name"],
"Additional Information": {

"Specification": "Regex ^[A-Za-z0-9' ]+$ .",
"Pseudocode": [
"if beer_name is null → flag",
"if not re_match(^[A-Za-z0-9' ]+$, beer_name) → flag"

]
}

}

Figure 11: Enriched rule cards for Rule Type ‘Format Compliance’ for Beers dataset (Hould, 2017)
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Task:
You are a data-quality auditor. Given a JSON list of rule cards, your job is to flag pairs that cannot be enforced together (same column, incompatible expectations). TASK 1. Read the rule

list below.
2. Detect every conflicting pair (one JSON object per pair).
3. For each pair, output:
* ‘Rule Name‘ – the two rule titles in their original order
* ‘Target Columns‘ – the shared column names
* ‘Conflict Reason‘ – ≤ 20-word explanation
* ‘Remove Rule‘ – exactly one rule title to drop
* ‘Remove Reason‘ – ≤ 15-word justification

Do’s and Dont’s
Formatting Do’s
* Return a single JSON object under the key ‘conflicts‘.
* Wrap the JSON in triple back-ticks: “‘json . . . “‘.
* Use the property names shown below—no extras, no re-ordering.
Formatting Don’ts
* Do not write narrative text outside the fenced JSON.
* Omit pairs where ‘remove_rule‘ would be ‘None‘.
* Report each pair once; no duplicate or transitive listings.

Few-shot examples

```json
{

"conflicts": [
{

"rule_names": ["Gender Must Be Binary",
"Gender Includes Non-Binary Options"],

"target_column": "gender",
"conflict_reason": "allowed value lists disagree",
"remove_rule": "Gender Must Be Binary",
"removal_reason": "less inclusive"

}
]

}
```
Test instance
Now analyse the following rules

```json
[

{
"Rule Type": "Reference Table Verification",
"Rule Name": "State Must Follow US State Code Format",
"Rule Description": "The `state` column must contain a two-letter

abbreviation (e.g., NY, CO, CA, FL). Any value not on the official list is invalid.",
"Target Columns": ["state"],
"Reference Table": "uscities.csv",
"Additional Information": {

"Specification": "Validate against the two-letter state_id
field in `uscities.csv`; ignore `Country_phone_codes.csv`,
which is unrelated.",
"Pseudocode": [

"if state is null → flag",
"if len(state) != 2 → flag",
"if state.upper() not in us_state_abbrevs_from_csv → flag"

]
}

},
{

"Rule Type": "Format Compliance",
"Rule Name": "ABV Must Follow 0.XXX Format",
"Rule Description": "The `abv` column must be a decimal between 0 and 1 with a leading zero and up to three
decimal places (e.g., 0.050).",
"Target Columns": ["abv"],
"Additional Information": {

"Specification": "Regex ^0\\.[0-9]{2,3}$ ; numeric
range 0 < abv < 1.",
"Pseudocode": [
"if abv is null → flag",
"if not re_match(^0\\.[0-9]{2,3}$, abv) → flag",
"if float(abv) <= 0 or float(abv) >= 1 → flag"

]
}

},
{

"Rule Type": "Format Compliance",
"Rule Name": "State Must Be Two-Letter Uppercase Code",
"Rule Description": "The `state` column must hold a valid two-letter
U.S. state abbreviation in uppercase (e.g., \"OR\", \"IN\").",
"Target Columns": ["state"],
"Additional Information": {

"Specification": "Use states.csv state list for validation.",
"Pseudocode": [
"if state is null → flag",
"if len(state) != 2 → flag",
"if state.upper() not in states.csv → flag"

]
}

},........
```

Return your answer in the strict JSON form described above.
"""

Figure 12: Conflict resolution prompt for Beers dataset (Hould, 2017)
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Rule Card 1:
{

"Rule Name": "ABV Must Be 0–1 Ratio",
"Rule Description": "The `abv` column must be a decimal between 0 and 1
(e.g., 0.050).",
"Target Columns": ["abv"],
"Additional Information": {

"Specification": "`abv` must match ^0\\.[0-9]{2,3}$ and 0 < abv <
1.",
"Pseudocode": [
"if abv is null → flag",
"if not re_match(^0\\.[0-9]{2,3}$, abv) → flag",
"if float(abv) <= 0 or float(abv) >= 1 → flag"

]
}

}

Rule Card 2:
{

"Rule Name": "ABV Must Be Percentage 0–100",
"Rule Description": "The `abv` column must represent a percentage
between 0 and 100.",
"Target Columns": ["abv"],
"Additional Information": {

"Specification": "`abv` must match ^\\d{1,3}(\\.\\d+)?$ and 0 < abv
\leq 100.",
"Pseudocode": [
"if abv is null → flag",
"if not re_match(^\\d{1,3}(\\.\\d+)?$, abv) → flag",
"if float(abv) <= 0 or float(abv) > 100 → flag"

]
}

}

Rule Card 3:
{

"Rule Name": "State Must Be Two-Letter Uppercase",
"Rule Description": "The `state` column must be a valid two-letter U.S.
code in uppercase (e.g., OR, IN).",
"Target Columns": ["state"],
"Additional Information": {

"Specification": "`state` must match ^[A-Z]{2}$ and be in
us_state_list.",
"Pseudocode": [
"if state is null → flag",
"if not re_match(^[A-Z]{2}$, state) → flag",
"if state not in us_state_list → flag"

]
}

Rule Card 4:
{

"Rule Name": "State Must Be Two-Letter Lowercase",
"Rule Description": "The `state` column must be a valid two-letter U.S.
code in lowercase (e.g., or, in).",
"Target Columns": ["state"],
"Additional Information": {
"Specification": "`state` must match ^[a-z]{2}$ and be in
us_state_list.",
"Pseudocode": [

"if state is null → flag",
"if not re_match(^[a-z]{2}$, state) → flag",
"if state.upper() not in us_state_list → flag"

]
}

}

Figure 13: Generated Rule Cards which are given as input to conflict resolution module for Beers dataset (Hould,
2017)
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Conflict Resolve 1:
{
"conflicts": [

{
"rule_names": ["ABV Must Be 0–1 Ratio", "ABV Must Be
Percentage 0–100"],
"target_column": "abv",
"conflict_reason": "ratio vs percentage scale",
"remove_rule": "ABV Must Be Percentage 0–100",
"removal_reason": "incompatible with sample decimals"

}
]

}

Conflict Resolve 2:
{
"conflicts": [

{
"rule_names": ["State Must Be Two-Letter Uppercase",
"State Must Be Two-Letter Lowercase"],
"target_column": "state",
"conflict_reason": "uppercase vs lowercase requirement",
"remove_rule": "State Must Be Two-Letter Lowercase",
"removal_reason": "dataset uses uppercase codes"

}
]

}

Figure 14: Output generated by the conflict resolution module
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Task:
SYSTEM You are a senior data-quality engineer.
- USER Your task is to audit a set of draft rules. For each rule, decide which quality labels apply and justify your choice.

Example Schema:

Label catalogue (choose any, including none)
| Code | Meaning | Quick test |
|——|———|————|
| duplicate | Verbatim twin of another rule | Removing it changes nothing |
| redundant | Fully covered by a stricter rule | Violations already caught |
| trivial | Guaranteed by DDL / type / PK | Adds no extra protection |
| risk_false_positive | Likely to break as data evolve (hard dates, static lists, volatile policy limits) | High churn risk |
| mis-categorised | Belongs to a different DQ dimension | Wrong rubric |
| ambiguous | Unclear wording or missing comparator | Multiple readings |
| hallucinated_overly_specific | Relies on invented or unverifiable facts | No authoritative source |
| high_value | Precise, stable, non-trivial and catches real errors | Keep |
| correct | Sound rule that needs no change but not especially high value | Keep |
| incorrect_fixable | Flawed but fixable with minor edits | Revise |
(You may assign more than one label to a rule.)

Few-shot Examples:

```json
[

{ "rule_name": "Order Date Must Be YYYY-MM-DD",
"labels": ["high_value"],
"rationale": "precise ISO-date check adds coverage" },

{ "rule_name": "Order ID Must Be Integer",
"labels": ["trivial"],
"rationale": "column is already INTEGER in schema" },

{ "rule_name": "Customer ID Must Be Positive",
"labels": ["duplicate"],
"rationale": "same as 'ID Must Be Positive'" },

{ "rule_name": "Colour Must Be Red",
"labels": ["hallucinated_overly_specific","risk_false_positive"],
"rationale": "no domain source; too narrow" }

]
```

Do’s and Dont’s
Output rules
Dos
- Return a single fenced JSON array.
- Use keys rule_name, labels, rationale.
- Keep each rationale ≤ 20 words.
Donts
- Do not echo the rule text or write prose outside the JSON block.
- Do not list a pair twice or produce transitive duplicates.
Domain Few-shot Examples

[
{ "rule_name": "Email Must Follow Standard Format",

"labels": ["high_value"],
"rationale": "precise regex catches common email typos" },

{ "rule_name": "Campaign ID Must Start With 'CMP' + 6 Digits",
"labels": ["high_value"],
"rationale": "consistent primary key across campaigns" },

{ "rule_name": "Discount Rate Must Not Exceed 20 %",
"labels": ["risk_false_positive"],
"rationale": "business may raise limit seasonally" },

{ "rule_name": "Customer Name Must Be at Least 3 Characters",
"labels": ["trivial","ambiguous"],
"rationale": "length already enforced; unclear lower bound" },

{ "rule_name": "Country Code Must Be 'US'",
"labels": ["hallucinated_overly_specific"],
"rationale": "marketing database contains multiple regions" }

]...

Input Block:

(A) Table schema
test_schema
(B) Candidate rules
rulelist
(C) Ten-row sample
sample_rows
Output Format:

OUTPUT FORMAT

[
{ "rule_name": "<exact rule name>",

"labels": ["duplicate", "trivial"],
"rationale": "<= 20 words" },

. . .
]

Figure 15: Prompt Template to generate Rubric for the given Rule Cards (agnostic to Rule Type).
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Rule Card:
{

"Rule Name": "ABV Must Be 0–1 Ratio",
"Rule Description": "The `abv` column must be a decimal between 0 and 1
(e.g., 0.050).",
"Target Column": ["abv"],
"Additional Information": {

"Specification": "`abv` must match ^0\\.[0-9]{2,3}$ and 0 < abv <
1.",
"Pseudocode": [
"if abv is null → flag",
"if not re_match(^0\\.[0-9]{2,3}$, abv) → flag",
"if float(abv) <= 0 or float(abv) >= 1 → flag"

]
}

}

Rubric Recommendation:
{

"rule_name": "ABV Must Follow 0.XXX Decimal Format",
"labels": ["high_value", "correct"],
"rationale": "Precise format+range check for ABV, not covered
elsewhere and unlikely to generate false positives."

}

Rule Card:
{

"Rule Name": "State Must Be Two-Letter Uppercase",
"Rule Description": "The `state` column must be a valid two-letter U.S.
code in uppercase (e.g., OR, IN).",
"Target Column": ["state"],
"Additional Information": {

"Specification": "`state` must match ^[A-Z]{2}$ and be in
us_state_list.",
"Pseudocode": [
"if state is null → flag",
"if not re_match(^[A-Z]{2}$, state) → flag",
"if state not in us_state_list → flag"

]
}

Rubric Recommendation:
{

"rule_name": "State Must Be Two-Letter Uppercase Code",
"labels": ["high_value", "correct"],
"rationale": "Standard US state abbreviation check; clear,
stable, not redundant with other rules."

}

Figure 16: Input and output rules for the rubric module.
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Code Snippet

import re
import pandas as pd

_ABV_PATTERN = re.compile(r"^0\.[0-9]{2,3}$") # e.g. 0.050, 0.9 → no match

def check(df: pd.DataFrame) -> list[int]:
"""
Flag rows whose `abv` value is null, fails the 0.xxx regex, or
is not strictly between 0 and 1.

Returns
-------
list[int]

Sorted row indices that violate the rule.
"""
if "abv" not in df.columns:

raise KeyError("Missing required column: abv")

# Treat values as strings for pattern matching
abv_str = df["abv"].astype(str).str.strip()

# 1. null / NaN detection (string "nan" after astype handled later)
null_mask = df["abv"].isna()

# 2. regex validation
regex_mask = ~abv_str.str.match(_ABV_PATTERN)

# 3. numeric range (convert safely)
numeric = pd.to_numeric(df["abv"], errors="coerce")
range_mask = (numeric <= 0) | (numeric >= 1) | numeric.isna()

invalid_mask = null_mask | regex_mask | range_mask
return sorted(df.index[invalid_mask].tolist())

Code Snippet

import re, pandas as pd

_REGEX = re.compile(r"^[A-Z]{2}$") # two uppercase letters

def check(df: pd.DataFrame) -> list[int]:
if "state" not in df.columns:

raise KeyError("state column missing")
if "us_state_list" not in globals():

raise NameError("define global `us_state_list`")

s = df["state"].astype(str).str.strip().str.upper()
bad = s.isna() | ~s.str.match(_REGEX) | ~s.isin(globals()["us_state_list"])
return sorted(df.index[bad].tolist())

Figure 17: Executable code snippet generated by Qwen-2.5-Coder on Beers dataset (Hould, 2017).
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Rule Type Enriched Rule Card

Range Constraint

Rule Card 1:
"Rule Name": "Uniformity of Cell Shape Must Be an Integer",
"Rule Description": "The `Uniformity of Cell Shape` column must
contain only integer values.",
"Target Columns": ["Uniformity of Cell Shape"],
"Additional Information": {

"Specification":The `Uniformity of Cell Shape` column must
contain only integer values between 1 and 10.",
"Pseudocode": [

"if Uniformity of Cell Shape is null -> flag",
"if Uniformity of Cell Shape < 1 -> flag",
"if Uniformity of Cell Shape > 10 -> flag"

]
}

Rule Card 2:
"Rule Name": "Clump Thickness Must Be an Integer",
"Rule Description": "The `Clump Thickness` column must contain
only integer values.",
"Target Columns": ["Clump Thickness"],
"Additional Information": {

"Specification":The `Clump Thickness` column must contain
only integer values between 1 and 10.",
"Pseudocode": [

"if Clump Thickness is null -> flag",
"if Clump Thickness is not an integer -> flag",
"if Clump Thickness < 1 -> flag",
"if Clump Thickness > 10 -> flag"

]
}

Data Type Validation

Rule Card 1:
"Rule Name": "Sample Code Number Must Be an Integer",
"Rule Description": "The `Sample code number` column must contain
only integer values.",
"Target Columns": ["Sample code number"],
"Additional Information": {
"Specification":The `Sample code number` column must contain only
integer values.",
"Pseudocode": [
"if sample code number is null -> flag",
"if sample code number is not an integer -> flag"

]
}

Rule Card 2:
"Rule Name": "Marginal Adhesion Number Must Be an Integer",
"Rule Description": "The `Marginal Adhesion` column must contain
only integer values.",
"Target Columns": ["Marginal Adhesion"],
"Additional Information": {
"Specification":The `Marginal Adhesion` column must contain only
integer values.",
"Pseudocode": [
"if marginal adhesion is null -> flag",
"if marginal adhesion is not an integer -> flag"

]
}

Rule Card 3:
"Rule Name": "Single Epithelial Number Must Be an Integer",
"Rule Description": "The `Single Epithelial` column must contain
only integer values.",
"Target Columns": ["Single Epithelial"],
"Additional Information": {

"Specification":The `Single Epithelial` column must contain
only integer values.",
"Pseudocode": [

"if single epithelial is null -> flag",
"if single epithelial is not an integer -> flag"

]
}

Rule Card 4:
"Rule Name": "Bare Nuclei Number Must Be an Integer",
"Rule Description": "The `Bare Nuclei` column must contain only
integer values.",
"Target Columns": ["Bare Nuclei"],
"Additional Information": {

"Specification":The `Bare Nuclei` column must contain only
integer values.",
"Pseudocode": [

"if bare nuclei is null -> flag",
"if bare nuclei is not an integer -> flag"

]
}

Table 11: Rule types and their corresponding enriched rule cards for the Breast Cancer dataset. (Wolberg, 1992)
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Rule Type Enriched Rule Card

Value Set Constraint

Rule Card 1:
"Rule Name": "Uniformity of Cell Size Must Be from Approved Set",
"Rule Description": "The `Uniformity of Cell Size` column must be
one of [1, 4, 8, 10, 2, 3, 7, 5, 6, 9]. Any other value should be
flagged as invalid.",
"Target Columns": ["Uniformity of Cell Size"],
"Additional Information": {

"Specification":The `Uniformity of Cell Size` column must be
one of [1, 3, 5, 6, 7, 8, 9, 10].",
"Pseudocode": [

"if Uniformity of Cell Size is null -> flag",
"if Uniformity of Cell Size is not in [1, 3, 5, 6, 7, 8,
9, 10] -> flag"

]
}

Rule Card 2:
"Rule Name": "Uniformity of Cell Shape Must Be from Approved Set",
"Rule Description": "The `Uniformity of Cell Shape` column must be one of [1, 4,
8, 10, 2, 3, 5, 6, 7, 9]. Any other value should be flagged as invalid.",
"Target Columns": ["Uniformity of Cell Shape"],
"Additional Information": {

"Specification":The `Uniformity of Cell Shape` column must be
one of [1, 4, 8, 10, 2, 3, 5, 6, 7, 9].",
"Pseudocode": [

"if Uniformity of Cell Shape is null -> flag",
"if Uniformity of Cell Shape is not in [1, 4, 8, 10, 2,
3, 5, 6, 7, 9] -> flag"

]
}

Rule Card 3:
"Rule Name": "Marginal Adhesion Must Be from Approved Set",
"Rule Description": "The `Marginal Adhesion` column must be one
of [1, 5, 3, 8, 10, 4, 6, 2, 9, 7]. Any other value should be
flagged as invalid.",
"Target Columns": ["Marginal Adhesion"],
"Additional Information": {

"Specification":The `Marginal Adhesion` column must be one of
[1, 5, 3, 8, 10, 4, 6, 2, 9, 7].",
"Pseudocode": [

"if Marginal Adhesion is null -> flag",
"if Marginal Adhesion is not in [1, 5, 3, 8, 10, 4, 6, 2,
9, 7]
-> flag"

]
}

Rule Card 4:
"Rule Name": "Single Epithelial Cell Size Must Be from Approved Set",
"Rule Description": "The `Single Epithelial Cell Size` column
must be one of [2, 7, 3, 1, 6, 4, 5, 8, 10, 9]. Any other value
should be flagged as invalid.",
"Target Columns": ["Single Epithelial Cell Size"],
"Additional Information": {

"Specification":The `Single Epithelial Cell Size` column must
be one of [2, 7, 3, 1, 6, 4, 5, 8, 10, 9].",
"Pseudocode": [

"if Single Epithelial Cell Size is null -> flag",
"if Single Epithelial Cell Size is not in [2, 7, 3, 1, 6,
4, 5, 8, 10, 9] -> flag"

]
}

Rule Card 5:
"Rule Name": "Bland Chromatin Must Be from Approved Set",
"Rule Description": "The `Bland Chromatin` column must be one of
[3, 9, 1, 2, 4, 5, 7, 8, 6, 10]. Any other value should be
flagged as invalid.",
"Target Columns": ["Bland Chromatin"],
"Additional Information": {

"Specification":The `Bland Chromatin` column must be one of
[3, 9, 1, 2, 4, 5, 7, 8, 6, 10].",
"Pseudocode": [

"if Bland Chromatin is null -> flag",
"if Bland Chromatin not in [3, 9, 1, 2, 4, 5, 7, 8, 6,
10] -> flag"

]
}

Rule Card 6:
"Rule Name": "Class Must Be from Approved Set",
"Rule Description": "The `class` column must be one of [2, 4].
Any other value should be flagged as invalid.",
"Target Columns": ["class"],
"Additional Information": {

"Specification":The `class` column must be one of [2, 4]. Any
other value should be flagged as invalid.",
"Pseudocode": [

"if class is null -> flag",
"if class is not 2 -> flag",
"if class is not 4 -> flag"

]
}

Table 12: Rule types and their corresponding enriched rule cards for the Breast Cancer dataset. (Wolberg, 1992)
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Rule Type Enriched Rule Card

Missing Value Identification

Rule Card 1:
"Rule Name": "Sample Code Number Must Not Be NULL",

"Rule Description": "The `Sample code number` column must
contain a value in every row. Any NULL or empty value should be
flagged as invalid.",
"Target Columns": ["Sample code number"],
"Additional Information": {
"Specification":The `Sample code number` column must not be
null.",
"Pseudocode": [

"if Sample code number is null -> flag"
]

}

Rule Card 2:
"Rule Name": "Clump Thickness Must Be Present",

"Rule Description": "The `Clump Thickness` column must contain
a value in every row. Any NULL or empty value should be flagged
as invalid.",
"Target Columns": ["Clump Thickness"],
"Additional Information": {
"Specification":The `Clump Thickness` column must contain a
value in every row.",
"Pseudocode": [

"if Clump Thickness is null -> flag"
]

}

Rule Card 3:
"Rule Name": "Bare Nuclei Cannot Be Missing",
"Rule Description": "The `Bare Nuclei` column must not be NULL or
empty; it must contain a value.",
"Target Columns": ["Bare Nuclei"],
"Additional Information": {

"Specification":The `Bare Nuclei` column must not be NULL or empty",
"Pseudocode": [

"if Bare Nuclei is null -> flag"
]

}

Table 13: Rule types and their corresponding enriched rule cards for the Breast Cancer dataset. (Wolberg, 1992)
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Rule Type Enriched Rule Card
Pattern Matching

Rule Card 1:
"Rule Name": "Article Jcreated_at Must Match Date Format",
"Rule Description": "The `article_jcreated_at` column must match a date
format such as 'MM/DD/YY' or 'MM/DD/YYYY'.",
"Target Columns": ["article_jcreated_at"],
"Additional Information": {

"Specification": "The `article_jcreated_at` column must follow either
'MM/DD/YY' or 'MM/DD/YYYY' (two- or four-digit year).",
"Pseudocode": [
"if article_jcreated_at is null -> flag",
"if article_jcreated_at does not match
^\\d{2}/\\d{2}/(\\d{2}|\\d{4})$ -> flag"

]
}

Rule Card 2:
"Rule Name": "Author List Must Contain Braces",
"Rule Description": "The `author_list` column must be enclosed in curly
braces '{}'.",
"Target Columns": ["author_list"],
"Additional Information": {

"Specification": "Each value in `author_list` must start with '{' and
end with '}'.",
"Pseudocode": [
"if author_list is null -> flag",
"if not str(author_list).startswith('{') -> flag",
"if not str(author_list).endswith('}') -> flag"

]
}

Rule Card 3:
"Rule Name": "Article Language Must Be Three Letters",
"Rule Description": "The `article_language` column must be exactly
three alphabetic characters (e.g., 'eng', 'spa').",
"Target Columns": ["article_language"],
"Additional Information": {

"Specification": "Values in `article_language` must consist of
exactly three letters A–Z or a–z.",
"Pseudocode": [
"if article_language is null -> flag",
"if len(article_language) \notin 3 -> flag",
"if not article_language.isalpha() -> flag"

]
}

Rule Card 4:
"Rule Name": "Article Language Must Be Lowercase",
"Rule Description": "The `article_language` column must contain only
lowercase letters.",
"Target Columns": ["article_language"],
"Additional Information": {

"Specification": "Every value in `article_language` must be
alphabetic and fully lowercase (e.g., 'eng', 'spa').",
"Pseudocode": [
"if article_language is null -> flag",
"if not article_language.isalpha() -> flag",
"if not article_language.islower() -> flag"

]
}

Rule Card 5:
"Rule Name": "Journal ISSN Must Match ISSN Pattern",
"Rule Description": "The `journal_issn` column must follow the ISSN
format: four digits, a hyphen, and four digits (e.g., '1234-5678').",
"Target Columns": ["journal_issn"],
"Additional Information": {

"Specification": "Each value in `journal_issn` must match the regex
^\\d{4}-\\d{3}[\\dX]$, where the last digit may be 0–9 or 'X'.",
"Pseudocode": [
"if journal_issn is null -> flag",
"if not re_match(^\\d{4}-\\d{3}[\\dX]$, journal_issn) -> flag"

]
}

Rule Card 6:
"Rule Name": "Journal ISSN Must Have Hyphen",

"Rule Description": "The `journal_issn` column must contain a hyphen ('-
') separating the first and second four-digit groups.",
"Target Columns": ["journal_issn"],
"Additional Information": {

"Specification": "Each `journal_issn` value must include exactly one
hyphen between two character groups (e.g., '1234-5678').",
"Pseudocode": [
"if journal_issn is null -> flag",
"if journal_issn.count('-') \notin 1 -> flag",
"if '-' not in journal_issn -> flag"

]
}

Table 14: Rule types and their corresponding enriched rule cards for the Rayyan dataset. (Ouzzani et al., 2016)
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Rule Type Enriched Rule Card

Dependency Constraints

Rule Card 1:
"Rule Name": "Journal Title Requires Journal Abbreviation",
"Rule Description": "If `journal_title` is not null, then
`journal_abbreviation` must also be populated. Any journal without an
abbreviation is invalid.",
"Target Columns": [

"journal_title", "journal_abbreviation"
],
"Additional Information": {

"Specification": "Whenever `journal_title` is non-null, the companion
column `journal_abbreviation` must also be non-null.",
"Pseudocode": [

"if journal_title is null -> pass",
"if journal_title is not null and journal_abbreviation is null -> flag"

]
}

Rule Card 2:
"Rule Name": "Journal Abbreviation Requires Journal ISSN",
"Rule Description": "If `journal_abbreviation` is not null, then
`journal_issn` must also be populated. Any abbreviation without an ISSN
is invalid.",
"Target Columns": [

"journal_abbreviation", "journal_issn"
],
"Additional Information": {

"Specification": "Whenever `journal_abbreviation` has a value, the
column `journal_issn` must also be non-null.",
"Pseudocode": [

"if journal_abbreviation is null -> pass",
"if journal_abbreviation is not null and journal_issn is null ->
flag"

]
}

Rule Card 3:
"Rule Name": "Article Volume Requires Journal Title",
"Rule Description": "If `article_jvolumn` is not null, then `journal_title`
must also be populated. Any volume without a journal title is invalid.",
"Target Columns": [

"article_jvolumn", "journal_title"
],
"Additional Information": {

"Specification": "Whenever `article_jvolumn` contains a value,
`journal_title` must be non-null.",
"Pseudocode": [

"if article_jvolumn is null -> pass",
"if article_jvolumn is not null and journal_title is null -> flag"

]
}

Rule Card 4:
"Rule Name": "Article Issue Requires Journal Title",
"Rule Description": "If `article_jissue` is not null, then
`journal_title` must also be populated. Any issue without a journal
title is invalid.",
"Target Columns": [

"article_jissue", "journal_title"
],
"Additional Information": {

"Specification": "Whenever `article_jissue` has a value, the
`journal_title` column must also be non-null.",
"Pseudocode": [

"if article_jissue is null -> pass",
"if article_jissue is not null and journal_title is null -> flag"

]
}

Rule Card 6:
"Rule Name": "Article Created Date Requires Journal Title",
"Rule Description": "If `article_jcreated_at` is not null, then
`journal_title` must also be populated. Any created date without a
journal title is invalid.",
"Target Columns": ["article_jcreated_at", "journal_title"],
"Additional Information": {
"Specification": "Whenever `article_jcreated_at` has a value,
`journal_title` must be non-null.",
"Pseudocode": [

"if article_jcreated_at is null -> pass",
"if article_jcreated_at is not null and journal_title is null ->
flag"

]
}

Table 15: Rule types and their corresponding enriched rule cards for the Rayyan dataset. (Ouzzani et al., 2016)
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Rule Type Enriched Rule Card

Dependency Constraints

Rule Card 1:
"Rule Name": "Article Pagination Requires Journal Title",
"Rule Description": "If `article_pagination` is not null, then
`journal_title` must also be populated. Any pagination without a journal
title is invalid.",
"Target Columns": ["article_pagination", "journal_title"],
"Additional Information": {
"Specification": "Whenever `article_pagination` has a value,
`journal_title` must be non-null.",
"Pseudocode": [

"if article_pagination is null -> pass",
"if article_pagination is not null and journal_title is null -> flag"

]
}

Rule Card 2:
"Rule Name": "Author List Requires Article Title",
"Rule Description": "If `author_list` is not null, then `article_title` must
also be populated. Any author list without an article title is
invalid.",
"Target Columns": ["author_list", "article_title"],
"Additional Information": {

"Specification": "Whenever `author_list` has a value, `article_title` must
be non-null.",
"Pseudocode": [

"if author_list is null -> pass",
"if author_list is not null and article_title is null -> flag"

]
}

Rule Card 3:
"Rule Name": "Article Language Requires Article Title",
"Rule Description": "If `article_language` is not null, then `article_title`
must also be populated. Any language without an article title is
invalid.",
"Target Columns": ["article_language", "article_title"],
"Additional Information": {

"Specification": "Whenever `article_language` has a value, `article_title`
must be non-null.",
"Pseudocode": [

"if article_language is null -> pass",
"if article_language is not null and article_title is null ->
flag"

]
}

Rule Card 4:
"Rule Name": "Journal Title Requires Article Title",
"Rule Description": "If `journal_title` is not null, then `article_title` must
also be populated. Any journal without an article title is
invalid.",
"Target Columns": ["journal_title", "article_title"],
"Additional Information": {

"Specification": "Whenever `journal_title` has a value, `article_title`
must be non-null.",
"Pseudocode": [

"if journal_title is null -> pass",
"if journal_title is not null and article_title is null -> flag"

]
}

Rule Card 5:
"Rule Name": "Journal Abbreviation Requires Article Title",
"Rule Description": "If `jounral_abbreviation` is not null, then
`article_title` must also be populated. Any abbreviation without an
article title is invalid.",
"Target Columns": ["jounral_abbreviation", "article_title"],
"Additional Information": {

"Specification": "Whenever `jounral_abbreviation` has a value,
`article_title` must be non-null.",
"Pseudocode": [

"if jounral_abbreviation is null -> pass",
"if jounral_abbreviation is not null and article_title is null
-> flag"

]
}

Table 16: Rule types and their corresponding enriched rule cards for the Rayyan dataset. (Ouzzani et al., 2016)
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Rule Type Enriched Rule Card

Cross Column Validation

Rule Card 1:
{

"Rule Name": "Single Epithelial Cell Size Must Be Greater Than or Equal to
Mitoses",
"Rule Description": "The value in `Single Epithelial Cell Size` must be
greater than or equal to the value in `Mitoses`.",
"Target Columns": ["Single Epithelial Cell Size", "Mitoses"],
"Additional Information": {

"Specification": "`Single Epithelial Cell Size` must be non-null and at
least as large as the corresponding `Mitoses` value.",
"Pseudocode": [
"if Single Epithelial Cell Size is null -> flag",
"if Mitoses is null -> flag",
"if Single Epithelial Cell Size < Mitoses -> flag"

]
}

}

Rule Card 2:
{

"Rule Name": "Uniformity of Cell Shape Must Be
Greater Than or Equal to Clump Thickness",
"Rule Description": "The value in the `Uniformity of Cell Shape`
column must be greater than or equal to the value in
the `Clump Thickness` column.",
"Target Columns": ["Uniformity of Cell Shape", "Clump Thickness"],

"Additional Information": {
"Specification": "`Uniformity of Cell Shape` must be non-null
and at least as large as the corresponding `Clump
Thickness` value.",
"Pseudocode": [
"if Uniformity of Cell Shape is null -> flag",
"if Clump Thickness is null -> flag",
"if Uniformity of Cell Shape < Clump Thickness ->
flag"

]
}

}

Rule Card 3:
{

"Rule Name": "Bland Chromatin Must Be Greater Than or
Equal to Clump Thickness",
"Rule Description": "The value in `Bland Chromatin` must be
greater than or equal to the value in `Clump
Thickness`.",
"Target Columns": ["Bland Chromatin", "Clump Thickness"],

"Additional Information": {
"Specification": "`Bland Chromatin` must be non-null and at
least as large as the corresponding `Clump Thickness`
value.",
"Pseudocode": [
"if Bland Chromatin is null -> flag",
"if Clump Thickness is null -> flag",
"if Bland Chromatin < Clump Thickness -> flag"

]
}

}

Rule Card 4:
{

"Rule Name": "Normal Nucleoli Must Be Greater Than or
Equal to Mitoses",
"Rule Description": "The value in `Normal Nucleoli` must be
greater than or equal to the value in `Mitoses`.",
"Target Columns": ["Normal Nucleoli", "Mitoses"],

"Additional Information": {
"Specification": "`Normal Nucleoli` must be non-null and at
least as large as the corresponding `Mitoses` value.",
"Pseudocode": [
"if Normal Nucleoli is null -> flag",
"if Mitoses is null -> flag",
"if Normal Nucleoli < Mitoses -> flag"

]
}

}

Table 17: Rule types and their corresponding enriched rule cards for the Breast-Cancer dataset. (Wolberg, 1992)
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Rule Type Enriched Rule Card
Pattern Matching

Rule Card 1:
"Rule Name": "Article Jcreated_at Must Match Date Format",
"Rule Description": "The `article_jcreated_at` column must match a date
format such as 'MM/DD/YY' or 'MM/DD/YYYY'.",
"Target Columns": ["article_jcreated_at"],
"Additional Information": {

"Specification": "The `article_jcreated_at` column must follow either
'MM/DD/YY' or 'MM/DD/YYYY' (two- or four-digit year).",
"Pseudocode": [
"if article_jcreated_at is null -> flag",
"if article_jcreated_at does not match
^\\d{2}/\\d{2}/(\\d{2}|\\d{4})$ -> flag"

]
}

Rule Card 2:
"Rule Name": "Author List Must Contain Braces",
"Rule Description": "The `author_list` column must be enclosed in curly
braces '{}'.",
"Target Columns": ["author_list"],
"Additional Information": {

"Specification": "Each value in `author_list` must start with '{' and
end with '}'.",
"Pseudocode": [
"if author_list is null -> flag",
"if not str(author_list).startswith('{') -> flag",
"if not str(author_list).endswith('}') -> flag"

]
}

Rule Card 3:
"Rule Name": "Article Language Must Be Three Letters",
"Rule Description": "The `article_language` column must be exactly
three alphabetic characters (e.g., 'eng', 'spa').",
"Target Columns": ["article_language"],
"Additional Information": {

"Specification": "Values in `article_language` must consist of
exactly three letters A–Z or a–z.",
"Pseudocode": [
"if article_language is null -> flag",
"if len(article_language) \notin 3 -> flag",
"if not article_language.isalpha() -> flag"

]
}

Rule Card 4:
"Rule Name": "Article Language Must Be Lowercase",
"Rule Description": "The `article_language` column must contain only
lowercase letters.",
"Target Columns": ["article_language"],
"Additional Information": {

"Specification": "Every value in `article_language` must be
alphabetic and fully lowercase (e.g., 'eng', 'spa').",
"Pseudocode": [
"if article_language is null -> flag",
"if not article_language.isalpha() -> flag",
"if not article_language.islower() -> flag"

]
}

Rule Card 5:
"Rule Name": "Journal ISSN Must Match ISSN Pattern",
"Rule Description": "The `journal_issn` column must follow the ISSN
format: four digits, a hyphen, and four digits (e.g., '1234-5678').",
"Target Columns": ["journal_issn"],
"Additional Information": {

"Specification": "Each value in `journal_issn` must match the regex
^\\d{4}-\\d{3}[\\dX]$, where the last digit may be 0–9 or 'X'.",
"Pseudocode": [
"if journal_issn is null -> flag",
"if not re_match(^\\d{4}-\\d{3}[\\dX]$, journal_issn) -> flag"

]
}

Rule Card 6:
"Rule Name": "Journal ISSN Must Have Hyphen",

"Rule Description": "The `journal_issn` column must contain a hyphen ('-
') separating the first and second four-digit groups.",
"Target Columns": ["journal_issn"],
"Additional Information": {

"Specification": "Each `journal_issn` value must include exactly one
hyphen between two character groups (e.g., '1234-5678').",
"Pseudocode": [
"if journal_issn is null -> flag",
"if journal_issn.count('-') \notin 1 -> flag",
"if '-' not in journal_issn -> flag"

]
}

Table 18: Rule types and their corresponding enriched rule cards for the Rayyan dataset. (Ouzzani et al., 2016)
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Rule Type Enriched Rule Card

Dependency Constraints

Rule Card 1:
"Rule Name": "Journal Title Requires Journal Abbreviation",
"Rule Description": "If `journal_title` is not null, then
`journal_abbreviation` must also be populated. Any journal without an
abbreviation is invalid.",
"Target Columns": [

"journal_title", "journal_abbreviation"
],
"Additional Information": {

"Specification": "Whenever `journal_title` is non-null, the companion
column `journal_abbreviation` must also be non-null.",
"Pseudocode": [

"if journal_title is null -> pass",
"if journal_title is not null and journal_abbreviation is null -> flag"

]
}

Rule Card 2:
"Rule Name": "Journal Abbreviation Requires Journal ISSN",
"Rule Description": "If `journal_abbreviation` is not null, then
`journal_issn` must also be populated. Any abbreviation without an ISSN
is invalid.",
"Target Columns": [

"journal_abbreviation", "journal_issn"
],
"Additional Information": {

"Specification": "Whenever `journal_abbreviation` has a value, the
column `journal_issn` must also be non-null.",
"Pseudocode": [

"if journal_abbreviation is null -> pass",
"if journal_abbreviation is not null and journal_issn is null ->
flag"

]
}

Rule Card 3:
"Rule Name": "Article Volume Requires Journal Title",
"Rule Description": "If `article_jvolumn` is not null, then `journal_title`
must also be populated. Any volume without a journal title is invalid.",
"Target Columns": [

"article_jvolumn", "journal_title"
],
"Additional Information": {

"Specification": "Whenever `article_jvolumn` contains a value,
`journal_title` must be non-null.",
"Pseudocode": [

"if article_jvolumn is null -> pass",
"if article_jvolumn is not null and journal_title is null -> flag"

]
}

Rule Card 4:
"Rule Name": "Article Issue Requires Journal Title",
"Rule Description": "If `article_jissue` is not null, then
`journal_title` must also be populated. Any issue without a journal
title is invalid.",
"Target Columns": [

"article_jissue", "journal_title"
],
"Additional Information": {

"Specification": "Whenever `article_jissue` has a value, the
`journal_title` column must also be non-null.",
"Pseudocode": [

"if article_jissue is null -> pass",
"if article_jissue is not null and journal_title is null -> flag"

]
}

Rule Card 6:
"Rule Name": "Article Created Date Requires Journal Title",
"Rule Description": "If `article_jcreated_at` is not null, then
`journal_title` must also be populated. Any created date without a
journal title is invalid.",
"Target Columns": ["article_jcreated_at", "journal_title"],
"Additional Information": {
"Specification": "Whenever `article_jcreated_at` has a value,
`journal_title` must be non-null.",
"Pseudocode": [

"if article_jcreated_at is null -> pass",
"if article_jcreated_at is not null and journal_title is null ->
flag"

]
}

Table 19: Rule types and their corresponding enriched rule cards for the Rayyan dataset. (Ouzzani et al., 2016)
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Rule Type Enriched Rule Card

Dependency Constraints

Rule Card 1:
"Rule Name": "Article Pagination Requires Journal Title",
"Rule Description": "If `article_pagination` is not null, then
`journal_title` must also be populated. Any pagination without a journal
title is invalid.",
"Target Columns": ["article_pagination", "journal_title"],
"Additional Information": {
"Specification": "Whenever `article_pagination` has a value,
`journal_title` must be non-null.",
"Pseudocode": [

"if article_pagination is null -> pass",
"if article_pagination is not null and journal_title is null -> flag"

]
}

Rule Card 2:
"Rule Name": "Author List Requires Article Title",
"Rule Description": "If `author_list` is not null, then `article_title` must
also be populated. Any author list without an article title is
invalid.",
"Target Columns": ["author_list", "article_title"],
"Additional Information": {

"Specification": "Whenever `author_list` has a value, `article_title` must
be non-null.",
"Pseudocode": [

"if author_list is null -> pass",
"if author_list is not null and article_title is null -> flag"

]
}

Rule Card 3:
"Rule Name": "Article Language Requires Article Title",
"Rule Description": "If `article_language` is not null, then `article_title`
must also be populated. Any language without an article title is
invalid.",
"Target Columns": ["article_language", "article_title"],
"Additional Information": {

"Specification": "Whenever `article_language` has a value, `article_title`
must be non-null.",
"Pseudocode": [

"if article_language is null -> pass",
"if article_language is not null and article_title is null ->
flag"

]
}

Rule Card 4:
"Rule Name": "Journal Title Requires Article Title",
"Rule Description": "If `journal_title` is not null, then `article_title` must
also be populated. Any journal without an article title is
invalid.",
"Target Columns": ["journal_title", "article_title"],
"Additional Information": {

"Specification": "Whenever `journal_title` has a value, `article_title`
must be non-null.",
"Pseudocode": [

"if journal_title is null -> pass",
"if journal_title is not null and article_title is null -> flag"

]
}

Rule Card 5:
"Rule Name": "Journal Abbreviation Requires Article Title",
"Rule Description": "If `jounral_abbreviation` is not null, then
`article_title` must also be populated. Any abbreviation without an
article title is invalid.",
"Target Columns": ["jounral_abbreviation", "article_title"],
"Additional Information": {

"Specification": "Whenever `jounral_abbreviation` has a value,
`article_title` must be non-null.",
"Pseudocode": [

"if jounral_abbreviation is null -> pass",
"if jounral_abbreviation is not null and article_title is null
-> flag"

]
}

Table 20: Rule types and their corresponding enriched rule cards for the Rayyan dataset. (Ouzzani et al., 2016)
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Rule Type Enriched Rule Card

Cross Column Validation

Rule Card 1:
{

"Rule Name": "Single Epithelial Cell Size Must Be Greater Than or Equal to
Mitoses",
"Rule Description": "The value in `Single Epithelial Cell Size` must be
greater than or equal to the value in `Mitoses`.",
"Target Columns": ["Single Epithelial Cell Size", "Mitoses"],
"Additional Information": {

"Specification": "`Single Epithelial Cell Size` must be non-null and at
least as large as the corresponding `Mitoses` value.",
"Pseudocode": [
"if Single Epithelial Cell Size is null -> flag",
"if Mitoses is null -> flag",
"if Single Epithelial Cell Size < Mitoses -> flag"

]
}

}

Rule Card 2:
{

"Rule Name": "Uniformity of Cell Shape Must Be
Greater Than or Equal to Clump Thickness",
"Rule Description": "The value in the `Uniformity of Cell Shape`
column must be greater than or equal to the value in
the `Clump Thickness` column.",
"Target Columns": ["Uniformity of Cell Shape", "Clump Thickness"],

"Additional Information": {
"Specification": "`Uniformity of Cell Shape` must be non-null
and at least as large as the corresponding `Clump
Thickness` value.",
"Pseudocode": [
"if Uniformity of Cell Shape is null -> flag",
"if Clump Thickness is null -> flag",
"if Uniformity of Cell Shape < Clump Thickness ->
flag"

]
}

}

Rule Card 3:
{

"Rule Name": "Bland Chromatin Must Be Greater Than or
Equal to Clump Thickness",
"Rule Description": "The value in `Bland Chromatin` must be
greater than or equal to the value in `Clump
Thickness`.",
"Target Columns": ["Bland Chromatin", "Clump Thickness"],

"Additional Information": {
"Specification": "`Bland Chromatin` must be non-null and at
least as large as the corresponding `Clump Thickness`
value.",
"Pseudocode": [
"if Bland Chromatin is null -> flag",
"if Clump Thickness is null -> flag",
"if Bland Chromatin < Clump Thickness -> flag"

]
}

}

Rule Card 4:
{

"Rule Name": "Normal Nucleoli Must Be Greater Than or
Equal to Mitoses",
"Rule Description": "The value in `Normal Nucleoli` must be
greater than or equal to the value in `Mitoses`.",
"Target Columns": ["Normal Nucleoli", "Mitoses"],

"Additional Information": {
"Specification": "`Normal Nucleoli` must be non-null and at
least as large as the corresponding `Mitoses` value.",
"Pseudocode": [
"if Normal Nucleoli is null -> flag",
"if Mitoses is null -> flag",
"if Normal Nucleoli < Mitoses -> flag"

]
}

}

Table 21: Rule types and their corresponding enriched rule cards for the Breast-Cancer dataset. (Wolberg, 1992)
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Dataset ED2 FAHES KATARA IQR IF SD Max Entropy Min-K Ours
P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Adult 0.75 0.45 0.57 0.00 0.00 0.00 0.01 1.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.45 0.57 0.00 0.00 0.00 0.89 0.43 0.59
Beers 1.00 0.97 0.99 0.73 0.50 0.59 0.16 0.56 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.84 0.97 0.91 0.91 0.56 0.69 1.00 1.00 1.00
Bikes 0.58 0.76 0.65 0.10 0.23 0.14 0.19 0.76 0.30 0.63 0.17 0.27 0.83 0.08 0.14 0.78 0.13 0.22 0.63 0.17 0.27 0.69 0.20 0.31 0.98 0.64 0.77
Breast Cancer 0.63 0.41 0.49 0.06 0.14 0.09 0.05 0.42 0.09 0.00 0.00 0.00 0.90 0.03 0.06 0.00 0.00 0.00 0.59 0.40 0.48 0.50 0.20 0.28 0.95 0.72 0.89
Flights 0.74 0.63 0.86 0.35 0.01 0.03 0.17 0.54 0.11 0.00 0.00 0.00 0.87 0.06 0.00 0.00 0.00 0.00 0.74 0.96 0.84 0.92 0.51 0.65 0.75 0.83 0.89
HAR 0.67 0.39 0.48 0.06 0.14 0.00 0.04 0.06 0.05 0.00 0.00 0.00 0.91 0.06 0.11 0.00 0.00 0.00 0.98 0.46 0.47 0.98 0.26 0.41 0.98 0.43 0.60
Hospital 0.83 0.67 0.99 0.01 0.03 0.01 0.05 0.16 0.08 0.00 0.00 0.00 1.00 0.06 0.00 0.00 0.00 0.00 0.90 0.69 0.74 0.93 0.38 0.50 0.81 0.65 0.85
Mercedes 0.21 0.10 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.31 0.00 0.01 0.42 0.01 0.21 0.00 0.00 0.00 0.42 0.23 0.73
Nasa 0.83 0.73 0.76 0.08 0.04 0.05 0.10 0.17 0.13 0.00 0.00 0.00 1.00 0.06 0.00 0.00 0.00 0.00 0.65 0.80 0.32 0.96 0.30 0.22 0.93 0.85 0.96
Soil Moisture 0.60 0.70 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.08 0.00 0.02 0.03 0.04 0.04 0.02 0.02 0.45 0.56 0.03 0.94 0.34 0.03 0.81 0.35 0.59

Table 22: Precision(P), recall(R) and F1 for different error detectors.
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