
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 2688–2712
November 4-9, 2025 ©2025 Association for Computational Linguistics

Z1: Efficient Test-time Scaling with Code

Zhaojian Yu1 Yinghao Wu1 Yilun Zhao2 Arman Cohan2 Xiao-Ping Zhang1*

1Tsinghua University 2Yale University

Abstract

Large Language Models (LLMs) can achieve
enhanced complex problem-solving through
test-time computing scaling, yet this often en-
tails longer contexts and numerous reasoning
token costs. In this paper, we propose an effi-
cient test-time scaling method that trains LLMs
on code-related reasoning trajectories, facili-
tating their reduction of excess thinking to-
kens while maintaining performance. First,
we create Z1-Code-Reasoning-107K, a curated
dataset of simple and complex coding prob-
lems paired with their short and long solution
trajectories. Second, we present a novel Shifted
Thinking Window to mitigate overthinking
overhead by removing context-delimiting tags
(e.g., <think>. . . </think>) and capping reason-
ing tokens. Trained with long and short trajec-
tory data and equipped with Shifted Thinking
Window, our model, Z1-7B, demonstrates the
ability to adjust its reasoning level as the com-
plexity of problems and exhibits efficient test-
time scaling across different reasoning tasks
that matches R1-Distill-Qwen-7B performance
with about 30% of its average thinking tokens.
Notably, fine-tuned with only code trajectories,
Z1-7B demonstrates generalization to broader
reasoning tasks (47.5% on GPQA Diamond).
Our analysis of efficient reasoning elicitation
also provides valuable insights for future re-
search. 1

1 Introduction

Large Reasoning Models (LRMs), such as OpenAI
o1 (Jaech et al., 2024) and DeepSeek R1 (Guo
et al., 2025), have demonstrated remarkable ad-
vances in complex reasoning tasks through test-
time compute scaling (Wei et al., 2022), partic-
ularly in competitive mathematics and program-
ming. These models, trained with large-scale Re-
inforcement Learning (RL) (Lightman et al., 2023;

*Corresponding author
1Our model, data, and code are open-source at https:

//github.com/efficientscaling/Z1

Teacher
Model

Evolving on
Complexity

Fine-tune

Z1

Complex ProblemsSimple Problems

Short Reasoning Trajectories

Evolving on
Complexity

Fine-tune

Z1

Complex
Problems

Simple
Problems

Short
Trajectories

Long
Trajectories

Problem

Solving

Shifted Thinking Window

Max Tokens for Thinking

I overthought it, the final answer should be:
```python…```

Write a Python script to calculate the number of letter ‘a’ and ‘r’...

To solve this problem, we need to count the occurrences of 
specific letters ('a' and 'r') in a given string. We will achieve this by 
iterating through each character in the string and checking if it 
matches the target letters. If it does, we will increment a counter for 
that letter…

Dataset Creation Train Think and Answer

QwQ-32B
Preview

QwQ-32B
Preview

Long Reasoning Trajectories

Reasoning & Answering
QwQ-32B-Preview

Teacher
Model

Dataset Generation

Simple/Short Complex/Long

Figure 1: Overview of Z1 training and inference. Fine-
tuned with long and short trajectory data, Z1 could
solve simple and complex problems in shifted thinking
window efficiently.

Feng et al., 2023), have emerged step-by-step rea-
soning abilities to solve complex problems effec-
tively. However, the elaborate reasoning process
also leads to super long contexts and numerous
thinking tokens, challenging the efficient utiliza-
tion of LRMs.

Existing open-source works, such as s1 (Muen-
nighoff et al., 2025) and LIMO (Ye et al., 2025),
train non-reasoning models into reasoning mod-
els with manually curated problems and distilled
long chain-of-thought (CoT) (Wei et al., 2022) tra-
jectories yet do not address the challenges posed
by test-time compute scaling with respect to long

2688

https://github.com/efficientscaling/Z1
https://github.com/efficientscaling/Z1


Thinking Window Answer

<think>   .[[ <[think> <answer> .[[ <[answer>

R1

Z1

Stop Thinking

“OK, let’s think step by step … ” “ The final answer 
should be… ”

“ The final answer 
should be… ”

(saved context)“OK, … ”

（a） （b）

Figure 2: Comparing Z1 with R1-like models on context window (a) and test-time scaling (b). Z1 models exhibit
more efficient test-time compute scaling than R1-Distill-7B, with its shifted thinking window. Z1-7B exhibits
efficient test-time scaling across 3 different reasoning tasks (LiveCodeBench, MATH500, GPQA Diamond) and
matches R1-Distill-Qwen-7B performance with about 30% of its average thinking tokens.

contexts and an excessive thinking tokens. For ex-
ample, s1 (Muennighoff et al., 2025) introduces
budget forcing, which either appends ending words
to truncate reasoning processes or extrapolation
words (e.g., "wait") to inspire the model to con-
tinue thinking, thereby precisely controlling con-
text length. While extrapolation words can control
model reasoning, direct truncations may disrupt the
model’s thinking process, consequently degrading
performance. Thus, we propose the problem: "Is
there an efficient test-time scaling way to reduce
the model’s thinking tokens consumption while
preserving its reasoning performance?".

In this paper, we implement efficient test-time
scaling with code-related trajectory fine-tuning and
present the shifted thinking mode of LRMs: weak
reasoning to simple problems, strong reasoning
to complex problems, which significantly reduces
the thinking tokens consumption of LRMs in prob-
lem solving. Specifically, we create the Z1-Code-
Reasoning-107K dataset, comprising 107K simple
and complex code-related problems paired with
their reasoning traces distilled from the QwQ-32B-
Preview (Team, 2025c) model. We train Qwen2.5-
Coder-7B-Instruct (Hui et al., 2024) into a reason-
ing model, with this 107K code-related long and
short trajectory dataset. We eliminate the context
split with delimiters (e.g., <think>...</think>) and
introduce a novel Shifted Thinking Window: (I)
For simple problems, the models generate solu-
tions with in a low reasoning token computation.
(II) For complex problems, we cap the thinking
tokens; if the model outputs exceed this threshold,
we append a hint phrase to the end of the reason-
ing trace, forcing it to produce an answer based
on the existing thought process. Shifted Thinking

Window enables model that get trained with long
and short trajectories to adjust its reasoning level
as the complexity of problems, thereby avoiding
the overthinking of LRMs. Fine-tuned on long
and short reasoning trajectories and equipped with
the Shifted Thinking Window, our model Z1-7B
exhibits efficient test-time scaling across different
reasoning tasks and matches R1-Distill-Qwen-7B
performance with about 30% (as shown in Fig-
ure 2) its average thinking tokens. Furthermore,
our systematic analysis of the benefits of reason-
ing elicitation provides valuable insights for future
research, contributing to the development of more
efficient LRMs.

2 Efficient Test-time Scaling with Code

As illustrated in Figure 1, to achieve efficient test-
time scaling, we train non-reasoning models of
code-related reasoning trajectories with varying
lengths and introduce shifted thinking window
to replace the context split with delimiters (e.g.,
<think>...</think>). After supervised fine-tuning
(SFT), our model could adjust its reasoning level
according to the complexity of the input problem.
In this section, we detail our methodology, includ-
ing the creation of the reasoning dataset with code
(Section 2.1) and the implementation of the shifted
thinking window (Section 2.2).

2.1 Dataset Creation

We create the efficient test-time scaling dataset that
integrates both short reasoning trajectories for sim-
ple problems and strong reasoning trajectories for
complex problems (as shown in Appendix D), em-
phasizing diverse reasoning trajectory lengths in

2689



the training set. However, existing reasoning trajec-
tory datasets predominantly feature complex prob-
lems with long chains of thought (CoT), posing a
challenge for training efficient reasoning models
due to the lack of short and straightforward trajec-
tories. To address this, we approach the problem
from the perspective of evolving question complex-
ity and select problems from Code Evol-Instruct
dataset (Xu et al., 2024), which evolves in depth
and breadth to cover a wide range of complexities
and has proven effective in non-reasoning mod-
els (Luo et al., 2023).

We generate reasoning trajectories using QwQ-
32B-preview (where no explicit context splits are
adopted) and truncate the trajectories length to
8192 tokens, removing approximately 3% of sam-
ples with repetitive reasoning processes to mitigate
excessive thinking in the training data. The re-
maining reasoning trajectories, paired with their
problems, constitute the Z1-code-reasoning-107K
dataset, with less than 1% of the data being trun-
cated. More details is shown in Appendix B.

To further analyze our dataset, we compare
the top-50 trigram word frequencies of Z1-Code-
Reasoning-107K with OpenThoughts-114K (Team,
2025b) dataset2. Z1-code-reasoning-107K exclu-
sively contains code-related reasoning trajectories,
while OpenThoughts-114K is a reasoning dataset
distilled from DeepSeek R1, featuring 114K high-
quality examples spanning math, science, code,
and puzzles. Figure 4 illustrates a trend in the
word frequency distributions of Z1-code-reasoning-
107K and OpenThoughts-114K: high-frequency tri-
grams exhibit homogeneity, while mid-frequency
trigrams show differentiation. For example, the
high-frequency trigrams in both datasets (e.g., "I
need to," "we need to," "the number of") indi-
cate the model’s summarization of the next rea-
soning step, which highlights the commonality be-
tween code trajectory and other complex problems.
In contrast, mid-frequency trigrams in Z1-code-
reasoning-107K, such as "iterate through the" and
"for each," capture loop-based logic characteristic
of code-related trajectories, distinct from the math-
ematical logic exemplified by trigrams (e.g., "a+b",
"equal to the") in OpenThoughts-114K. This un-
derscores the unique reasoning patterns inherent in
code-related trajectories.

2https://huggingface.co/datasets/
open-thoughts/OpenThoughts-114k

2.2 Shifted Thinking Window

To enforce a "think-before-answer" pattern, exist-
ing LRMs like DeepSeek R1 typically use delim-
iters (e.g., <think>...</think>) to split the context
window into two parts, where the model first rea-
sons in the thinking window and then outputs the
final answer in the answering window. However,
this pattern often introduces unnecessary reason-
ing when processing simple problems that do not
require deep thought. In the training and inference
of our model, we eliminate this context split, allow-
ing the model to flexibly fine-tune and generalize
across short and long trajectories and avoiding the
overthinking for simple problems. We refer it to
Shifted Thinking Window, where the model’s con-
text window is not rigidly divided into two parts
by delimiters but instead of a shifted window (Ex-
amples are shown in Appendix D): (I) For simple
problems, the model fine-tuned on both short and
long trajectories can directly output concise rea-
soning and answers within the context. (II) For
complex problems, we cap the maximum thinking
length within which the model can either reason or
provide an answer; if the reasoning trajectory ex-
ceeds this maximum length, the end of the model’s
output will be appended with a hint to enforce a
direct answer. The essence of shifted thinking:
weak reasoning for simple problems and strong rea-
soning for complex problems significantly reduces
unnecessary reasoning by model, thereby demon-
strating more efficient test-time compute scalings.

3 Experiments

3.1 Implementation Details

Following the previous work (Muennighoff et al.,
2025), we take a model that has already been
pretrained and instruction-tuned, and further fine-
tune it for reasoning. Specifically, we select
Qwen2.5-Coder-Instruct (Hui et al., 2024) series
models, which have already achieved good perfor-
mance on various code-related benchmarks. For all
training samples, we avoid using delimiters (e.g.,
<think>...</think>) to separate the whole trajectory
into the thinking and answering parts. This adjust-
ment allows the LRM to avoid mandated overthink-
ing, enabling more automatic and efficient test-time
scaling: weak reasoning for simple problems and
strong reasoning for complex problems.

We finetune the Qwen-2.5-Coder-7B-Instruct on
our Z1-Code-Reasoning-107K dataset, yielding Z1-
7B. We do not compute loss on questions, only

2690

https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k
https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k


Model Data
Source

MATH
500

GPQA
Diamond

LiveCode
Bench

BigCode
Bench-Hard AVG

API only

o1-preview N/A 85.5 73.3 43.2 23.0 56.3
o1-mini N/A 90.0 60.0 53.7 27.7 57.9

Open Weights

Deepseek-R1 N/A 97.3 71.5 77.9 29.7 67.6
R1-Distill-Qwen-32B R1/800K 94.3 62.1 - 23.6 -
R1-Distill-Qwen-7B R1/800K 83.3 49.1 40.5 3.4 44.1
QwQ-32B-Preview N/A 90.6 60.0 59.9 25.0 58.9

Non-reasoning Model

Deepseek-V3 N/A 90.2 59.1 56.3 27.7 58.3
GPT-4o-0513 N/A 75.8 46.5 43.4 25.0 47.7
Qwen2.5-Coder-7B-Ins N/A 68.6 37.4 32.3 20.3 39.7

Open Weights and Data

Sky-T1-32B-Preview QwQ/17K 88.6 56.8 - 26.4 -
s1.1-7B R1/1K 79.2 31.8 15.2 4.7 31.7
OpenThinker-7B R1/114K 83.0 42.4 25.3 17.6 42.1

Z1-7B QwQ/107K 76.4 47.5 35.3 22.3 45.4

Table 1: Results on 4 benchmarks. We evaluate Z1 models with shifted thinking window. For other models without
a reported score, we budget force it by adding "the final answer is:". Model details are shown in Appendix C.

on reasoning trajectories and solutions. For fine-
tuning hyperparameters, we train our model with
a learning rate of 1e-5 warmed up linearly for 100
steps and then decayed over the rest of training (836
steps in total training) following a cosine scheduler.
We train all the models in bfloat16 precision with
Pytorch Fully Shard Data Parallel (FSDP) and set
a global batch size to 128 for 2 epochs using 8
NVIDIA A100-80G GPUs. All other settings not
mentioned in this paper follow the default values
of Huggingface Trainer (Hugging Face, 2025).

3.2 Main Result

Table 1 presents the results of Z1 and other models
on 4 benchmarks, highlighting the following salient
observations:
(1) Z1 models achieve comparable performance
level with GPT-4o on benchmarks of complex
problems. (Avg. 45.4 vs 47.7) This result high-
lights the success of test-time scaling with code,
where performance improvements are achieved by
leveraging extended reasoning traces during infer-
ence, rather than solely relying on increased model
size. (2) Trained with trajectory data with code,
Z1-7B outperforms other 7B-scale language rea-
soning models. This outcome underscores the ef-
fectiveness of our test-time scaling approach, par-
ticularly when fine-tuned with code-realted reason-
ing data. (3) Fine-tuning the model exclusively

with code-related reasoning data enables it to
generalize across different domains. Z1 models,
fine-tuned on large amount of trajectories data with
code, displays superior generalization on GPQA
Diamond (47.5%) and MATH500 (76.4%). This
suggests the effectiveness of code-related trajectory
training for language reasoning elicitation.

3.3 Test-time Scaling Comparison

To further compare the reasoning efficiency of Z1
to other models, we analyze the test-time scaling
of Z1-7B and R1-Distill-Qwen-7B on three bench-
marks: MATH500, GPQA, and LiveCodeBench.
We equip Z1-7B with Shifted Thinking Window
by imposing a cap of different maximum think-
ing tokens. For R1-Distill-Qwen-7B, We budget
force (Muennighoff et al., 2025) it by adding "the
final answer is:", since R1-Distill-Qwen-7B can’t
adapt to the shifted thinking window without long
and short trajectory fine-tuning. Figure 3 illus-
trates the reasoning efficiency of Z1-7B compared
to the baseline models, revealing the following
key observations: Z1-7B demonstrates more ef-
ficient test-time scaling than R1-Distill-Qwen-
7B on reasoning tasks, by achieving compara-
ble results with significantly fewer thinking to-
kens. Z1-7B exhibits superior test-time scaling
efficiency compared to R1-Distill-Qwen-7B on rea-
soning tasks, by delivering better performance with

2691



Figure 3: Test-time scaling comparison between Z1-7B and R1-Distill-Qwen-7B. R1-Distill-Qwen-7B can’t
adapt to the shifted thinking window without long and short trajectory fine-tuning.

significantly fewer thinking tokens. For example,
Z1-7B outperforms R1-Distill-Qwen-7B while re-
quiring only half the average thinking time (ap-
proximately 2,000+ tokens) on the GPQA Dia-
mond benchmark, whereas R1-Distill-Qwen-7B
relies on a budget exceeding 4,096 thinking to-
kens. This underscores Z1-7B’s remarkable effi-
ciency in reasoning-intensive tasks. In contrast,
R1-Distill-Qwen-7B demonstrates notably weaker
performance at lower ATT, only achieving compet-
itive results when ATT is substantially increased.

3.4 Data Ablations

To further investigate the critical factors influencing
effective reasoning elicitation in training data, we
designed an ablation study with random sampling
and greedy sampling strategies (as shown in Algo-
rithm 1) and obtain representative subsets with two
key factors (Mean Trajectory Length and Train-
ing Sample Size) that influences Z1’s reasoning
elicitation: (1) Random Sampling: Samples are
chosen randomly, serving as a baseline for compar-
ison. We conduct random sampling with varying
sample sizes (16K, 64K) to assess the impact of
training samples on efficient test-time scaling. (2)
Longest Greedy Sampling: At each step, we se-
lect only the samples with the highest token counts,
ensuring the subset contains the longest training
examples in terms of reasoning traces. (3) Shortest
Greedy Sampling: At each step, we select only the
samples with the lowest token counts, maximizing
the number of samples included in the subset while
adhering to the token budget.

For all subsets, we calculate the Mean Trajectory

Length (MTL) as follows:

MTL =
1

n

n∑

i=1

Lengthi(tokens) (1)

Where n denotes the number of training samples
and Lengthi represents the trajectory length (to-
kens) of the i-th training sample. For all bench-
marks, we calculate the Average Thinking Time
(ATT) as follows:

ATT =
1

n

n∑

i=1

Lengthi(tokens) (2)

Where n denotes the number of problems in bench-
marks and Lengthi represents the trajectory length
of the i-th problem. We fine-tune Qwen2.5-Coder-
7B-Instruct on these representative subsets. Ta-
ble 2 presents the evaluation results of models fine-
tuned on different subsets of the training data, high-
lighting the following observations:

Impact of Mean Trajectory Length Under the
same training budget of 74M tokens, we sample
two subsets with different mean trajectory length
using two strategies: longest-greedy and shortest-
greedy sampling. As shown in Table 2, the sub-
set sampled via longest-greedy strategy exhibits
a significantly higher MTL (2,216) compared to
the shortest-greedy subset (807). This difference
in training trajectory length translates into notable
performance distinctions during evaluation. Specif-
ically, the model fine-tuned on the longest-greedy
subset demonstrates a longer Average Thinking
Time (AVG score: 1,617 vs. 1,257) and a higher
Benchmark Score (AVG score: 50.8 vs. 49.1) com-
pared to the model trained on the shortest-greedy

2692



Subset Full Random Longest Shortest

Training Dataset

Model Size 7B 14B 7B 7B 7B 7B
Dataset Size (Samples) 107K 107K 16K 64K 33K 90K
Dataset Size (Tokens) 124M 124M 19M 74M 74M 74M
Mean Trajectory Length 1,159 1,159 1,157 1,156 2,216 807

Evaluation

GPQA Diamond 47.5 46.0 40.9 41.9 42.4 39.4
Average Thinking Time 2,470 1,770 1,797 2,241 2,695 1,979

LiveCode Bench 35.3 40.7 32.2 34.1 32.7 34.1
Average Thinking Time 866 888 864 811 927 763

MATH 500 76.4 81.2 72.4 74.4 77.2 73.8
Average Thinking Time 1,185 1,012 1,046 1,118 1,229 1,030

AVG 53.1 56.0 48.5 50.1 50.8 49.1
Average Thinking Time 1,507 1,223 1,236 1,390 1,617 1,257

Table 2: Z1-Code-Reasoning-107K Data Ablations. We use a maximum of around 4,096 thinking tokens for
all scores in this table. The Random Sampling method does not alter the average trajectory length of the training
samples. Both length-greedy sampling methods (longest and shortest) utilize the same training tokens (74M).

subset. These results underscore the critical role
of Trajectory Length in the training set, suggesting
that longer trajectories enhance the model’s capac-
ity for test-time scaling by encouraging more delib-
erate and extended reasoning during inference.

Impact of Training Sample Size To investigate
the effect of training sample size, we randomly sam-
ple subsets of varying sizes (16K and 64K) from
the original 107K dataset and compare the result-
ing models performance. As shown in Table 2, the
model fine-tuned on the full 107K dataset achieves
an ATT of 1,507 and a Benchmark Score of 53.1,
outperforming the model trained on the Random-
64K subset (1,390 and 50.1, respectively). In con-
trast, the smallest subset, Random-16K, yields the
shortest ATT (1,236) and the lowest performance
(48.5). This observation indicates that a larger train-
ing sample size increase the effective thinking time
thereby enhancing its overall performance, despite
their MTL remaining nearly identical across the
randomly sampled subsets (1,157 for 16K, 1,156
for 64K) and the full dataset (1,159).

3.5 Impact of Shifted Thinking Window

We analyze the impact of Shifted Thinking Window.
As shown in Table 3, most problems in MATH
and LiveCodeBench are solved before cutting
off (11.4% in MATH, 4.25% in LiveCodeBench).
Shifted Thinking Window only processes (shift to
answer directly) these overlong problems and a
part of them (2.4% vs. 11.4% in MATH, 0.9% vs.

MATH
500

GPQA
Diamond

LiveCode
Bench

w/o S.T.W 74.0% 25.8% 34.5%

w/ S.T.W 76.4% 47.5% 35.4%
Cutting-off (%) 11.4% 41.4% 4.25%

∆ +2.4% +21.7% +0.9%

Table 3: Performance Comparison with and without
Shifted Thinking Window (S.T.W).

4.25% in LiveCodeBench ) overlong problems are
answered correctly. In GPQA Diamond, 41.4% of
problems are cut off by Shifted Thinking Window
and shifted to answer directly, resulted in 21.7%
improvement than w/o shifted thinking window.
Therefore, Shifted Thinking Window keeps most
reasoning abilities of LRMs and avoid overlong
chains to make it more efficient.

4 Conclusion

In this work, we introduce an efficient test-time
scaling method to elicit model reasoning abilities
with fewer thinking token consumption. We train
Z1 with a long and short code-related trajectories
dataset and equip Z1 with shifted thinking window,
a new approach to enable LRM to perform weak
reasoning on simple problems and strong reasoning
on complex problems.. Trained with long and short
trajectories and reasoning with shifted thinking
window, Z1 matches state-of-the-art performance

2693



with comparable parameters and demonstrates ef-
ficient test-time compute scaling on various rea-
soning benchmarks. Furthermore, our systematic
analysis of key factors for efficient reasoning elici-
tation provides valuable insights for future research,
contributing to the development of more advanced
and open-sourced reasoning models.

Limitations

In this paper, we present Z1, a reasoning model that
could perform weak reasoning on simple problems
and strong reasoning on complex problems. We
train Z1 with code-related trajectory dataset. One
limitation is that the trajectory dataset we train does
not cover much more topics like science and math-
ematics. Future work could extend our approach
by incorporating more diverse trajectory datasets
and examining their impact on model performance.

Acknowledgement

Zhaojian Yu, Yinghao Wu and Xiao-Ping Zhang
are with the Shenzhen Key Laboratory of Ubiqui-
tous Data Enabling Laboratory, Shenzhen Interna-
tional Graduate School, Tsinghua University, Shen-
zhen 518055, China and supported by Shenzhen
Ubiquitous Data Enabling Key Lab under grant
ZDSYS20220527171406015, and by Tsinghua
Shenzhen International Graduate School-Shenzhen
Pengrui Endowed Professorship Scheme of Shen-
zhen Pengrui Foundation.

References
Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang,

Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu,
Qixin Xu, Weize Chen, et al. 2025. Process rein-
forcement through implicit rewards. arXiv preprint
arXiv:2502.01456.

Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Bo-
rys Minaev, Daniel Selsam, David Dohan, Fran-
cis Song, Hunter Lightman, Ignasi Clavera, Jakub
Pachocki, et al. 2025. Competitive program-
ming with large reasoning models. arXiv preprint
arXiv:2502.06807.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus
McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
2023. Alphazero-like tree-search can guide large lan-
guage model decoding and training. arXiv preprint
arXiv:2309.17179.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming–
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Hugging Face. 2025. Transformers: Trainer class
documentation. https://huggingface.co/docs/
transformers/main_classes/trainer.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, et al.
2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Tian-
jun Zhang Fanjia Yan, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shi-
wei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao, and
Dacheng Tao. 2025. Adaptthink: Llm can learn when
to think. https://arxiv.org/abs/2501.12570.

2694

https://huggingface.co/docs/transformers/main_classes/trainer
https://huggingface.co/docs/transformers/main_classes/trainer
https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2501.12570


Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Samuel Miserendino, Michele Wang, Tejal Patward-
han, and Johannes Heidecke. 2025. Swe-lancer:
Can frontier llms earn $1 million from real-world
freelance software engineering? arXiv preprint
arXiv:2502.12115.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

OpenAI. 2024a. Gpt-4o.

OpenAI. 2024b. Learning to reason with llms.

Guilherme Penedo, Anton Lozhkov, Hynek Kydlíček,
Loubna Ben Allal, Edward Beeching, Agustín Pi-
queres Lajarín, Quentin Gallouédec, Nathan Habib,
Lewis Tunstall, and Leandro von Werra. 2025. Code-
forces cots. https://huggingface.co/datasets/
open-r1/codeforces-cots.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2024. Gpqa:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. 2025.
Kimi k1. 5: Scaling reinforcement learning with llms.
arXiv preprint arXiv:2501.12599.

NovaSky Team. 2025a. Sky-t1: Fully open-source
reasoning model with o1-preview performance in
$450 budget. https://novasky-ai.github.io/posts/sky-
t1. Accessed: 2025-01-09.

OpenThoughts Team. 2025b. Open Thoughts.
https://open-thoughts.ai.

Qwen Team. 2024. Qwq: Reflect deeply on the bound-
aries of the unknown.

Qwen Team. 2025c. Qwq-32b: Embracing the power
of reinforcement learning.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin
Carbonneaux, Lingming Zhang, Daniel Fried,
Gabriel Synnaeve, Rishabh Singh, and Sida I Wang.
2025. Swe-rl: Advancing llm reasoning via reinforce-
ment learning on open software evolution. arXiv
preprint arXiv:2502.18449.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and
Lingming Zhang. 2024. Agentless: Demystify-
ing llm-based software engineering agents. arXiv
preprint arXiv:2407.01489.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. Wizardlm: Empowering
large pre-trained language models to follow complex
instructions. In The Twelfth International Conference
on Learning Representations.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2024. Wavecoder: Widespread and versatile
enhancement for code large language models by in-
struction tuning. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5140–5153.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and
Juanzi Li. 2025. O1-pruner: Length-harmonizing
fine-tuning for o1-like reasoning pruning. arXiv
preprint arXiv: 2505.13417.

2695

https://openai.com/index/hello-gpt-4o
https://openai.com/index/learning-to-reason-with-llms/
https://huggingface.co/datasets/open-r1/codeforces-cots
https://huggingface.co/datasets/open-r1/codeforces-cots
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2505.13417
https://arxiv.org/abs/2505.13417


Appendix Contents

A Related Work 10

B Dataset Details 10
B.1 Comparison of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B.2 Word frequency details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
B.3 Ablated Dataset Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

C Evaluation Details 14
C.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
C.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
C.3 Prompts for Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
C.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
C.5 Analysis of Reasoning Phrase Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C.6 Test-time Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
C.7 Comparison with Contemporaneous Work . . . . . . . . . . . . . . . . . . . . . . . . . 16

D Examples 17
D.1 Z1-Code-Reasoning-107K Data Examples . . . . . . . . . . . . . . . . . . . . . . . . . 17
D.2 Examples of Shifted Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
D.3 Failure Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
D.4 Examples on GPQA Diamond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
D.5 Examples on LiveCodeBench . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
D.6 Examples on MATH500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2696



A Related Work

Large Reasoning Models OpenAI o1 and o3 series models (Jaech et al., 2024), which get trained
with large-scale RL and learn to reason using chain-of-thought (OpenAI, 2024b), have demonstrated
strong reasoning ability in various complex tasks with consistent gains from scaling test-time compute.
After the release of o1, Deepseek-R1 (Guo et al., 2025) replicates the performance of o1 through
interleaved supervised fine-tuning and reinforcement learning. The R1-Distill series models, fine-tuned
on samples distilled from DeepSeek-R1, also achieve test-time scaling through non-RL approaches. In
the realm of non-RL data distillation training, many open-source works, such as Sky-T1 (Team, 2025a),
s1 (Muennighoff et al., 2025), and LIMO (Ye et al., 2025) have successfully developed competitive
reasoning models comparable to o1-preview. For reinforcement learning researches, models like QwQ-
32B (Team, 2025c), Kimi-K1.5 (Team et al., 2025), and PRIME-7B (Cui et al., 2025) have matched or
even surpassed o1-preview’s performance. Combining short and long trajectory training data and the
Shifted Thinking Window, our model, Z1, mitigates overthinking and achieves efficient test-time scaling
in LLM reasoning.

Large Language Models for Code The development of large language models (LLMs) for code has
undergone significant evolution from pre-trained models such as Codex, StarCoder (Li et al., 2023),
DeepSeek-Coder (Guo et al., 2024), and Qwen2.5-Coder Base (Hui et al., 2024) to instruction-tuned vari-
ants like WizardCoder (Luo et al., 2023), WaveCoder (Yu et al., 2024), and Qwen2.5Coder-Instruct (Hui
et al., 2024). This evolution, with the advancement of test-time scaling, has led to a divergence in model
capabilities. On one hand, large reasoning models (LRMs) tailored for competitive programming (e.g.,
o1-Pro and o1-IOI (El-Kishky et al., 2025)) have emerged, leveraging chain-of-thought (CoT) reasoning
to achieve human-level performance in programming contests. On the other hand, LLMs designed for
software engineering (SE) tasks, such as Llama3-SWE-RL (Wei et al., 2025), have been developed to
address benchmarks like SWE-Bench (Jimenez et al., 2023) and SWE-Lancer (Miserendino et al., 2025).
These software engineering-focused LRMs incorporate real-world SE workflows (e.g., Agentless (Xia
et al., 2024)) and reinforcement learning, progressively enabling automated project management. In
this work, we demonstrate that efficient test-time scaling with code can mitigate the tendency of LRMs
to overthink coding problems. Our findings contribute to both competitive programming and software
engineering applications, bridging the gap between theoretical advancements and practical deployment.

B Dataset Details

B.1 Comparison of Datasets

We analyzed several recent open-source reasoning datasets. Table 4 presents several key characteristics
of these datasets, including the number of samples, minimum and maximum token counts, domain, and
dataset source. The Z1-Code-Reasoning dataset features shorter reasoning trajectories, which effectively
enables our Z1 model to think quickly on simple problems while go into deeper reasoning on more
challenging ones. This approach prevents overthinking and makes a significant contribution to achieving
efficient test-time scaling.

Table 4: The list of existing open-source reasoning datasets.

Dataset Samples Min. tokens Max. tokens Domain Dataset Source

s1 (Muennighoff et al., 2025) 1K 667 7,850 General Gemini 2.0 Flash
Thinking Experimental

s1.1 (Muennighoff et al., 2025) 1K 923 26,685 General Deepseek R1

CodeForces-CoTs (Penedo et al., 2025) 48K 523 25,156 Competition Code Deepseek R1

OpenR1-Math-220k3 22K 4,307 18,611 Math Deepseek R1

OpenThoughts (Team, 2025b) 114K 299 91,198 General Deepseek R1

Z1-Code-Reasoning 107K 25 8,169 General Code QwQ-32B-Preview

2697



(a) Z1-Code-Reasoning-107k word trigram frequency (b) Openthought-114k word trigram frequency

Training Data

High-frequencyHigh-frequency

Figure 4: The comparison between Z1-Code-Reasoning-107K (a) and OpenThoughts-114K (b). We computed the
top-50 most frequent trigrams in both datasets. The circle size reflects word frequency.

B.2 Word frequency details
In Section 2.1 and Figure 4, we analyzed the word frequency statistics of our dataset, Z1-Code-Reasoning-
107k, in comparison to the previous Openthought-114k dataset. We performed a statistical analysis of
word frequencies at the triplet level for both datasets, with the specific top 50 word frequencies detailed
in Tables 5 and 6. Due to the inclusion of reasoning data with varying trajectory lengths in our Z1-
Code-Reasoning-107k dataset, there is a noticeable reduction in the overall word count. Additionally, as
introduced in Section 2.1, our dataset not only contains common logical reasoning connectives but also
incorporates a greater proportion of code-related content.

Table 5: Word frequency in Z1-Code-Reasoning-107K

Tri-gram words Count Tri-gram words Count

i need to 72090 to ensure that 18080
we need to 70123 can use the 17828
the number of 53932 - for each 15033
### explanation 1. 37352 code “‘python def 14631
### solution code 33629 a function that 14000
based on the 31656 iterate through the 13698
### approach 1. 30991 you need to 13485
this approach ensures 30213 be able to 13358
to create a 30150 need to find 13292
approach ensures that 28633 how you can 13280
the sum of 28373 final solution to 13149
a list of 28242 to check if 13119
to solve this 27732 ## final solution 13089
solve this problem, 26417 ### explanation: 1. 12451

Continued on next page

2https://huggingface.co/datasets/open-r1/OpenR1-Math-220k

2698

https://huggingface.co/datasets/open-r1/OpenR1-Math-220k


Tri-gram words Count Tri-gram words Count

this problem, we 26398 keep track of 12198
solution code “‘python 25448 sum of the 12010
problem, we need 25446 to calculate the 11831
to find the 23880 make sure that 11800
ensure that the 22804 the length of 11610
check if the 21960 we can use 11448
ensures that the 21685 need to create 11366
for i in 20988 to get the 11150
you can use 20674 need to handle 11089
the function should 20524 if there are 11045
- if the 20434 - we use 11042

Table 6: Word frequency in OpenThoughts-114k

Tri-gram words Count Tri-gram words Count

the number of 603860 the total number 106781
we need to 484418 equal to the 106282
the sum of 321257 which is the 104615
i need to 188694 the problem says 98058
in terms of 173819 at least one 97784
to find the 169782 let me try 97748
but the problem 169082 the distance from 97535
let me check 155703 but this is 94306
the answer is 155213 a + b 91141
need to find 151935 is less than 90788
for example, if 151677 so the code 89894
the problem is 146089 return your final 89123
is equal to 142341 your final response 89120
in this case, 139293 final response within 89120
\) and \( 134985 but let me 87315
sum of the 133514 both sides by 86006
according to the 123939 this is a 85909
but how to 119825 wait, but the 85052
if we can 116574 but since the 83803
but in the 113484 must be a 81221
but according to 113061 the midpoint of 81158
+ b + 111663 the same as 80311
a and b 110523 such that the 80211
the problem states 107778 with respect to 78634
total number of 106790 the angle between 77260

2699



B.3 Ablated Dataset Construction
We use random sampling and greedy sampling strategies to obtain three representative subsets to demon-
strate the impact of two key factors (Mean Trajectory Length and Training Sample Size) in the training
data on model performance. We provide the definition of the greedy sampling method in Algorithm 1,
which is used to generate the Longest and Shortest subsets in Table 2.

Algorithm 1 Greedy Sampling (Longest or Shortest)

1: Input: Set of training samples S, token budget B, strategy mode ∈ {“longest”, “shortest”}
2: Output: Subset S′ ⊆ S based on selected strategy
3: Initialize S′ ← ∅, total tokens T ← 0
4: while S ̸= ∅ and T < B do
5: if mode = “longest” then
6: Find s∗ ∈ S with maximum token count
7: else if mode = “shortest” then
8: Find s∗ ∈ S with minimum token count
9: end if

10: if T + token_count(s∗) ≤ B then
11: S′ ← S′ ∪ {s∗}
12: T ← T + token_count(s∗)
13: end if
14: S ← S \ {s∗}
15: end while
16: return S′

2700



C Evaluation Details

C.1 Baselines

We benchmark Z1 against a series of top-tier models: OpenAI o1-series models (Jaech et al., 2024):
o1-mini and o1-preview, representing close-source test-time scaling models; Deepseek-R1 series (Guo
et al., 2025): Deepseek-R1, R1-Distill-Qwen (32B and 7B) and Qwen’s QwQ-32B-Preview (Team,
2024), open-weight reasoning models; Sky-T1-32B-Preview (Team, 2025a), s1.1-7B (Muennighoff et al.,
2025), OpenThinker-7B (Team, 2025b), open models with open reasoning data; Deepseek-V3 (Liu et al.,
2024), GPT-4o (OpenAI, 2024a), Qwen2.5-Coder-7B-Instruct (Hui et al., 2024), four representative
non-reasoning models. Our model, Z1, is fully open including weights, reasoning data, and code. We
evaluate Z1 using shifted thinking window with a maximum thinking tokens of 4,096. For all baseline
models, we use the reported results whenever available. If no reported scores are provided, we evaluate
the model using budget forcing with the configuration provided.

C.2 Benchmarks

We select three representative reasoning benchmarks covering different topics: LiveCodeBench (Jain et al.,
2024) continuously collects new problems over time from contests across three competition platforms,
including LeetCode, AtCoder, and CodeForces. Unless otherwise specified, we benchmark LLMs
on such competition-level programming tasks with the latest full set (880 problems until Feb, 2025) of
LiveCodeBench v5. GPQA Diamond (Rein et al., 2024) consists of 198 PhD-level science questions from
Biology, Chemistry and Physics. Experts with PhDs in the corresponding domains only achieved 69.7%
on GPQA Diamond, which shows its inherent difficulty and challenges. MATH500 (Hendrycks et al.,
2021) is a benchmark of competition math problems of varying difficulty. Following previous work (Guo
et al., 2025), we evaluate our model on the same subset selected by OpenAI (Lightman et al., 2023).
Alongside the three common reasoning benchmarks, we also incorporate a non-reasoning benchmark:
BigCodeBench is a benchmark mainly focusing on more challenging and practical code generation with
complex instructions and diverse function calls. In this section, we adopt the BigCodeBench-Hard-Instruct
(148 problems included) subset to evaluate LRM on short trajectory thinking. For all benchmarks, we
generate a sample for each question with a temperature of 0 (greedy) to measure accuracy. Through these
benchmarks, we can evaluate the reasoning ability of LLMs from different perspectives.

C.3 Prompts for Evaluation

We use prompts from Qwen2.5-Coder Github for LiveCodeBench 4 and BigCodeBench 5 and the following
prompts for MATH500 and GPQA Diamond:

Prompts

<|im_start|>system
Please reason step by step, and put your final answer within \boxed{}.
<|im_end|>
<|im_start|>user
{promblem}
<|im_end|>
<|im_start|>assistant

C.4 Case Study

Figure 5 illustrates a problem-solving example involving three models: Qwen2.5-Coder-7B, Z1-7B,
and R1-Distill-Qwen-7B. In this instance, we present a simple problem, for which the Qwen2.5-Coder-7B-
Instruct model delivers a correct answer accurately. By comparison, R1-Distill-Qwen-7B adopts a context

4https://github.com/QwenLM/Qwen2.5-Coder/blob/main/qwencoder-eval/instruct/livecode_bench/lcb_
runner/prompts/code_generation.py

5https://github.com/QwenLM/Qwen2.5-Coder/blob/main/qwencoder-eval/instruct/BigCodeBench/model.py

2701

https://github.com/QwenLM/Qwen2.5-Coder/blob/main/qwencoder-eval/instruct/livecode_bench/lcb_runner/prompts/code_generation.py
https://github.com/QwenLM/Qwen2.5-Coder/blob/main/qwencoder-eval/instruct/livecode_bench/lcb_runner/prompts/code_generation.py
https://github.com/QwenLM/Qwen2.5-Coder/blob/main/qwencoder-eval/instruct/BigCodeBench/model.py


Write a Python script to calculate the number of letter ‘a’ and ‘r’ in a string.
Input: s = ‘strawberry’
Output: ‘a’ : 1, ‘r’ : 3

[Qwen2.5-Coder-7B-Ins]
Here is a Python script that can solve
the problem:

def count_letters(s):
a_count = s.count('a')
r_count = s.count('r')
return {'a': a_count,

'r': r_count}

s = 'strawberry'
print(count_letters(s))

In this script, we define a function
count_letters...
[120+ tokens omitted]

[Z1-7B]
To solve this problem, we need...
[50+ tokens omitted]
1. Approach
[94 tokens omitted]
2. Solution Code

def count_letters(s):
count_a = 0
count_r = 0
for char in s:

if char == 'a':
count_a += 1

elif char == 'r':
count_r += 1

print("'a' :", count_a)
print("'r' :", count_r)

3.Explanation
[104 tokens omitted]
This approach ensures that we...
[28 tokens omitted]

[R1-Distill-Qwen-7B]
<think>
Okay, I need to write a Python script that
counts the number of ’a’s and ’r’s...
[1787 tokens omitted]
</think>
To solve this problem...
[45 tokens omitted]
1. Approach
[92 tokens omitted]
2. Solution Code

s = input().strip()
a_count = s.count('a')
r_count = s.count('r')
print(f'a: {a_count}')
print(f'r: {r_count}')

3.Explanation
[100+ tokens omitted]
This approach ensures that the solution ...
[22 tokens omitted]

Figure 5: Example model outputs. We present a question that Qwen2.5-Coder-7B-Instruct (left) can correctly
answer without requiring deep reasoning. The response from Z1 (middle) avoids excessive additional reasoning. In
contrast, R1-Distilled-Qwen-7B generates 1,784 tokens of reasoning after the delimiter.

split to enforce thinking, requiring extensive deliberation that consumes 1,784 tokens before arriving at a
solution. This protracted process underscores its inefficiency in optimizing thinking time for simpler tasks.
Z1-7B employs the Shifted Thinking Window to effectively bypass unnecessary overthinking within the
given context, demonstrating its advantage for balancing accuracy and efficiency in problem-solving.

C.5 Analysis of Reasoning Phrase Patterns

To investigate the cross-domain reasoning capabilities of our model, we analyzed the tri-gram word
frequency statistics in the reasoning traces from the training dataset (code-focused) and the model’s
generated outputs on code (LiveCodeBench) and math (MATH 500) benchmarks, as shown in Table 7.

Training Data (Code) Test on Code (LiveCodeBench) Test on Math (MATH 500) Intersection of Code and Math

i need to (10.48%) the number of (15.67%) we need to (18.67%) the number of (17.52%)
we need to (10.32%) we need to (11.63%) to find the (8.84%) we need to (17.01%)

the number of (7.38%) - for each (5.32%) the number of (6.43%) the sum of (6.18%)
“‘ ### explanation (6.55%) the sum of (4.96%) need to find (6.24%) problem, we need (4.99%)
### explanation 1. (5.53%) to the number (4.21%) ) and ( (5.52%)
### solution code (4.98%) to solve this (4.20%) ( x = (4.80%)
### approach 1. (4.59%) ### solution code (4.18%) = 0 ] (4.77%)

approach ensures that (4.24%) ### approach 1. (4.14%) ] ### step (4.26%)
to create a (4.24%) this problem, we (4.14%) the sum of (4.26%)

based on the (4.17%) problem, we need (4.14%) step by step. (3.91%)
solve this problem, (3.91%) solution code “‘python (4.10%) - 6 = (3.36%)

solution code “‘python (3.77%) ### explanation 1. (4.06%) consider that the (3.04%)
problem, we need (3.77%) equal to the (3.57%) problem, we need (2.97%)

the sum of (3.68%) approach ensures that (3.37%) i need to (2.94%)
a list of (3.42%) this approach ensures (3.37%) sum of the (2.92%)

to find the (3.29%) is equal to (3.31%) ( n = (2.87%)
ensure that the (3.22%) number of unique (3.26%) ] therefore, the (2.85%)

a list of (3.42%) this approach ensures (3.37%) sum of the (2.92%)
to find the (3.29%) is equal to (3.31%) ( n = (2.87%)

ensure that the (3.22%) number of unique (3.26%) ] therefore, the (2.85%)

Table 7: Comparison of tri-gram word frequency in reasoning phrase on different datasets

2702



A significant overlap in high-frequency tri-grams, such as "we need to" and "the number of," was
observed between the code and math outputs. This overlap reflects the model’s use of structured, domain-
agnostic reasoning strategies. For example, "we need to" often introduces a logical breakdown of steps in
code, while in math, it signals the start of a deductive process. Similarly, "the number of" is used in code
for quantifying variables or iterations and in math for defining quantities or relationships.

The consistent tri-gram distribution between training data and test outputs indicates that the model
has internalized general reasoning skills—such as task decomposition, logical sequencing, and deductive
thinking—from code training and effectively applies them to mathematical problem-solving. This analysis
underscores the model’s ability to generalize reasoning skills across domains.

C.6 Test-time Values
In Section 3.3, we presented the results of Z1-7B and R1-Distill-Qwen-7B on three reasoning benchmarks,
highlighting Z1-7B’s more efficient test-time scaling capability. Table 8 provides a more detailed account
of the experimental results. By varying the maximum number of thinking tokens, we assessed the test-time
scaling abilities of both models across different lengths of thinking trajectories. Z1-7B demonstrated
strong performance even under tighter constraints on thinking tokens, showcasing its efficient test-time
scaling capability. In contrast, R1-Distill-Qwen-7B required more thinking tokens to achieve a comparable
level of performance.

Model GPQA LiveCodeBench MATH 500
Avg. think tokens Pass@1 Avg. think tokens Pass@1 Avg. think tokens Pass@1

R1-
Distill-
Qwen-
7B

512 18.2 512 13.9 512 59.8
- - - - 719 62.4

1011 19.2 1023 20.7 1016 72.0
- - - - 1337 76.0

1971 26.3 1978 28.8 1760 83.4
3607 35.4 3580 40.0 2541 87.6

Z1-7B

256 25.3 256 30.3 255 37.2
510 28.8 502 31.9 471 55.8
946 33.3 732 35.0 707 71.2
1548 41.9 866 35.3 823 74.2
2470 47.5 - - 1185 76.4

Table 8: Evaluation details on three reasoning benchmarks

C.7 Comparison with Contemporaneous Work
We also compare Z1 with some great contemporaneous work, like AdaptThink (Zhang et al., 2025) and
Marco-o1-7B-Pruned (Luo et al., 2025). 1 matches state-of-the-art performance with the same parameters
and demonstrates efficient test-time compute scaling on various reasoning benchmarks.

Model Base
Model

MATH
500

GPQA
Diamond

LiveCode
Bench AVG

Z1-7B (ours) Qwen2.5-Coder 76.4% (1185) 47.5% (2470) 35.3% (866) 53.1% (1507)
AdaptThink-7B Qwen2.5-Math 92.0% (1875) 35.4% (5382) 45.0% (8906) 57.5% (5538)
Marco-o1-7B-Pruned Qwen2-7B 72.8% (654) 43.4% (262) 26.3% (775) 47.5% (567)

Table 9: Comparison with Contemporaneous Work about the efficiency of reasoning.

2703



D Examples

D.1 Z1-Code-Reasoning-107K Data Examples

Case #1: A simple problem with short trajectory answer

Question:
Convert the following query into a T-SQL statement.
SELECT Employee_ID, Name
FROM Employees
WHERE Salary > 50000

Answer:
Your query is already written in T-SQL. The same statement would go as:
```sql
SELECT Employee_ID, Name
FROM Employees
WHERE Salary > 50000
```

Case #2: A complex problem with long trajectory answer

Question:
In my machine learning course we have covered the key ideas behind principal component analysis. To round this part of the course off, we have learned to interpret the results of
PCA, specifically using a biplot. Have I missed something, or is PCA mostly something that is used in conjuction with other ML methods to obtain a result? For example, in a
biplot I can tell which observations are similar and how much each variable is contributing overall to a specific component, but how is this useful outside of employing something
like clustering after-the-fact? From my point of view, it feels like PCA is the ’first-step’ towards gaining some sort of insight but it doesn’t tell you much that is useful on its own.

Answer:
Principal Component Analysis (PCA) is indeed a fundamental technique in data analysis and machine learning, and your intuition about it being a first step is correct. However,
PCA can be quite useful on its own in several ways beyond just being a preprocessing step for other methods like clustering. Let’s explore some of these applications in more detail.
### 1. **Dimensionality Reduction for Visualization**
One of the primary uses of PCA is to reduce the dimensionality of data for visualization purposes. By projecting high-dimensional data onto a lower-dimensional space (typically
2D or 3D), PCA allows us to visualize complex datasets and identify patterns, clusters, or outliers that might not be apparent in higher dimensions. The biplot, which you mentioned,
is a useful tool in this context as it shows both the observations and the variables in the same plot, providing insights into how variables relate to each other and to the observations.
### 2. **Feature Extraction**
PCA can be used for feature extraction, where the principal components themselves can serve as new features for machine learning models. These components are linear
combinations of the original features and are ordered by the amount of variance they explain. Using a subset of these components can help reduce noise, improve model performance
by eliminating redundant features, and speed up training times by reducing the number of input features.
### 3. **Noise Reduction**
Since PCA captures the directions of maximum variance in the data, it can be used for noise reduction by projecting the data onto a subspace that retains most of the variance while
leaving out the components that capture noise. This is particularly useful when dealing with noisy datasets where the signal is buried under random variations.
### 4. **Data Compression**
In applications where storage or transmission of data is a concern, PCA can be used for data compression. By retaining only the top principal components, we can represent the data
with fewer dimensions while preserving most of the information. This is similar to how image compression algorithms work, where less important details are discarded to reduce
file size.
### 5. **Exploratory Data Analysis (EDA)**
PCA is a valuable tool in EDA for understanding the structure of the data. It helps in identifying correlations between variables, detecting outliers, and understanding the underlying
patterns in the data. The loadings of the principal components can indicate which original features are most influential in each component, providing insights into the data’s intrinsic
structure.
### 6. **Preprocessing for Machine Learning Models**
While PCA is often used as a preprocessing step before applying other machine learning algorithms, it can significantly improve the performance of these models. By reducing
dimensionality, PCA can help alleviate the curse of dimensionality, improve model training speed, and sometimes even enhance model accuracy by removing noise and redundant
information.
### 7. **Anomaly Detection**
PCA can be used for anomaly detection by identifying observations that lie far from the origin in the principal component space. Since PCA models the directions of maximum
variance, points that deviate significantly from this model can be considered anomalies or outliers.
### 8. **Signal Processing and Image Analysis**
In fields like signal processing and image analysis, PCA is used for tasks such as denoising, compression, and feature extraction. For example, in image processing, PCA can be
used to reduce the dimensionality of image data, which is useful for tasks like face recognition.
### 9. **Genetic Data Analysis**
In genomics, PCA is widely used to visualize and analyze genetic data, helping researchers understand population structures, identify genetic relationships, and detect outliers or
batch effects in the data.
### 10. **Finance and Economics**
In finance, PCA is used for portfolio optimization, risk management, and understanding the underlying factors that drive asset returns. In economics, it can be used to identify key
economic indicators or to reduce the dimensionality of macroeconomic data for forecasting.
### Conclusion
While PCA is indeed often used as a first step in data analysis, it has numerous standalone applications that make it a versatile and powerful tool. Its ability to reduce dimensionality,
extract meaningful features, visualize complex data, and handle noise makes it invaluable in a wide range of fields and applications. Understanding PCA thoroughly will not only
help you in your machine learning coursework but also in applying data analysis techniques effectively in real-world scenarios.

2704



D.2 Examples of Shifted Thinking

In the word “strawberry”, there are three ‘r’s.

How many r in ‘strawberry’ ?

Simple Problem

To find out how many 'r's are in the word "strawberryandraspberry," I'll count each occurrence of the letter 
'r' in the given string.
Let's break it down:1. First, I'll write down the string: "strawberryandraspberry"2. Now, I'll go through each 
character in the string and count how many times 'r' appears.
Starting from the beginning:
- s: not 'r'- t: not 'r'- r: this is 'r' (count: 1)- a: not 'r'- w: not 'r'- b: not 'r'- e: not 'r'- r: this is 'r' (count: 2)- r: 
this is 'r' (count: 3)- y: not 'r'- a: not 'r'- n: not 'r'- d: not 'r'- a: not 'r'- n: not 'r'- d: not 'r'- r: this is 'r' (count: 
4)- a: not 'r'- s: not 'r'- p: not 'r'- b: not 'r'- e: not 'r'- r: this is 'r' (count: 5)- r: this is 'r' (count: 6)- y: not 'r'
So, after going through the entire string, I've counted 6 'r’s.
Therefore, there are 6 'r's in "strawberryandraspberry.“
Alternatively, I could use a programming approach to count the occurrences. 
For example, in Python, I could use the count() method:
word = "strawberryandraspberry“
count = word.count('r’)
print(count)
This would also give me the count of 'r's, which is 6.
So, the final answer is 6.
## Final Solution
To determine how many 'r's are in the word "strawberryandraspberry," we can count each occurrence of the 
letter 'r' in the string.
### Approach1. **Manual Counting:**  
 - Write down the string: "strawberryandraspberry"   
- Go through each character and count how many times 'r' appears.
2. **Programming Approach:**   
- Use a programming language to count the occurrences of 'r' in the string.
### Solution Code
```python
word = "strawberryandraspberry“
count = word.count('r’)
print(count)
```
### Explanation
- **Manual Counting:**  - The string is "strawberryandraspberry"  
- Counting 'r's: s(0), t(0), r(1), a(0), w(0), b(0), e(0), r(2), r(3), y(0), a(0), n(0), d(0), a(0), n(0), d(0), r(4), 
a(0), s(0), p(0), b(0), e(0), r(5), r(6), y(0)  
- Total 'r's: 6
- **Programming Approach:
**  - Using the `count()` method in Python to count the occurrences of 'r' in the string.  
- The result is 6.
Thus, there are 6 'r's in "strawberryandraspberry."

How many r in ‘strawberryandraspberry’ ?

Complex Problem

Quickly answer:

Long trajectory answer:

Figure 6: Examples of answer of Z1-7B under different questions.

2705



D.3 Failure Mode

<think>
Okay, so I have this problem about an unfair six-sided die. Let me try to understand it step by 
step. The die has faces numbered 1 through 6, and the sum of opposite faces is 7. That means 
face 1 is opposite face 6, face 2 is opposite face 5, and face 3 is opposite face 4. Got that.

Now, the probability of rolling face F is greater than 1/6. The probability of rolling the face 
opposite to F is less than 1/6. For the other four faces, the probability is 1/6 each. So, if F is, 
say, face 1, then face 6 has a lower probability, and the rest have the standard 1/6. But F could 
be any face, right? So, we don't know which face it is yet.

We have two such dice rolled, and the probability of getting a sum of 7 is 47/288. We need to 
find the probability of rolling face F on a single die, express it as a reduced fraction m/n, and 
then find m + n.

Alright, let's break this down. First, let's denote the probability of rolling face F as p. Since the 
die is unfair, p > 1/6. The probability of rolling the opposite face, let's call it F', is then less 
than 1/6. Let's denote that as q. So, q < 1/6. The other four faces each have probability 1/6.

Since the die must have probabilities that sum to 1, we can write the equation:

p + q + 4*(1/6) = 1

Simplify that:

p + q + 4/6 = 1

Which simplifies to:

p + q = 1 - 4/6 = 2/6 = 1/3

So, p + q = 1/3.

[2936 tokens omitted]

**Final Answer**
\boxed{29}
</think>

Given an unfair six-sided die with faces numbered 1 through 6, where the probability of rolling 
face \( F \) is greater than \( \frac{1}{6} \), the probability of rolling the face opposite to 
\( F \) is less than \( \frac{1}{6} \), and the probability of rolling each of the other faces is 
\( \frac{1}{6} \). The sum of the numbers on each pair of opposite faces is 7. When two 
such dice are rolled, the probability of obtaining a sum of 7 is \( \frac{47}{288} \).

We denote the probability of rolling face \( F \) as \( p \) and the probability of rolling the 
opposite face as \( q \). We know:
\[ p + q = \frac{1}{3} \]
\[ pq = \frac{5}{192} \]

We solve the quadratic equation:
\[ 192p^2 - 64p + 5 = 0 \]

Using the quadratic formula:
\[ p = \frac{64 \pm \sqrt{64^2 - 4 \cdot 192 \cdot 5}}{2 \cdot 192} \]
\[ p = \frac{64 \pm 16}{384} \]

This gives two solutions:
\[ p = \frac{80}{384} = \frac{5}{24} \]
\[ p = \frac{48}{384} = \frac{1}{8} \]

Since \( p > \frac{1}{6} \), we have \( p = \frac{5}{24} \).

Thus, the probability of obtaining face \( F \) is \( \frac{5}{24} \). Therefore, \( m = 5 \) 
and \( n = 24 \), giving \( m + n = 29 \).

\[
\boxed{29}
\]

So I've got this problem about an unfair six-sided die. The die has faces numbered 1 through 6, 
and there's a face F that has a probability greater than 1/6 of being rolled. The face opposite to 
F has a probability less than 1/6, and the other four faces each have a probability of 1/6. Also, 
the sum of the numbers on each pair of opposite faces is 7. When two such dice are rolled, the 
probability of getting a sum of 7 is 47/288. I need to find the probability of rolling face F, 
which is m/n, where m and n are relatively prime, and then find m + n.

First, I need to understand the probabilities of each face. Let's denote the probability of rolling 
face F as p_F, which is greater than 1/6. The face opposite to F is F', and its probability is 
p_{F'}, which is less than 1/6. The other four faces, let's say 1, 2, 3, and 4, each have a 
probability of 1/6.

Since the die is unfair, the sum of the probabilities of all faces must be 1. So, we have:

p_F + p_{F'} + 1/6 + 1/6 + 1/6 + 1/6 = 1

Simplifying, that's:

p_F + p_{F'} + 4/6 = 1

p_F + p_{F'} = 2/6 = 1/3

Also, we know that p_F > 1/6 and p_{F'} < 1/6.

Now, since the sum of the numbers on each pair of opposite faces is 7, the pairs are (1,6), (2,5), 
and (3,4). So, if F is one of these numbers, then F' is its opposite.

Let's assume F is 1, then F' is 6. But p_F > 1/6 and p_{F'} < 1/6. If F is 1, then p_F > 1/6 
and p_{F'} < 1/6, which satisfies the condition.

Similarly, if F is 2, then F' is 5, and if F is 3, then F' is 4.

So, F can be 1, 2, or 3, and F' will be 6, 5, or 4, respectively.

Let's consider F = 1, F' = 6.

Then, p_1 + p_6 + 1/6 + 1/6 + 1/6 + 1/6 = 1

p_1 + p_6 + 4/6 = 1

p_1 + p_6 = 2/6 = 1/3

Also, p_1 > 1/6 and p_6 < 1/6.

Similarly, for F = 2, F' = 5:

[1371 tokens omitted]

From e + f = 1/3, so f = 1/3 - e

Now, substitute these into the equation a  ###[truncation]

I overthought it, the final answer should be:
\[ \boxed{11} \]

When rolling a certain unfair six-sided die with faces numbered 1, 2, 3, 4, 5, and 6, the probability of obtaining 
face $F$ is greater than $1/6$, the probability of obtaining the face opposite face $F$ is less than $1/6$, the 
probability of obtaining each of the other faces is $1/6$, and the sum of the numbers on each pair of opposite faces 
is 7. When two such dice are rolled, the probability of obtaining a sum of 7 is $ \frac{47}{288} $. Given that the 
probability of obtaining face $F$ is $m/n$, where $m$ and $n$ are relatively prime positive integers, find $m+n$.

Question:

R1-Distill-Qwen-7B Z1-7B

Figure 7: The failure case of Z1-7B. R1-distill utilized 3803 tokens to complete the reasoning and arrive at the
correct answer "29". In contrast, Z1, with "max_thinking_token" limit of 2048, was truncated during the reasoning
stage, resulting in an incorrect answer "11". Therefore, even though Z1 can adjust reasoning length based on
problem difficulty to some extent, it is preferable to allocate a higher thinking token budget in complex scenarios to
improve performance.

2706



D.4 Examples on GPQA Diamond

<think>
Okay, so I have this question about absorption lines corresponding to a specific energy change, 
and I need to figure out which medium is most likely responsible. Let me try to break this 
down step by step.

First, the question mentions an absorption line with an energy change of 5.9 microelectron 
volts, which is 5.9 x 10^-6 eV. I remember that energy levels in atoms and molecules are 
quantized, meaning they can only change by specific amounts. So, when an electron absorbs or 
emits energy, it does so in these discrete steps.

I also recall that the energy of a photon is related to its wavelength by the equation E = hc/λ, 
where h is Planck's constant, c is the speed of light, and λ is the wavelength. But I'm not sure if 
I need to calculate the wavelength here or if there's a more straightforward approach.

Looking at the options, they're all about different interstellar media: cold or warm, atomic or 
molecular. So, I need to think about the typical energy transitions in atoms versus molecules.

In atomic transitions, electrons move between energy levels in atoms, which usually have 
smaller energy differences compared to molecular transitions. Molecules have more complex 
energy structures because they have both electronic and vibrational energy levels. So, the 
energy required for a transition in a molecule might be higher or lower than in an atom, 
depending on the specific transition.

Wait, but 5.9 microelectron volts is a very small energy. I think that in the interstellar medium, 
which is mostly cold, the temperatures are low. So, the thermal energy is low, meaning that 
only low-energy transitions can occur because higher energy transitions would require more 
thermal energy than is available.

In a cold medium, the electrons don't have much thermal energy, so they can only transition 
between energy levels that are close in energy. If the medium is warm, then the electrons have 
more thermal energy, so they can transition to higher energy levels more easily.

But wait, the energy change here is 5.9 microelectron volts. That's 5.9 x 10^-6 eV. I think 
that's a very small energy, so it's more likely to be associated with atomic transitions rather 
than molecular because molecular transitions usually have larger energy differences. Also, in 
the interstellar medium, which is mostly hydrogen, the dominant transitions are from 
hydrogen atoms, which have well-known spectral lines.

So, if it's a cold medium, the electrons can only transition between energy levels that are close, 
which would correspond to lower energy changes. If it's a warm medium, maybe higher 
energy transitions are possible, but I'm not sure if that's the case here.

Wait, but 5.9 microelectron volts is still a very small energy. I think that in the interstellar 
medium, which is cold, the typical transitions are in the microwave or radio range, which 
correspond to these small energy changes. For example, the 21 cm line of hydrogen is about 
5.9 x 10^-6 eV, which is exactly the energy given here. So, that must be the 21 cm line, which 
is a transition in hydrogen atoms.

So, if the absorption line corresponds to the 21 cm transition, that's a hydrogen line, and it's 
observed in cold regions of the interstellar medium. So, the medium must be cold.

Looking at the options, A is cold atomic, C is cold molecular. Since hydrogen is an atom, it's 
option A. But wait, the question is about the medium, not the element. So, the interstellar 
medium is mostly cold and consists of atoms, mostly hydrogen, so the absorption line would 
be from cold atomic medium.

But wait, could it be molecular? Molecular lines usually have different energy transitions. For 
example, rotational transitions in molecules have higher energy differences compared to 
atomic transitions, but I'm not sure. The 21 cm line is definitely an atomic transition.

So, putting it all together, the energy corresponds to the 21 cm line, which is a hydrogen atom 
transition. Since the interstellar medium is cold, the medium is cold and atomic. So, the 
answer should be A.
</think>

The absorption line corresponds to a 21 cm transition in hydrogen atoms, which is a very small 
energy change of 5.9 x 10^-6 eV. This energy is characteristic of the 21 cm line, typically 
observed in cold interstellar media. Since hydrogen is an atomic element, the medium is cold 
and atomic.

Answer: A. Cold atomic interstellar medium.

\boxed{A}

To determine what is most likely to be observed given the absorption line corresponding to a 
change in energy level of 5.9 micro electron volts (5.9 × 10^-6 eV), we need to consider the 
properties of different interstellar media and how they interact with radiation.

First, let's understand the energy scale involved. The energy difference of 5.9 × 10^-6 eV is 
relatively small. In atomic and molecular physics, transitions between energy levels are often in 
the ultraviolet (UV) and visible spectrum, which correspond to energy differences of a few 
electron volts (eV) or less.

Now, let's consider each option:

A. Cold atomic interstellar medium: In a cold atomic medium, atoms are in a low-
temperature state, and their electronic transitions are primarily due to UV and visible radiation. 
The energy difference of 5.9 × 10^-6 eV is very small, corresponding to a wavelength in the 
far ultraviolet (FUV) region. Absorption lines in this energy range are characteristic of atomic 
transitions, especially in elements like hydrogen and helium.

B. Warm atomic interstellar medium: A warm atomic medium has higher temperatures, 
which can cause atoms to be in higher energy states. This could lead to transitions that are not 
as sensitive to the specific energy difference provided. However, the energy difference is still 
relatively small, so it's possible to observe absorption lines in this medium as well.

C. Cold molecular interstellar medium: In a cold molecular medium, molecules are in a low-
temperature state, and their rotational and vibrational transitions are more prominent. 
Molecular transitions typically involve larger energy differences, often in the microwave and 
radio regions of the spectrum. The energy difference of 5.9 × 10^-6 eV is too small for 
molecular transitions in this context.

D. Warm molecular interstellar medium: Similar to the warm atomic medium, a warm 
molecular medium has higher temperatures, which can cause molecules to be in higher energy 
states. This could lead to transitions that are not as sensitive to the specific energy difference 
provided. However, the energy difference is still relatively small, so it's possible to observe 
absorption lines in this medium as well.

Given that the energy difference is 5.9 × 10^-6 eV, which is very small, it is most likely to 
correspond to atomic transitions in a cold medium, where such fine energy differences are 
more common. Molecular transitions typically involve larger energy differences, making 
option C less likely.

Therefore, the most probable observation is in a cold atomic interstellar medium.

\boxed{A}

Observations of an absorption line, that corresponds to the change in energy level of 5.9 micro electron volts (5.9 * 10^-6 eV), are being carried out.
What is most likely to be observed this way?
A. Cold atomic interstellar medium.
B. Warm atomic interstellar medium.
C. Cold molecular interstellar medium.
D. Warm molecular interstellar medium.
Please reason step-by-step and put your choice letter without any other text with \boxed{} in the end.

R1-Distill-Qwen-7B Z1-7B

Question:

Figure 8: Examples of the comparison between Z1-7B and R1-Distill-Qwen-7B on GPQA.

2707



<think>
Okay, so I have this density matrix given by ρ = (1/2)(|0⟩⟨0| + |1⟩⟨1|). I need to figure out 
its geometrical position in the qubit space. The options are A through D, each with different 
coordinates. Hmm, I remember that density matrices are used in quantum mechanics to 
describe the state of a system, especially when it's mixed or entangled. But I'm a bit fuzzy on 
how to visualize this in the qubit space.

First, let me recall that a single qubit can be represented in a Bloch sphere, which is a 
geometrical representation of the state of a qubit. The Bloch sphere is a unit sphere in three-
dimensional space, where each point corresponds to a possible state of the qubit. The pure 
states are represented by points on the surface of the sphere, while mixed states are inside the 
sphere.

The density matrix given here is ρ = (|0⟩⟨0| + |1⟩⟨1|)/2. Wait, that looks familiar. Isn't 
that the density matrix for a completely mixed state? Because when you have a completely 
mixed state, the density matrix is the identity matrix divided by the dimension of the space. 
For a qubit, which is a two-level system, the identity matrix is 2x2, so dividing by 2 gives us 
exactly this ρ.

But how does this correspond to a point in the qubit space? I think the completely mixed state 
should correspond to the center of the Bloch sphere, right? Because the center is the average of 
all possible pure states. So, in the Bloch sphere, the center is at (0,0,0). Let me check if that 
makes sense.

In the Bloch sphere representation, a pure state |ψ⟩ can be written as |ψ⟩ = cos(θ/2)|0⟩ + 
e^{iφ} sin(θ/2)|1⟩. The corresponding density matrix is |ψ⟩⟨ψ|. The Bloch vector for this 
state is (x, y, z) where x = sinθ cosφ, y = sinθ sinφ, and z = cosθ. So, for the pure states, the 
Bloch vector has a magnitude of 1, which places it on the surface of the sphere.

But for the mixed state, since it's a completely mixed state, it doesn't have a definite phase or 
any coherence. So, it's like averaging over all possible states. That should correspond to the 
origin, which is (0,0,0) in the Bloch sphere. So, the density matrix ρ given here is the 
completely mixed state, which is at the center of the Bloch sphere.

Looking back at the options, A is (0,0,0), which would be the center. The other options are 
points on the surface or different points inside the sphere. Since the completely mixed state is 
at the center, the answer should be A.

Wait, let me make sure I'm not confusing anything. The density matrix for a mixed state is 
diagonal in the computational basis, which this one is. So, it's a classical mixture of |0⟩ and |1⟩, 
each with probability 1/2. In the Bloch sphere, a diagonal density matrix corresponds to a state 
with no coherence, meaning no y-component in the Bloch vector. So, the Bloch vector should 
lie along the z-axis. But since it's a completely mixed state, the z-component is zero as well. So, 
the Bloch vector is (0,0,0), which is the center.

Yes, that makes sense. So, the geometrical position is the origin, which is option A.

**Final Answer**
\boxed{A}
</think>

The given density matrix is 

\[
\rho = \frac{1}{2}\left(\left|0\right\rangle \left\langle 0\right| + \left|1\right\rangle 
\left\langle 1\right|\right)
\]

This density matrix represents a completely mixed state. In the context of a qubit, a 
completely mixed state corresponds to the center of the Bloch sphere. The Bloch sphere is a 
geometrical representation where pure states lie on the surface, and mixed states lie inside. 
The completely mixed state, being an average of all possible pure states, is at the origin of the 
Bloch sphere, which corresponds to the point (0,0,0).

Thus, the geometrical position of the given density matrix in the qubit space is the origin.

\[
\boxed{A}
\]

To determine the geometrical position of the given density matrix in the qubits space, we need 
to understand the relationship between density matrices and Bloch vectors in quantum 
mechanics.

First, recall that for a single qubit, the density matrix can be expressed in terms of the Bloch 
vector \(\mathbf{r} = (r_x, r_y, r_z)\) as:

\[
\rho = \frac{1}{2} \left( \mathbb{I} + \mathbf{r} \cdot \mathbf{\sigma} \right)
\]

where \(\mathbb{I}\) is the identity matrix and \(\mathbf{\sigma} = (\sigma_x, \sigma_y, 
\sigma_z)\) are the Pauli matrices.

Given the density matrix:

\[
\rho = \frac{1}{2} \left( |0\rangle \langle 0| + |1\rangle \langle 1| \right)
\]

we can see that this is a diagonal matrix with equal probabilities for the states \(|0\rangle\) 
and \(|1\rangle\). This corresponds to a maximally mixed state.

To find the Bloch vector \(\mathbf{r}\), we can use the expression for \(\rho\) in terms of 
\(\mathbf{r}\):

\[
\rho = \frac{1}{2} \left( \mathbb{I} + \mathbf{r} \cdot \mathbf{\sigma} \right)
\]

Given that \(\rho\) is:

\[
\rho = \frac{1}{2} \left( |0\rangle \langle 0| + |1\rangle \langle 1| \right) = 
\frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

we can equate this to the Bloch vector expression:

\[
\frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{2} 
\left( \mathbb{I} + \mathbf{r} \cdot \mathbf{\sigma} \right)
\]

This implies:

\[
\mathbb{I} = \mathbb{I} + \mathbf{r} \cdot \mathbf{\sigma}
\]

Subtracting \(\mathbb{I}\) from both sides:

\[
0 = \mathbf{r} \cdot \mathbf{\sigma}
\]

This means that the Bloch vector \(\mathbf{r}\) is orthogonal to all Pauli matrices, which is 
only possible if \(\mathbf{r} = (0, 0, 0)\).

Therefore, the geometrical position of the density matrix in the qubits space is at the origin.

\boxed{A}

Consider this density matrix 
$\rho=\frac{1}{2}\left(\left|0\right\rangle \left\langle 0\right|+\left|1\right\rangle \left\langle 1\right|\right)$
What is its geometrical position in the qubits space?
A. r=(0,0,0)
B. r=(1,1,1)
C. r=(1,1,0)
D. r=(0,0,1)
Please reason step-by-step and put your choice letter without any other text with \boxed{} in the end.

R1-Distill-Qwen-7B Z1-7B

Question:

Figure 9: Examples of the comparison between Z1-7B and R1-Distill-Qwen-7B on GPQA.

2708



D.5 Examples on LiveCodeBench

<think>
Okay, I need to solve this problem where I have to determine if a given string s is an acronym 
of an array of words. Hmm, let's think about what that means. So, an acronym is formed by 
taking the first character of each word in the array and concatenating them in order. So, for 
example, if the words are ["apple", "banana"], the acronym would be "ab".
So, the task is to check if the string s exactly matches this concatenated first characters. If it 
does, return True; otherwise, False.
Let me look at the examples to make sure I understand.
In Example 1, words are ["alice", "bob", "charlie"], and s is "abc". The first letters are 'a', 'b', 
'c', so s is "abc", which matches. So it returns True.
In Example 2, words are ["an", "apple"], so the first letters are 'a' and 'a', making "aa". But s is 
"a", so it's shorter, hence False.
In Example 3, the words are ["never", "gonna", "give", "up", "on", "you"], so the first letters 
are 'n', 'g', 'g', 'u', 'o', 'y', which makes "ngguoy". The s given is exactly that, so it's True.
So, the approach is to …

[231 tokens omitted]

Wait, but what about the lengths? For example, if the concatenated string is longer than s, or 
shorter. Well, the comparison will handle that automatically.
So, the code would be something like:

def isAcronym(self, words: List[str], s: str) -> bool:
    # get the first characters
    acronym = ''.join([word[0] for word in words])
    return acronym == s

That seems straightforward.
Let me test this logic against the examples.

Example 1: … 
[320 tokens omitted]
I think this should work.
</think>

To solve this problem, we need to determine if a given string `s` is an acronym of an array of 
words. An acronym is formed by concatenating the first character of each word in the array in 
order. 

### Approach
1. **Extract First Characters**: For each word in the given list, extract the first character.
2. **Concatenate Characters**: Join these first characters into a single string.
3. **Compare Strings**: Check if this concatenated string matches the given string `s`.

This approach ensures that we correctly form the acronym by taking the first character of each 
word and then comparing it directly to the given string `s`.

### Solution Code
```python
class Solution:
 def isAcronym(self, words: List[str], s: str) -> bool:
 acronym = ''.join([word[0] for word in words])
 return acronym == s
```

### Explanation
1. **Extract First Characters**: We use a list comprehension to iterate over each word in the 
list `words` and extract the first character using `word[0]`.
2. **Concatenate Characters**: The list of first characters is then joined into a single string 
using `''.join()`.
3. **Compare Strings**: Finally, we compare the concatenated string to the input string `s`. If 
they are equal, the function returns `True`; otherwise, it returns `False`.

This solution efficiently checks if `s` is an acronym by leveraging simple string operations, 
ensuring clarity and correctness.

To solve this problem, we need to determine if a given string `s` is an acronym of an array of 
strings `words`. An acronym is formed by concatenating the first character of each string in the 
array in order. We need to check if `s` matches this acronym.

## Approach
1. **Length Check**: First, we check if the length of `s` is equal to the number of words in 
the array. If not, it cannot be an acronym, so we return `false`.
2. **Acronym Formation**: If the lengths match, we form the acronym by taking the first 
character of each word in the array.
3. **Comparison**: We then compare this formed acronym with `s`. If they are equal, we 
return `true`; otherwise, we return `false`.

## Solution Code
```python
class Solution:
 def isAcronym(self, words: List[str], s: str) -> bool:
 if len(s) != len(words):
 return False
 acronym = ''.join([word[0] for word in words])
 return acronym == s
```

## Explanation
- **Step 1**: We check if the length of `s` is equal to the number of words. If not, we 
immediately return `false` because the acronym cannot match.
- **Step 2**: We create the acronym by taking the first character of each word in the array 
using a list comprehension and joining them into a string.
- **Step 3**: We compare the formed acronym with `s`. If they are equal, we return `true`; 
otherwise, we return `false`.

This approach ensures that we efficiently check the conditions in a straightforward manner, 
adhering to the problem constraints.

Given an array of strings words and a string s, determine if s is an acronym of words.
The string s is considered an acronym of words if it can be formed by concatenating the first character of each string in words in order. For example, "ab" can be formed from 
["apple", "banana"], but it can't be formed from ["bear", "aardvark"].
Return true if s is an acronym of words, and false otherwise. 
 
[Three examples omitted …] 

Constraints:
1 <= words.length <= 100
1 <= words[i].length <= 10
1 <= s.length <= 100
words[i] and s consist of lowercase English letters.

Question:

R1-Distill-Qwen-7B Z1-7B

Figure 10: Examples of the comparison between Z1-7B and R1-Distill-Qwen-7B on LiveCodeBench.

2709



The minimum between P and (Q + min(D_i)).

Yes, because using the coupon with the cheapest dish gives the lowest possible coupon cost. So 
that's the way to go.

So the plan is:

- Read N, P, Q.

- Read the list of D_i.

- Find the minimum D_i.

- Compute the coupon cost as Q + min_D.

- The answer is the minimum between P and coupon_cost.

Wait, but what if Q is less than P? Then, using the coupon might be better, but only if the sum 
is less than P.

Wait, no. Because if Q is less than P, but adding the min D_i makes it more than P, then it's 
better not to use the coupon.

So the correct approach is to compute the minimum between P and (Q + min(D_i)).

Yes.

Let me test this logic against the sample inputs.

Sample Input 1:

[637 tokens omitted]

So the code should handle all cases correctly.

I think that's the solution.
</think>

To solve this problem, we need to determine the minimum amount of money Takahashi must 
pay to get a drink and a dish, considering he can use a discount coupon. The solution involves 
comparing the cost of using the coupon with the cost of not using it.

### Approach
1. **Understand the Problem**: Takahashi can buy a drink at a regular price of P yen or use a 
coupon to pay Q yen for the drink, but he must also order one dish. The goal is to find the 
minimum total cost.
2. **Calculate Costs**: 
   - The cost without using the coupon is simply P yen.
   - The cost using the coupon is Q yen plus the price of the cheapest dish.
3. **Comparison**: Compare the cost of using the coupon (Q + minimum dish price) with 
the regular price P to determine the cheaper option.

### Solution Code
```python
n, p, q = map(int, input().split())
dishes = list(map(int, input().split()))
min_dish = min(dishes)
coupon_cost = q + min_dish
print(min(p, coupon_cost))
```

### Explanation
1. **Reading Input**: The input consists of the number of dishes, the regular price of the 
drink, the coupon price, and the prices of the dishes.
2. **Finding Minimum Dish Price**: Calculate the minimum price among the list of dish 
prices.
3. **Calculate Coupon Cost**: Compute the total cost if the coupon is used, which is the 
coupon price plus the cheapest dish price.
4. **Determine Minimum Cost**: Compare the total cost using the coupon with the regular 
price of the drink and print the smaller value.

This approach ensures that we efficiently find the minimum cost by leveraging the minimum 
dish price to minimize the coupon cost, thus providing an optimal solution.

To solve this problem, we need to determine the minimum total amount of money Takahashi 
must pay to get the AtCoder Drink, considering both the regular price and the discounted 
price with a coupon.

### Approach

1. **Understand the Problem:**
   - The drink costs P yen regularly.
   - With a coupon, it costs Q yen, but he must order one of the N dishes.
   - Each dish has a price D_i.

2. **Identify the Options:**
   - Option 1: Pay the regular price P yen.
   - Option 2: Use the coupon to pay Q yen and choose one dish.

3. **Minimize the Cost:**
   - To minimize the total cost, choose the option with the lower total payment.
   - The total cost for the coupon option is Q plus the price of the cheapest dish.

4. **Edge Cases:**
   - If Q is greater than or equal to P, it's always better to pay the regular price.
   - If Q is less than P, compare Q plus the minimum dish price with P.

### Solution Code

```python
Read input values
import sys
input = sys.stdin.read
data = input().split()

N = int(data[0])
P = int(data[1])
Q = int(data[2])
D = list(map(int, data[3:]))

Find the minimum dish price
min_d = min(D)

Calculate the minimum total cost
if Q + min_d < P:
 min_cost = Q + min_d
else:
 min_cost = P

Print the result
print(min_cost)
```

### Explanation

1. **Input Handling:**
   - Read the input values for N, P, Q, and the list of dish prices D.

2. **Find the Minimum Dish Price:**
   - Use the `min` function to find the cheapest dish.

3. **Calculate the Minimum Total Cost:**
   - Compare the total cost of using the coupon (Q + min_d) with the regular price P.
   - Choose the smaller of the two.

4. **Output the Result:**
   - Print the minimum total cost.

This approach ensures that we always choose the option with the lowest possible total cost, 
considering both the regular and coupon options.

Order Something Else
Takahashi wants a beverage called AtCoder Drink in a restaurant.
It can be ordered at a regular price of P yen.
He also has a discount coupon that allows him to order it at a lower price of Q yen.
However, he must additionally order one of the restaurant's N dishes to use that coupon.
For each i = 1, 2, \ldots, N, the price of the i-th dish is D_i yen.
Print the minimum total amount of money that he must pay to get the drink.
The input is given from Standard Input in the following format:

[Constraints and Examples omitted …] 

The total payment will be minimized by not using the coupon and paying the regular price of 100 yen.

Question:

R1-Distill-Qwen-7B Z1-7B

Figure 11: Examples of the comparison between Z1-7B and R1-Distill-Qwen-7B on LiveCodeBench.

2710



D.6 Examples on MATH500

<think>
Okay, so I have this equation here: 2^8 equals 4^x. Hmm, I need to find the value of x. Let me 
think about how to approach this. I remember that when dealing with exponential equations, 
it's often helpful to express both sides with the same base. That way, I can set the exponents 
equal to each other and solve for the unknown.

First, let me write down the equation again to make sure I have it right: 2^8 = 4^x. So, on the 
left side, the base is 2, and on the right side, the base is 4. I know that 4 is a power of 2, 
specifically 4 is 2 squared. So, maybe I can rewrite 4 as 2^2. Let me try that.

If I substitute 4 with 2^2, the equation becomes 2^8 = (2^2)^x. Now, I remember that when 
you have an exponent raised to another exponent, you can multiply them. So, (2^2)^x is the 
same as 2^(2*x). Let me write that down: 2^8 = 2^(2x).

Now that both sides have the same base, which is 2, I can set the exponents equal to each other. 
That means 8 should equal 2x. So, 8 = 2x. To solve for x, I just need to divide both sides by 2. 
Let me do that: 8 divided by 2 is 4, so x equals 4.

Wait, let me double-check to make sure I didn't make a mistake. If x is 4, then 4^x is 4^4. Let 
me calculate both sides of the original equation to verify. On the left side, 2^8 is 256. On the 
right side, 4^4 is also 256 because 4*4 is 16, 16*4 is 64, and 64*4 is 256. Yep, both sides are 
equal, so x must indeed be 4.

I think that's it. I converted the base 4 into base 2, which allowed me to equate the exponents 
and solve for x. It all checks out. I don't see any mistakes in my reasoning, so I'm confident that 
x is 4.

**Final Answer**
The value of \( x \) is \boxed{4}.
</think>

Given the equation \(2^8 = 4^x\), we need to find the value of \(x\).

First, we express both sides with the same base. We know that \(4\) can be written as 
\(2^2\). Substituting this into the equation, we get:
\[
2^8 = (2^2)^x
\]

Using the property of exponents \((a^m)^n = a^{mn}\), we can rewrite the right side:
\[
2^8 = 2^{2x}
\]

Since the bases are the same, we can set the exponents equal to each other:
\[
8 = 2x
\]

Solving for \(x\), we divide both sides by 2:
\[
x = \frac{8}{2} = 4
\]

Thus, the value of \(x\) is \(\boxed{4}\).

To solve the equation \(2^8 = 4^x\) for \(x\), we can follow these steps:

1. **Express both sides with the same base:**
   - Notice that both 2 and 4 can be expressed as powers of 2.
   - We know that \(4 = 2^2\), so \(4^x = (2^2)^x\).

2. **Simplify the right-hand side:**
   - Using the property of exponents \((a^m)^n = a^{m \cdot n}\), we can rewrite \(4^x\) 
as \(2^{2x}\).
   - Therefore, the equation becomes \(2^8 = 2^{2x}\).

3. **Set the exponents equal to each other:**
   - Since the bases are the same, we can set the exponents equal to each other.
   - This gives us \(8 = 2x\).

4. **Solve for \(x\):**
   - Divide both sides of the equation by 2 to isolate \(x\).
   - \(x = \frac{8}{2} = 4\).

5. **Verify the solution:**
   - Substitute \(x = 4\) back into the original equation to check.
   - Left side: \(2^8 = 256\)
   - Right side: \(4^4 = (2^2)^4 = 2^{8} = 256\)
   - Both sides are equal, confirming that \(x = 4\) is correct.

Therefore, the value of \(x\) is \(\boxed{4}\).

If $2^8=4^x$, what is the value of $x$?

Question:

R1-Distill-Qwen-7B Z1-7B

Figure 12: Examples of the comparison between Z1-7B and R1-Distill-Qwen-7B on MATH500.

2711



<think>
Okay, so I have this equation here: |x - 4| - 10 = 2. Hmm, I need to find the product of all 
possible values of x. Alright, let me think about how to approach this step by step.

First, I remember that absolute value equations can have two solutions because the expression 
inside the absolute value can be either positive or negative. So, I should probably solve for both 
cases. But let me start by isolating the absolute value term.

The equation is |x - 4| - 10 = 2. To isolate |x - 4|, I can add 10 to both sides. Let me write 
that down:

|x - 4| - 10 + 10 = 2 + 10

Simplifying both sides, that becomes:

|x - 4| = 12

Okay, so now I have …
[554 tokens omitted]

**Final Answer**
The product of all possible values of \( x \) is \boxed{-128}.
</think>

To solve the equation \(|x - 4| - 10 = 2\), we start by isolating the absolute value term. 

First, add 10 to both sides:
\[
|x - 4| - 10 + 10 = 2 + 10
\]
\[
|x - 4| = 12
\]

This absolute value equation results in two separate equations:
1. \(x - 4 = 12\)
2. \(x - 4 = -12\)

Solving the first equation:
\[
x - 4 = 12
\]
\[
x = 12 + 4
\]
\[
x = 16
\]

Solving the second equation:
\[
x - 4 = -12
\]
\[
x = -12 + 4
\]
\[
x = -8
\]

The two possible values of \(x\) are 16 and -8. The product of these values is:
\[
16 \times (-8) = -128
\]

Thus, the product of all possible values of \(x\) is \(\boxed{-128}\).

To solve the equation \( |x-4| - 10 = 2 \), we need to isolate the absolute value expression 
and then consider the two cases that arise from the definition of absolute value.

First, let's isolate the absolute value term:

\[
|x-4| - 10 = 2
\]

Add 10 to both sides:

\[
|x-4| = 12
\]

Now, the absolute value equation \( |x-4| = 12 \) means that the expression inside the 
absolute value can be either 12 or -12. Therefore, we have two cases to consider:

**Case 1:** \( x - 4 = 12 \)

Solve for \( x \):

\[
x = 12 + 4
\]
\[
x = 16
\]

**Case 2:** \( x - 4 = -12 \)

Solve for \( x \):

\[
x = -12 + 4
\]
\[
x = -8
\]

So, the two possible values for \( x \) are 16 and -8.

Next, we need to find the product of all possible values of \( x \). The product is:

\[
16 \times (-8) = -128
\]

Therefore, the product of all possible values of \( x \) is \(\boxed{-128}\).

In the equation $|x-4| -10 = 2$, what is the product of all possible values of $x$?

Question:

R1-Distill-Qwen-7B Z1-7B

Figure 13: Examples of the comparison between Z1-7B and R1-Distill-Qwen-7B on MATH500.

2712


