STACKFEED: Structured Textual Actor-Critic Knowledge base editing
with FEEDback

Shashank Kirtania*!
Sumit Gulwani® Arun Iyer?

Sriram K. Rajamani?

Naman Gupta*?
Suresh Parthasarathy? Arjun Radhakrishna®

Priyanshu Gupta'

Gustavo Soares®

"Microsoft, Bengaluru Microsoft Research India, Bengaluru 3Microsoft, Redmond
{ t-shkirtania, t-nagupta, priyansgupta}l@microsoft.com
{sumitg, ariy, supartha, arradha, sriram, gsoares}@microsoft.com

Abstract

Large Language Models (LLMs) often gen-
erate incorrect or outdated information, es-
pecially in low-resource settings or when
dealing with private data. To address this,
Retrieval-Augmented Generation (RAG) uses
external knowledge bases (KBs), but these
can also suffer from inaccuracies. We in-
troduce STACKFEED, a novel Structured
Textual Actor-Critic Knowledge base editing
with FEEDback approach that iteratively re-
fines the KB based on expert feedback using
a multi-actor, centralized critic reinforcement
learning framework. STACKFEED defines
a ReACT actor agent on each document to
perform structured edits based on document-
specific targeted instructions. Experimental
results showcase that STACKFEED signif-
icantly improves KB quality and perfor-
mance of the RAG system. We evaluate
STACKFEED on low-resource programming
problems, modified python packaged and fac-
tual question-answering tasks.

1 Introduction

Large Language Models (LLMs) often produce in-
correct or outdated information, particularly in low-
resource settings or when handling private data. Even
if the information provided is accurate, LLMs can
generate hallucinated or imaginary content alongside
it (Zhang et al., 2025; Maynez et al., 2020; Zhou
et al.,, 2021). A promising solution to address these
issues is the integration of retrieval components that
extract relevant information from external knowledge
sources, known as Retrieval-Augmented Generation
(RAG) (Chen et al., 2017; Izacard et al., 2022; Shi
et al., 2023; Li et al.,, 2025b). For clarity, we will
refer to these external knowledge sources as Knowl-
edge Bases (KBs). However, KBs themselves can suf-
fer from inaccuracies, incompleteness, or outdated con-
tent. To address these challenges, there is growing in-
terest in Knowledge Editing (KE) techniques to en-
hance LLMs with up-to-date and accurate knowledge.

Advancements in KE have focused on updating the
model’s parameters (De Cao et al., 2021a; Meng et al.,

* Equal contribution.

2022, 2023), adding new parameters to model (Huang
et al., 2023; Yu et al., 2024), and holding additional
memory (Madaan et al., 2022; Wang et al., 2024a,b).
Contrary to approaches that update model parameters
or add new parameters that require white-box access
to LLMs, memory-based approaches can work with
black-box access to LLMs. In a similar line of thought,
recently, KE approaches have also focused on refin-
ing the KBs themselves (Li et al., 2025a). For exam-
ple, the method proposed by Li et al. (2025a) contin-
uously updates KBs with new information when pre-
sented with a document containing the exact informa-
tion to be updated, such as updating the current identity
of the British Prime Minister in the KB when the news
of election results is provided. This approach demon-
strates that directly editing the KB is more effective
than simply adding new documents, which may coex-
ist with outdated or inaccurate ones. Removing older
documents is often non-trivial, as only certain sections
may be incorrect, while other parts could still provide
valuable information for different queries.

However, in applications such as chatbots or code
generation tools that rely on API documentation, up-to-
date information may not always be readily available in
structured documents (Ramjee et al., 2024; Afzal et al.,
2024; Liu et al., 2025b). In these scenarios, expert feed-
back becomes essential—not only for correcting erro-
neous outputs from the LLM but also for directly up-
dating the underlying knowledge base (KB) with ac-
curate information. This need is particularly pressing
in live systems that depend on real-time, reliable data.
Domains like healthcare (Ramjee et al., 2024), legal
tech (Liu et al., 2025b), and financial services demand
high precision and instant updates. Ensuring continu-
ous and trustworthy KB revisions is therefore critical
to maintaining the safety, effectiveness, and reliability
of RAG applications in such high-stakes environments.

To leverage expert or oracle feedback, we pro-
pose STACKFEED, a Structured Textual Actor-Critic
Knowledge base editing with FEEDback technique.
Our contributions are as follows:

1. Introduction of Feedback-Driven KB Editing:
We present a novel framework that refines the
knowledge base using structured edits based on
oracle or expert feedback.

2. Definition and Evaluation of KB Character-

2588

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 2588-2606
November 4-9, 2025 ©2025 Association for Computational Linguistics

Task: Given an array of integers nums, write a function that
returns the number of good pairs. A pair (i, j) is called good if
nums[i] == nums[j] and i < j.

Retrieved Documents:
builtin-array.md
collections-persistent—-vec.md
math-fibonacci.md
random-dice.md

Simulate

Task
Output Program:
fun numIdenticalPairs(ns: Array[I32]):
var count: I32 =0
for i in Range(0, ns.size()

132 =>

- 1) do

for j in Range(i + 1, ns.size()) do
if ns(i) == ns(j) then
count = count + 1

Reflection: The output code contains the following errors:
1. The array access calls nums (i) and nums (j) are not marked as partial, but they should be
as the apply function in the Array class is partial and can throw errors. The corrected code is:
nums (i) 2 = nums (j) 2 To further illustrate the fix, consider the following simplified example:
Code with error:

fun get (arr: Array[I32],
Fixed code:

fun get (arr: Array[I32], index: USize):

index: USize): I32 ? => arr (index)

I32 ? => arr(index)?
Selection: builtin-array.md

Reasoning: This file contains information about the Array class, including apply...

Collected selection reasoning for builtin-array.md

Aggregate Document Gradients

!

Document-wise Partial Gradient: builtin-array.md is a KB document detailing the use of the
methods and functions of the Array class...

Method Availability and Error Handling: The current file lacks explicit guidance on the partiality of
methods and the use of ? operator. The omission can lead developers to... The file should accurately
reflect the partiality of methods like apply and update...

. /

Feedback —

Knowledge Base
builtin-array.md
collections-persistent-vec.md
math-fibonacci .md

Expert (Compiler) Feedback

main.pony:15:16: call is not partial but the method is
- a question mark is required after this call

if nums(i) == nums(j) then

main.pony:15:27: call is not partial but the method is
- a question mark is required after this call
if nums(i) == nums(j) then

main.pony:11:42: function signature is not marked as
partial but the function body can raise an error
fun numIdenticalPairs (nums: Array[I32]): I32 =>

/\ Centralized Critic

Edit: Add Section

When working with arrays in Pony, it is important to understand
that some methods are partial, meaning the may not succeed in all
cases and might raise an error. To safely handle these errors, Pony
provides the ? operator...

The apply method on arrays is partial and will raise an error in
the index is out of bounds...

For example, the ‘apply’ method on arrays is partial and requires
error handling:

““pony
try

_——— my_array.apply(42)? == 7
end

Per-Document Actor

/

In this snippet, if the index 42 is out of bounds
the ‘apply’ method will raise an error, which is then handled by

the ‘try* block, preventing the program from crashing.

Figure 1: Example of the STACKFEED pipeline in the ARKS Pony scenario. We explain the example in more

detail in appendix A.3

istics: We define desirable characteristics for
knowledge base refinement, including coherence,
completeness and introduce corresponding met-
rics to quantitatively assess these properties.

3. Empirical Evaluation and Performance Gains:
We demonstrate that STACKFEED significantly
improves the accuracy and reliability of RAG sys-
tem in a variety of settings.

2 Related work

The STACKFEED framework addresses a key limita-
tion of current RAG systems: the inability to dynami-
cally update Knowledge Bases (KBs) without retrain-
ing or altering model parameters. Our work draws from
research in Retrieval-Augmented Generation (RAG),
Continual Learning and incorporating insights from
Multi-Agent Reinforcement Learning (MARL) to pro-
pose an effective solution for KB editing.

Retrieval Augmented Generation (RAG): RAG
systems enhance LMs by retrieving relevant knowledge
from a KB based on the input query and appending
it to the context, thereby addressing the limitations of
standalone LMs that lack sufficient context and pro-
duce inaccurate answers (Chen et al., 2017; Khandel-
wal et al., 2020; Guu et al., 2020; Izacard et al., 2022;
Shi et al., 2023). These systems dynamically construct
contexts from unstructured KBs without modifying the
LM’s internal parameters. STACKFEED further en-
hances RAG systems by refining the KB itself based

on feedback, ensuring more accurate and up-to-date in-
formation. Recent works showcase the failure of RAG
due to inconsistencies in the retrieved documents (Xi-
ang et al., 2024; Wang et al., 2025).

Knowledge Editing: Knowledge Editing ap-
proaches fall into two categories (Yao et al., 2023b):
Model Editing, which modifies the LM parameters
directly, and Memory Based, which updates the
knowledge supplied to the model. While Model Edit-
ing efficiently alters specific facts using specialized
secondary models or altering parameters (De Cao
et al., 2021b; Meng et al., 2023), it struggles to ensure
consistent updates across contexts (Onoe et al., 2023;
Hua et al., 2024). In contrast, Memory Based methods
either add an auxiliary counterfactual model trained
on new information (Mitchell et al., 2022) or they
modify the KB itself, enabling updates to be reflected
in outputs without changing model parameters (Wang
et al., 2024b; Li et al., 2025a). STACKFEED builds
on memory based techniques by leveraging expert
feedback to refine the KB systematically, ensuring
more accurate and consistent responses.

Prompt Optimization: With the advent of LMs,
some recent works approximate gradients in text-based
environments using LMs (Pryzant et al., 2023; Wang
et al., 2023; Kirtania et al., 2024; Gupta et al., 2024)
for optimizing task prompts. STACKFEED is inspired
by these approaches and generates textual reflections,
similar to MetaReflection (Gupta et al., 2024) and
(Shinn et al., 2023), as proxies for gradients. It pro-

2589

vides actionable guidance for document updates with-
out the need for differentiable models. Additionally,
STACKFEED adopts clustering strategies for feed-
back aggregation from works like UniPrompt (Juneja
et al., 2024)- ensuring that actors receive coherent and
non-redundant instructions.

3 Problem Formulation

Typical RAG systems assume that the information
present in the retrieved documents is correct and con-
sistent. Our work focuses on scenarios where incorrect
answers are generated due to issues in the retrieved
documents from a Knowledge Base ().

More formally, we define the KC as a collection of
documents D; for ¢ = 1,...,N. Each document D,
can be represented as a set of chunks c;;. The state of
K is the specific configuration of all chunks within it.

For a given query ¢, such as the code gen-
eration Task in Figure 1, a retriever fetches a
set of relevant documents I'(g,K). In the ex-
ample, this corresponds to the Retrieved Docu-
ments list, which includes builtin—-array.md and
collections-persistent-vec.md.

An LLM, M, then generates a response r based
on the query and the retrieved documents, i.e., r =
M (q,T'(q,K)). The initial Output Program in Figure 1
is an instance of such a response.

However, this response r may be incorrect. We ob-
tain feedback on the correctness of r, for instance, from
Expert (Compiler) Feedback as shown in Figure 1. This
feedback reveals flaws in the generated program that
stem from deficiencies in K. The expert is used as a
scoring function, g which evaluates whether a response
7 is correct or not.

Our goal is to optimize the Knowledge Base state
IC to state K* which maximizes the scores for the re-
sponses for a batch of queries Q by learning from ex-
pert feedback:

K* = argmax —
K

> 9(M(i,T(a:,K)) (D)

4 Methodology

We propose STACKFEED, an agent that employs
Monte Carlo Tree Search (MCTS) to search for
an optimal state of the knowledge base (KB).
STACKFEED utilizes a multi-actor, centralized critic
reinforcement learning architecture to guide transitions
between KB states. This setup enables efficient explo-
ration of a large, structured edit space (Wang et al.,
2023; Gupta et al., 2024), facilitating strategic and in-
terpretable knowledge refinement.

The use of a multi-actor architecture with a cen-
tralized critic is central to STACKFEED’s design. In
this formulation, each document within the KB is man-
aged by a dedicated actor responsible for localized ed-
its, while a centralized critic provides joint feedback by

aggregating signals across all actor-document interac-
tions. Our design aligns with recent findings from Lyu
et al. (2024), who show that history—state centralized
critics—critics conditioned on both joint observation
histories and global state—can offer accurate and sta-
ble policy gradients, particularly in settings with partial
observability and distributed decision-making.

In our context, where agents must coordinate to re-
vise distinct portions of a shared KB based on sparse
oracle feedback, this centralized view enables effective
credit assignment. Specifically, we incorporate mech-
anisms inspired by counterfactual multi-agent policy
gradients (COMA) (Foerster et al., 2018) to attribute
responsibility for errors to specific documents and ac-
tors. The centralized critic leverages these credit sig-
nals to generate high-quality textual reflections that
guide each actor’s editing trajectory. This design allows
STACKFEED to maintain coherence across KB docu-
ments while iteratively improving task-specific correct-
ness and completeness.

By combining decentralized editing with
centralized, feedback-driven evaluation,
STACKFEED learns to make targeted and inter-
pretable updates to the KB. This architecture is
particularly suited for real-world retrieval-augmented
generation (RAG) settings, where maintaining con-
sistency and relevance across independently edited
documents is critical for downstream performance.

4.1 Knowledge base editing as state search

We model knowledge base (KB) editing as a state opti-
mization problem over the configuration of documents
in the KB. Given a query and retrieved evidence, a lan-
guage model generates a response. When errors arise
due to incomplete or inaccurate evidence, we update
the KB such that future responses are more accurate.

In this formulation, each KB state reflects a specific
configuration of document contents, and actions corre-
spond to edits applied to these documents. A transition
function updates the KB by applying these edits, and
a reward function evaluates the quality of the result-
ing KB state based on how well it supports correct and
complete responses across a set of queries.

Our objective is to find the optimal KB state that
maximizes this reward. This enables a feedback-driven
editing process where the system learns to apply tar-
geted modifications to improve RAG performance in a
data-driven and interpretable manner. We define the ac-
tion space, search space and the optimization objective
more formally in the appendix section A.1.

4.2 Knowledge Base Editing Agent

We define KB editing agent that operates on a reward
signal as a model’s performance over a batch of queries
for the given knowledge base in a RAG system.
Centralized Critic: The centralized critic C eval-
uates the RAG system’s performance by analyzing ex-
pert feedback and the current knowledge base state.

2590

ANGAL
OO
B

CriticC

Actors {A;}

Environment]

Figure 2: a) MCTS (Monte Carlo Tree Search) planning for state search. The tree structure enables strategic plan-
ning for STACKFEED. b) A simplified state transition example. Upon receiving a reward from the environment
(or expert) on the given state of the knowledge base (KB) &9, a centralized critic (I) generates a reflection on ob-
served failures to calculate the textual gradient. The critic uses this reflection to select documents responsible for
the error and (2) assigns credit to actors in the form of document-wise reflections. The actors then iteratively edit

the documents to reach state &).

When errors occur, the critic identifies which specific
documents caused the problems and generates targeted
feedback for improvement.

The critic examines each failed query and its cor-
responding expert feedback, first reflecting upon it to
fully understand the error and then identifying which
documents are responsible for the error. Following es-
tablished methods from prior work (Pryzant et al.,
2023; Juneja et al., 2024; Gupta et al., 2024), rather
than simply listing all issues in each retrieved docu-
ment, the critic clusters similar problems together to
identify common patterns and generate more general-
izable insights.

These aggregated reflections are analogs to par-
tial gradients 0; for each document that guide each
document-specific actor A; on improving their as-
signed documents. This approach ensures document
updates address systematic issues rather than isolated
errors, leading to more effective knowledge base re-
finement. By analyzing failures across multiple queries
and clustering similar issues, the critic provides more
strategic guidance than treating each error in isolation.

Actors: Each document D, € K is managed by a
distinct actor, A;, which is modeled as a ReACT agent
(Yao et al., 2023a) responsible for making structured
edits to its document. Each actor operates indepen-
dently, receiving reflections from the centralized critic
on how to modify the content of D; = [¢;;]. The ac-
tors need to only update these chunks as needed. Each
actor is provided with a set of parametrized actions to
perform precise edits to the document chunks, allowing
for flexible and context-specific edits. The set of possi-
ble actions includes:

» Edit Chunk: Modifies an existing chunk within a

document by replacing content with updated text.

¢ Add Chunk: Creates a new chunk with specified
content and adds it to the document.

* Delete Chunk: Removes an existing chunk from
the document entirely.

The ReACT agent utilizes these reflections and itera-
tively generates a trajectory tg = ag, a1, as - a,, of edit
actions to the document until the errors are resolved or
the knowledge gaps are filled. This controlled editing
process improves the accuracy of the RAG system by
ensuring that the KB contains up-to-date and relevant
information. After the completion of the actor runs, we
generate the edit diffs for each document d; and pool

them to generate the KB edit action v = [dJl’ill

S Experimental Setup

5.1 Baseline

While there has been a rich body of works in the
area of prompt optimization, to the best of our knowl-
edge, STACKFEED is the first work targeting the
feedback-driven textual Knowledge Base Editing prob-
lem. Therefore, to perform a holistic evaluation of
STACKFEED we implement - PROMPTAGENT-
E, an extension of PROMPTAGENT (Wang et al.,
2023) for the KB editing task. PROMPTAGENT for-
mulates prompt optimization as a strategic planning
problem using Monte Carlo Tree Search (MCTS).
We have described our implementation on top of
PROMPTAGENT in appendix section A.4

2591

Pony SciPy Tensorflow CLARK-news

Model Method Acc o Acc o Acc o Acc o
Base KB 29.99 1.57 52.04 0.00 28.88 2.18 26.27 1.20
GPT-4Turbo PROMPTAGENT-E 3222 157 5340 3.12 47.77 3.57 28.80 2.39
STACKFEED 37.04 128 5938 122 53.84 3.11 37.28 1.69
Base KB 3141 128 5413 1.22 3175 291 28.80 1.69
GPT-40 PROMPTAGENT-E 3421 149 5527 3.05 49.03 3.62 30.01 2.41
STACKFEED 4232 211 61.60 243 5532 2.18 40.40 1.63
Base KB 3540 252 5340 243 3460 3.11 30.89 1.20
GPT-4.1 PROMPTAGENT-E 36.10 1.73 56.02 3.28 50.27 344 31.33 2.19
STACKFEED 45.62 3.67 6083 284 57.61 218 43.03 2.14

Table 1: Correctness performance comparison between STACKFEED and baseline method across multiple
datasets, reported as accuracy percentages (higher is better). Best results for each model and dataset are high-

lighted in bold.

5.2 Datasets

Knowledge Base Editing can be useful for scenarios
where the KB is either incomplete or incorrect. We
evaluate on EVOR (Su et al., 2024) which is a dataset of
documentation for programming language Pony which
can be incomplete in details along with natural lan-
guage to code questions in them. Similarly, it has two
more datasets about custom versions of SciPy and Ten-
sorflow with the original documentation of these li-
braries which must be adapted for these custom ver-
sions. We also use the also CLARK-News dataset (Li
et al.,, 2025a) which is a natural language dataset of
news articles of outdated factual information. We de-
scribe each dataset in detail in the appendix in A.5.

5.3 System Configurations

For our experiments, we set a maximum search depth
of 3, an expansion width of 3, and a maximum of 5 it-
erations. The UCT algorithm with an exploration con-
stant of 2.5 is used for expansion nodes. The param-
eters are chosen to balance between effective explo-
ration and computational cost.

We set up a generic RAG system that uses an embed-
ding similarity for semantic retrieval. Additionally, in
line with prior works like (Zhang et al., 2023) for
coding-related tasks, we use an iterative retrieval setup
wherein we first generate a code using naive retrieval
and then query the database again with both the ques-
tion and the generated code to improve the quality
of retrieval before generating the final result. We use
OPENAI-TEXT-EMBEDDING-3-LARGE as the em-
bedding model and use cosine similarity as a metric of
embedding match for ranking.

54

Correctness We evaluate the correctness of the KB
by evaluating it on a fest set queries on respective tasks.
This separation of the test-train set of queries reduces

Metrics

the risk of contamination of the examples and falsi-
fied improvements in performance. We also define two
metrics completeness and coherence to understand the
quality of the edits made by STACKFEED.

Completeness A knowledge base should be com-
plete with respect to the task, that means it should con-
tain all the information necessary to assist RAG system
for task at hand. Given the open-ended nature of tasks
that typical RAG agents are designed for, it is hard to
quantify a closed-form metric of completeness. How-
ever, an ideal KB editing system should at least be able
to incorporate external feedback well. To evaluate this
we use the precision train set to estimate the degree of
expert feedback incorporated in the learned KB.

Coherence Given the semantic and textual nature
of the Knowledge Base, it is important that the docu-
ments in the Knowledge base are coherent and consis-
tent even after editing. This not only makes the docu-
ment interpretable for human consumption, it also help
reduce in-context noise during LLM inference, which
has been shown to affect LLM performance (Liu et al.,
2024). To quantify the degree of coherence of the KB,
we first calculate coherence scores for each edited doc-
ument using G-Eval (Liu et al., 2023). We use the G-
eval score to gauge the coherence of an edit made to a
KB document to the document itself. And the mean of
this document-level coherence over all the documents
is defined as the coherence of an edited KB.

6 Results and Analysis

We evaluate STACKFEED on three different OpenAl
models GPT-4Turbo, GPT-40 and GPT-4.1' on three
different configurations. Firstly, evaluating the perfor-
mance on the Base KB, this is the initial state of the
KB sy without any edits. We then make a series of ed-
its on sp using PROMPTAGENT-E and a series of edits

"https://platform.openai.com/docs/models

2592

https://platform.openai.com/docs/models

Completeness (in %)

Coherence (1—5, higher is better)

Dataset Pony SciPy Tensorflow CLARK-news Pony SciPy Tensorflow CLARK-news
STACKFEED GPT-4Turbo 9.68 31.38 44.44 13.79 4.6 4.30 4.0 1
STACKFEED GPT-40 11.38 36.67 50.12 15.41 4.67 4.67 4.0 2.33
STACKFEED GPT-4.1 1345 4146 52.24 18.62 4.6 4.00 3.67 1

Table 2: Completeness and coherence comparison between STACKFEED and baseline models across multiple
datasets. Completeness is reported as accuracy percentages (higher is better), while coherence is measured on a

scale of 1-5 (higher is better).

by STACKFEED on KB state sg.

We report our main results in table 1. We observe the
performance of the RAG system constantly improve
with edits done by STACKFEEDfor all the three mod-
els.

Quality of edits As seen in Table 2,
STACKFEED produces edits with a coherence score
of 4 or higher. For KBs that need long-term main-
tenance (such as language and code documentation
as seen in the Evor datasets), STACKFEED makes
more coherent edits compared to the baseline. This
is especially true for long documents, as seen in
the EVOR Pony dataset. We also note that the edits
made by PROMPTAGENT-E were made in incorrect
documents leading to more noisy generations.

We also observe that PROMPTAGENT-E added ir-
relevant section in example A.6 on the lineSearch
and norm_ppf functions in a document about sparse
matrices. These edits were made because the doc-
ument was retrieved for questions which had errors
regarding these functions. These edits are irrelevant
to the document and showcase reason for failure in
PROMPTAGENT-E is to make documents less coherent.

On the other hand, STACKFEED makes more
relevant edits to the document which are contained
to the context of the document. This shows how
STACKFEED is able to maintain the coherence of the
document in its edits. We demonstrate an complete ex-
ample of edits made in appendix A.6
For a news-article-like dataset like CLARK-news with
factual edits. Incoherency is naturally induced when the
facts of the article change. In this dataset, coherence is
sacrificed in bringing the facts of the article up to date,
which is required to improve accuracy.

We also evaluate performance on EVOR-Pony
dataset using just a single STACKFEED edit and
greedy search in table 3. In greedy search, we greed-
ily pick the most rewarding node at a particular depth.
We observe even though the completeness of the doc-
ument is quite similar the edits are much less coherent
and the generalize less than MCTS based search.

6.1 Generalization to Repository Level Migration

To further test the efficacy of STACKFEED , we ap-
ply STACKFEED to a more complex real-world agen-
tic scenario, namely repository-level code editing. We
choose to work with the (Liu et al., 2025a) benchmark,

Single Edit Greedy Search MCTS
Correctness 36.14 41.34 45.62
Completeness 9.68 13.96 13.45
Coherence 4 3.34 4.6

Table 3: Comparison between single edit, greedy
search and MCTS, on EVOR Pony dataset with GPT-
4.1. We used max width=3 and max depth=>5.

Migration Efficacy (in %)

Model Method T)minimal TImaximal
Base KB 43.67% 18.12%
GPT-40 <1\ CKFEED 46.14% 23.02%
Base KB 58.81% 26.50%
GPT-41 rACKFEED 61.71% 28.16%

Table 4: Test set performance of STACKFEED and
Base KB on Migration Bench

which consists of migration of 5,102 real repositories
from Java 8 to Java 21 along with a comprehensive
evaluation harness for any system attempting this task.
This benchmark presents unique challenges including a
substantially larger action space requiring navigation of
entire repository structures, more delayed feedback sig-
nals determined by compilation and test execution, and
specialized knowledge requirements for Java version-
specific APIs and migration patterns.

For the purpose of this study, we extend the SDFeed-
back agent introduced in (Liu et al., 2025a) to incor-
porate KB-guided editing, where the agent queries the
knowledge base before making each edit decision. For
the KB, we manually create a small knowledge base
consisting of basic information relevant to Java migra-
tion, hereby referred to as the BaseKB for this setting.
The BaseKB contains 47 entries covering common mi-
gration patterns such as API replacements, deprecated
method alternatives, and frequently encountered com-
pilation errors with their resolutions. We deliberately
keep the BaseKB small and somewhat incomplete to
better demonstrate STACKFEED’s ability to identify
and fill knowledge gaps.

We use the Selected subset of the benchmark as
our test set, and we randomly sample 100 examples
from the remaining Full subset of the benchmark, di-

2593

viding them equally to create training and validation
sets. We run STACKFEED with the same MCTS set-
tings as the other datasets. We run this experiment with
two models, GPT-4o0 and GPT-4.1. We use the met-
rics introduced in (Liu et al., 2025a) to represent the
success rate of the migration, namely minimal migra-
tion (Mminimal), Which checks whether the Java ver-
sion is correctly updated and whether the migrated
repository passes all test cases, and maximal migration
(Mmazimal), Which adds the additional criterion of all
dependencies needing to be updated to their latest ver-
sions. The complete details of the experiment, includ-
ing exact modifications made to SDFeedback and the
manually created knowledge base, are present in Ap-
pendix Section A.2.

Table 4 shows the migration success rates for the
Base knowledge base and the knowledge base af-
ter STACKFEED was applied. We observe approxi-
mately 3% absolute improvement in 7;,;imqi for both
models over the Base knowledge base, showcasing the
effectiveness of the edits in addressing both functional
correctness and dependency management. These gains
are particularly notable given the already strong base-
line performance of the SDFeedback agent.

Figure 3 shows that the edits made to the base
knowledge base consist primarily of addition of
new error types and patterns not present in BaseKB
(15 new entries), expansion of existing entries with
more detailed resolution steps including specific
code examples (23 entries expanded), and corrections
to incomplete guidance (9 entries corrected). This
demonstrates how STACKFEED adds missing infor-
mation to the knowledge base while also expanding
upon and correcting already existing information,
allowing the agent to make better edits. Edits on a
section of the knowledge base can be seen in Figure 3.

7 Conclusion

We introduced STACKFEED, a novel framework
for refining Knowledge Bases (knowledge bases)
in Retrieval-Augmented Generation (RAG) systems
using a multi-actor, centralized critic architecture.
STACKFEED enables efficient knowledge base up-
dates without retraining or altering model parameters
by leveraging feedback-driven structured edits and tex-
tual gradients.

Our approach achieved superior performance in
preserving knowledge base in terms of coherence,
consistency, and completeness, resulting in enhanced
performance of RAG system.

Broader Impact

The deployment of Retrieval-Augmented Generation
(RAG) systems in real-world applications such as Al-
powered developer assistants, enterprise chatbots, and

domain-specific information retrieval relies heavily on
the correctness and reliability of the underlying knowl-
edge bases (KBs). However, maintaining these KBs
is a persistent bottleneck due to frequent changes in
domain-specific knowledge and the lack of automated
mechanisms for continuous KB refinement. Our pro-
posed system, STACKFEED, addresses this challenge
through a feedback-driven framework for automatic
knowledge base editing that learns from expert or or-
acle feedback in real-time deployments.

Our design introduces a modular, actor-critic archi-
tecture that can be integrated into existing pipelines
with minimal engineering overhead. By defining clear
KB quality metrics—correctness, coherence, and com-
pleteness. Our system provides actionable insights for
both developers and auditors. This supports not only
continuous improvement of deployed systems, but also
regulatory compliance and human-in-the-loop over-
sight in high-stakes domains like healthcare, finance,
and legal automation. By automating feedback incor-
poration into KBs, we reduce human maintenance cost,
lower response errors in production RAG systems, and
promote safer, more trustworthy deployments.

In industrial RAG based applications, post-
deployment error-correction and maintenance is done
through improving the quality of the retrieval system.
We introduce another axis by enabling the optimization
of the Knowledge base itself. It also paves the way
for joint optimization of both the knowledge base and
the retrieval mechanism, offering a more holistic and
scalable solution to long-term system maintenance.

We hope this work paves the way for future industry
adoption of learning-enabled infrastructure that main-
tains and improves itself in deployment, and encour-
ages further exploration of editable memory systems
as an alternative to end-to-end retraining for knowledge
maintenance.

8 Limitations and Future Work

While this work presents a novel framework for
feedback-driven knowledge base refinement, several
limitations and corresponding avenues for future re-
search should be acknowledged. In particular, one lim-
itation of this work is the decoupling of the knowledge
base optimization and retrieval. This work assumes that
the retrieval component can correctly identify the right
documents to retrieve. Failures originating from faulty
retrieval cannot be holistically addressed by this sys-
tem. A promising avenue for future work can be the
joint optimization of both the knowledge base and the
retrieval mechanism. Creating a unified framework that
can decide whether to fix an error by editing a docu-
ment or by tuning the retriever could offer a more holis-
tic and scalable solution to long-term system mainte-
nance.

2594

References

Anum Afzal, Alexander Kowsik, Rajna Fani, and Flo-
rian Matthes. 2024. Towards optimizing and eval-
uating a retrieval augmented qa chatbot using llms
with human in the loop.

Dangi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to answer open-
domain questions. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1870—
1879, Vancouver, Canada. Association for Compu-
tational Linguistics.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021a.
Editing factual knowledge in language models. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
6491-6506, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021b.
Editing factual knowledge in language models. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
6491-6506, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Jakob Foerster, Gregory Farquhar, Triantafyllos
Afouras, Nantas Nardelli, and Shimon Whiteson.
2018. Counterfactual multi-agent policy gradients.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

Jakob N. Foerster, Gregory Farquhar, Triantafyllos
Afouras, Nantas Nardelli, and Shimon Whiteson.
2017. Counterfactual multi-agent policy gradients.
In AAAI Conference on Artificial Intelligence.

Priyanshu Gupta, Shashank Kirtania, Ananya Singha,
Sumit Gulwani, Arjun Radhakrishna, Sherry Shi,
and Gustavo Soares. 2024. Metareflection: Learn-
ing instructions for language agents using past re-
flections.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: retrieval-
augmented language model pre-training. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org.

Wenyue Hua, Jiang Guo, Mingwen Dong, Henghui
Zhu, Patrick Ng, and Zhiguo Wang. 2024. Propa-
gation and pitfalls: Reasoning-based assessment of
knowledge editing through counterfactual tasks. In
Findings of the Association for Computational Lin-
guistics ACL 2024, pages 12503-12525, Bangkok,
Thailand and virtual meeting. Association for Com-
putational Linguistics.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. In The
Eleventh International Conference on Learning Rep-
resentations.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lu-
cas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and
Edouard Grave. 2022. Atlas: Few-shot learning with
retrieval augmented language models.

Gurusha Juneja, Nagarajan Natarajan, Hua Li, Jian
Jiao, and Amit Sharma. 2024. Task facet learning:
A structured approach to prompt optimization.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. In International Conference on Learning
Representations.

Shashank Kirtania, Priyanshu Gupta, and Arjun Rad-
hakrishna. 2024. LOGIC-LM++: Multi-step refine-
ment for symbolic formulations. In Proceedings of
the 2nd Workshop on Natural Language Reasoning
and Structured Explanations (@ACL 2024), pages
56-63, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Scott Wen tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-
1000: A natural and reliable benchmark for data sci-
ence code generation. ArXiv, abs/2211.11501.

Belinda Z. Li, Emmy Liu, Alexis Ross, Abbas Zeitoun,
Graham Neubig, and Jacob Andreas. 2025a. Lan-
guage modeling with editable external knowledge.
In Findings of the Association for Computational
Linguistics: NAACL 2025, pages 3070-3090, Albu-
querque, New Mexico. Association for Computa-
tional Linguistics.

Xiaopeng Li, Pengyue Jia, Derong Xu, Yi Wen, Yingyi
Zhang, Wenlin Zhang, Wanyu Wang, Yichao Wang,
Zhaocheng Du, Xiangyang Li, Yong Liu, Huifeng
Guo, Ruiming Tang, and Xiangyu Zhao. 2025b. A
survey of personalization: From rag to agent.

Linbo Liu, Xinle Liu, Qiang Zhou, Lin Chen, Yi-
han Liu, Hoan Nguyen, Behrooz Omidvar-Tehrani,
Xi Shen, Jun Huan, Omer Tripp, and Anoop Deo-
ras. 2025a. Migration-bench: Repository-level code
migration benchmark from java 8.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157-173.

Yang Liu, Dan Iter, Yichong Xu, Shuo Wang, Ruochen
Xu, and Chenguang Zhu. 2023. G-eval: Nlg evalu-
ation using gpt-4 with better human alignment. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Zeyu Leo Liu, Shrey Pandit, Xi Ye, Eunsol Choi,
and Greg Durrett. 2025b. Codeupdatearena: Bench-
marking knowledge editing on api updates.

2595

http://arxiv.org/abs/2407.05925
http://arxiv.org/abs/2407.05925
http://arxiv.org/abs/2407.05925
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://doi.org/10.18653/v1/2021.emnlp-main.522
https://api.semanticscholar.org/CorpusID:19141434
http://arxiv.org/abs/2405.13009
http://arxiv.org/abs/2405.13009
http://arxiv.org/abs/2405.13009
https://doi.org/10.18653/v1/2024.findings-acl.743
https://doi.org/10.18653/v1/2024.findings-acl.743
https://doi.org/10.18653/v1/2024.findings-acl.743
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=4oYUGeGBPm
http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2208.03299
http://arxiv.org/abs/2406.10504
http://arxiv.org/abs/2406.10504
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=HklBjCEKvH
https://aclanthology.org/2024.nlrse-1.6/
https://aclanthology.org/2024.nlrse-1.6/
https://doi.org/10.18653/v1/2025.findings-naacl.168
https://doi.org/10.18653/v1/2025.findings-naacl.168
http://arxiv.org/abs/2504.10147
http://arxiv.org/abs/2504.10147
http://arxiv.org/abs/2505.09569
http://arxiv.org/abs/2505.09569
https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://api.semanticscholar.org/CorpusID:257804696
https://api.semanticscholar.org/CorpusID:257804696
http://arxiv.org/abs/2407.06249
http://arxiv.org/abs/2407.06249

Xiaotian Lyu, Alessandro Baisero, Yiqin Xiao, Bren-
dan Daley, and Christopher Amato. 2024. On cen-
tralized critics in multi-agent reinforcement learn-
ing. arXiv preprint arXiv:2408.14597.

Aman Madaan, Niket Tandon, Peter Clark, and Yim-
ing Yang. 2022. Memory-assisted prompt editing to
improve GPT-3 after deployment. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 28332861, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan McDonald. 2020. On faithfulness and factu-
ality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906-1919, On-
line. Association for Computational Linguistics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 36. ArXiv:2202.05262.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning.

Yasumasa Onoe, Michael Zhang, Shankar Padmanab-
han, Greg Durrett, and Eunsol Choi. 2023. Can LMs
learn new entities from descriptions? challenges in
propagating injected knowledge. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5469-5485, Toronto, Canada. Association for
Computational Linguistics.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chen-
guang Zhu, and Michael Zeng. 2023. Automatic
prompt optimization with “gradient descent” and
beam search. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7957-7968, Singapore. Association for
Computational Linguistics.

Pragnya Ramjee, Bhuvan Sachdeva, Satvik Golechha,
Shreyas Kulkarni, Geeta Fulari, Kaushik Murali, and
Mohit Jain. 2024. Cataractbot: An llm-powered
expert-in-the-loop chatbot for cataract patients.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen tau Yih. 2023. Replug: Retrieval-
augmented black-box language models.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu
Yao. 2023. Reflexion: Language agents with verbal
reinforcement learning.

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu,
Boao Shi, Che Liu, Qian Liu, and Tao Yu. 2024.
Arks: Active retrieval in knowledge soup for code
generation. ArXiv, abs/2402.12317.

Fei Wang, Xingchen Wan, Ruoxi Sun, Jiefeng Chen,
and Sercan O. Arik. 2025. Astute rag: Overcom-
ing imperfect retrieval augmentation and knowledge
conflicts for large language models.

Jiaan Wang, Yunlong Liang, Zengkui Sun, Yuxuan
Cao, Jiarong Xu, and Fandong Meng. 2024a. Cross-
lingual knowledge editing in large language mod-
els. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 11676—-11686, Bangkok,
Thailand. Association for Computational Linguis-
tics.

Weixuan Wang, Barry Haddow, and Alexandra Birch.
2024b. Retrieval-augmented multilingual knowl-
edge editing. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 335-354,
Bangkok, Thailand. Association for Computational
Linguistics.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai,
Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P.
Xing, and Zhiting Hu. 2023. Promptagent: Strategic
planning with language models enables expert-level
prompt optimization.

Chong Xiang, Tong Wu, Zexuan Zhong, David Wag-
ner, Danqgi Chen, and Prateek Mittal. 2024. Certifi-
ably robust rag against retrieval corruption.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023a.
React: Synergizing reasoning and acting in language
models.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023b. Editing large language models: Prob-
lems, methods, and opportunities. In Proceedings of
the 2023 Conference on Empirical Methods in Natu-
ral Language Processing, pages 10222—-10240, Sin-
gapore. Association for Computational Linguistics.

Lang Yu, Qin Chen, Jie Zhou, and Liang He.
2024. Melo: Enhancing model editing with neuron-
indexed dynamic lora. Proceedings of the AAAI
Conference on Artificial Intelligence, 38(17):19449—
19457.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and
Weizhu Chen. 2023. Repocoder: Repository-level
code completion through iterative retrieval and gen-
eration.

Ziyao Zhang, Chong Wang, Yanlin Wang, Ensheng
Shi, Yuchi Ma, Wanjun Zhong, Jiachi Chen, Mingzhi
Mao, and Zibin Zheng. 2025. LIm hallucinations in
practical code generation: Phenomena, mechanism,
and mitigation. Proc. ACM Softw. Eng., 2(ISSTA).

2596

https://doi.org/10.18653/v1/2022.emnlp-main.183
https://doi.org/10.18653/v1/2022.emnlp-main.183
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://arxiv.org/pdf/2206.06520.pdf
https://arxiv.org/pdf/2206.06520.pdf
https://doi.org/10.18653/v1/2023.acl-long.300
https://doi.org/10.18653/v1/2023.acl-long.300
https://doi.org/10.18653/v1/2023.acl-long.300
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
http://arxiv.org/abs/2402.04620
http://arxiv.org/abs/2402.04620
http://arxiv.org/abs/2301.12652
http://arxiv.org/abs/2301.12652
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
https://api.semanticscholar.org/CorpusID:267750919
https://api.semanticscholar.org/CorpusID:267750919
http://arxiv.org/abs/2410.07176
http://arxiv.org/abs/2410.07176
http://arxiv.org/abs/2410.07176
https://doi.org/10.18653/v1/2024.acl-long.627
https://doi.org/10.18653/v1/2024.acl-long.627
https://doi.org/10.18653/v1/2024.acl-long.627
https://doi.org/10.18653/v1/2024.acl-long.21
https://doi.org/10.18653/v1/2024.acl-long.21
http://arxiv.org/abs/2310.16427
http://arxiv.org/abs/2310.16427
http://arxiv.org/abs/2310.16427
http://arxiv.org/abs/2405.15556
http://arxiv.org/abs/2405.15556
http://arxiv.org/abs/2210.03629
http://arxiv.org/abs/2210.03629
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.18653/v1/2023.emnlp-main.632
https://doi.org/10.1609/aaai.v38i17.29916
https://doi.org/10.1609/aaai.v38i17.29916
http://arxiv.org/abs/2303.12570
http://arxiv.org/abs/2303.12570
http://arxiv.org/abs/2303.12570
https://doi.org/10.1145/3728894
https://doi.org/10.1145/3728894
https://doi.org/10.1145/3728894

Chunting Zhou, Graham Neubig, Jiatao Gu, Mona
Diab, Francisco Guzmdan, Luke Zettlemoyer, and
Marjan Ghazvininejad. 2021. Detecting halluci-
nated content in conditional neural sequence gener-
ation. In Findings of the Association for Computa-
tional Linguistics: ACL-IJCNLP 2021, pages 1393—
1404, Online. Association for Computational Lin-
guistics.

2597

https://doi.org/10.18653/v1/2021.findings-acl.120
https://doi.org/10.18653/v1/2021.findings-acl.120
https://doi.org/10.18653/v1/2021.findings-acl.120

A Appendix

A.1 Knowledge Base Editing as State Search

In our problem setting, the Knowledge Base (K) is de-
fined as a collection of documents K = {D;}?_,. We
assume each document consists of a number of chunks
of text and can be represented as D; = [c;;]. The state
s € S of the system is represented by the current con-
figuration of the KB, i.e., the content of all documents
in IC.

Given a query g; and a set of retrieved documents
I'(g;,K), the LLM M generates an answer o;. When
errors arise due to incomplete or incorrect information
in the retrieved documents, our goal is to identify the
optimal configuration of /C that improves the accuracy
of the system’s responses. Thus, we define our state
search problem as finding the best state s* of the KB.

State Space: The state space S encompasses all
possible configurations of the KB. Each state s corre-
sponds to a particular set of document contents, repre-
sented as: s = {D;}" ;, where D, denotes the content
of document ¢ and n is the number of documents in K.
The state s captures the overall structure and content of
the KB at any given point. We set so = K.

State Transition Function: The state transition
function 7 (s, u) defines how the KB changes in re-
sponse to the action u taken by the agent. Each ac-
tion contains modifications to one or more documents
within the KB, resulting in a new KB configuration.
The state transition is formalized as: s’ = T (s,u),
where s’ is the new state of the KB after applying .

Action Space: The action space A consists of list
of diffs d; corresponding to each document D;. Essen-
tially, u = [d;]}<].

Environment: We model the environment simply as
a “patch” function, that takes the diff generated by the
agent and patches the KB to produce the new state.

Optimization Objective: Following Equation 1, our
objective then is to find the optimal state s* of the KB
that maximizes the overall performance of the RAG
system, as measured by a global reward function R.
The optimization problem is formulated as:

Rs)= = 3 (M@ T(g5) @

X

§* = argmax R(s) 3)

where R(s) represents the cumulative reward of the

KB state s, reflecting its ability to support accurate and
complete responses for a set of queries.

The reward function R(s) is derived from the ex-
pert feedback on the system’s generated answers and
captures improvements in the KB. By optimizing for
s*, we ensure that the final state of the KB maximizes
the overall accuracy and effectiveness of the RAG sys-
tem, rather than focusing on an intermediate sequence
of state transitions.

In summary, the state search formulation defines the
problem of finding the optimal state s* of the KB that
maximizes the system’s performance. This approach
enables us to make targeted, feedback-driven edits to
the KB and achieve a refined, high-quality knowledge
base that better supports accurate answer generation.

A.2 Migration Bench

We share the KB used for Java migration

Java KB

x+‘java.lang.
UnsupportedClassVersionError ‘%«

**Symptom: %%

AURTRY

Exception in thread "main" java.lang.
UnsupportedClassVersionError:

com/example/App has been compiled by a
more recent version of the Java
Runtime

(class file version 65.0), this version
of the Java Runtime only recognizes up

to 61.0

AURTRY

xCause: x

* The code is compiled with Java 21 but
run with an older JVvM (e.g., Java 17).

* Class file version 65.0 corresponds to
Java 21.

*xFix:**

* Ensure the runtime JVM matches the
compiler version:

‘Y 'bash
java -version
javac -version

AURTRY

* Upgrade your runtime to Java 21.

**'module not found: java.base‘xx*

**Symptom: %%

AURTRY

error: module not found:

AURTRY

java.base

*xCause: **

* Misconfigured module path.

* Incorrectly set ‘--release' or ‘-—-—
module-path' flags.

*xFix:**

* Verify
* Use:

‘JAVA_HOME ‘' points to JDK 21.

2598

‘Y 'bash
javac —--release 21

AURNRY

* Ensure dependencies are on the module

path (or use classpath if not
modularized) .
xx‘invalid source release: 21 ‘xx*
**xSymptom: xx
error: invalid source release: 21
xCause: x
* Older build tool (Maven, Gradle, Ant)

that does not yet support Java 21.
**xFix:*x
* Upgrade the build tool version:
* *«xMaven:x* \geqg 3.9.x with ‘maven-
compiler-plugin' 3.11+

* x*Gradle:xx \geg 8.3
* Example Maven ‘pom.xml‘:

YV 'xml
<plugin>
<groupId>org.apache.maven.plugins</
groupId>
<artifactId>maven—-compiler-plugin</
artifactId>
<version>3.11.0</version>
<configuration>

<release>21</release>
</configuration>
</plugin>

AURNRY

*x‘Preview feature used without
enable-preview ‘%«
*xSymptom: **

AUANR

error: patterns in switch are a preview
feature and are disabled by default.

AURNRY

xCause: x

* Code uses xxpreview featuresxx in Java
21 (e.g., string templates, unnamed
classes, pattern matching in switch).

**xFix:xx

* Compile and run with preview enabled:
**'‘bash

javac —--enable-preview --release 21
MyApp. java

java —-—-enable-preview MyApp

AURTRY

* Avoid preview features in production
code.

rxGradle Daemon / Toolchain Errors#*=*

*xSymptom: % *

AURNRY

"Java SE 21’
(17)".

Could not target platform:
using tool chain: ’JDK 17

AURNRY

xCause: x

* Gradle is using an older JVM despite
Java 21 being installed.

**Fix:xx

* Configure toolchain in ‘build.gradle’:

‘YYgroovy
java {
toolchain {
languageVersion
JavalanguageVersion.of (21)

AURNRY

* Ensure ‘JAVA_HOME‘ points to JDK 21.

=+ ‘cannot find symbol' with Standard
APIs**

*xSymptom: **

AURNRY

cannot find symbol
class SequencedCollection

error:
symbol:

AURTRY

xCause: x

\

* Using new Java 21 APIs (e.g.,
SequencedCollection', ‘VirtualThread?)
but compiling with an older JDK.

*xFix:xx

% Compile and run with JDK 21.
* Ensure IDE is configured with Java 21.

x+x'Illegal reflective access’®
warningsx*x*

**Symptom: %%

AURNRY

WARNING: An illegal reflective access
operation has occurred

AURTRY

2599

xCause: x

* Libraries using reflection to access
internal JDK APIs, stricter in newer
Java versions.

**Fix:x*

* Update to latest versions of affected
libraries.

* If unavoidable, use JVM args (not
recommended for long-term) :
‘Y 'bash
-—add-opens java.base/Jjava.lang=ALL-
UNNAMED

AURNRY

Listing 1: MigrationBench KB

A.3 Example and Overview

Figure 2 illustrates our technique applied to the Pony
(Su et al., 2024), where a knowledge base (KB) for
the low-resource programming language Pony supports
a natural language-to-code task. Due to Pony’s rarity,
language models often generate code that fails to com-
pile. To address this, we use the Pony compiler as an
expert to provide feedback in the form of compile er-
rors.

(D Evaluating the Knowledge Base State: We
start with an initial KB, including documents like
builtin-array.md. The system retrieves relevant
documents based on the given task (e.g., counting non-
inversions in an array) and generates a program, which
is evaluated by the compiler, resulting in feedback (e.g.,
compile errors).

@ Centralized Critic Analysis: For all errors, the
critic analyzes why the error occurred. For instance, if
the apply method in the Array class is partial and
may raise an error, the critic suggests adding a ? to
handle potential failures. Based on this reflection, the
critic identifies which of the retrieved document is rel-
evant for the error and provides a tailored reasoning for
it.

(3) Per-Document Actor: For each document in the
KB, the gradients associated to it are aggregated. This
aggregate gradient is used as a signal by the Per-
Document Actor, in this case, the actor for document
builtin-array.md to make edits to the document.

(4) Re-evaluation and MCTS Search: After edits are
applied, the KB is re-evaluated, generating new feed-
back and a reward score. This score guides a Monte
Carlo Tree Search (MCTYS) to explore different states
of the KB, iterating through steps (1)-(3) to progres-
sively refine the KB and improve the system’s overall
performance.

A.4 PromptAgent-E Baseline

PROMPTAGENT (Wang et al., 2023) is a tech-
nique developed for optimizing a single prompt.

PromptAgent-E extends this approach to knowl-
edge base (KB) optimization by independently
optimizing each document within the KB us-
ing a separate PROMPTAGENT instance. Unlike
STACKFEED, PROMPTAGENT-E operates as a col-
lection of document-wise Independent Actor-Critic
models (Foerster et al., 2017).

A.4.1 Algorithm Description
The PROMPTAGENT-E algorithm proceeds as follows:

1. Initial Evaluation: Given a training set of
queries, we first run the current KB to obtain re-
trievals, generations, and expert feedback for these
generations. The same is done for the validation
set.

2. Document-Level Dataset Creation: The training
set is then segmented into document-level train-
ing sets. Each document-level set comprises all
queries (along with their corresponding retrievals,
generations, and expert feedback) for which a spe-
cific document was retrieved. Similarly, the vali-
dation set is also split into document level valida-
tion sets.

3. Document Selection for Editing: Given that KBs
can be extensive, we restrict editing to documents
that were retrieved for at least two queries in the
training set. This ensures focusing on more rele-
vant or frequently accessed documents.

4. Independent Optimization: @A separate
PROMPTAGENT instance is then created and exe-
cuted for each selected document independently.
Each document-level PROMPTAGENT instance
only accesses the queries, generations, and
feedback pertinent to its assigned document.

5. KB Update: After determining the optimal node
(or prompt) for each document, these optimized
nodes are integrated back into the KB to form a
new, improved version.

A.5 Dataset

Knowledge Base Editing can be useful for scenarios
where the KB is

1. Incomplete: the knowledge bases misses some key
artifacts responsible for answering the questions.
In the Evor-Pony dataset, the documentation used
lacks information on various aspects of the lan-
guage like partial functions etc.

2. Incorrect: the knowledge base in this case consists
of some incorrect knowledge.

. We evaluate STACKFEED on 5 datasets spanning
these different settings.

2600

“java.lang.UnsupportedClassVersionError’
Symptom:

Exception in thread "main"
java.lang.UnsupportedClassVersionError: com/example/App has
been compiled ...

i lang.U rtedClassVersionError Cause:
Sfa:;t::- nsupportectiassyersiontrror * The class was compiled with Java 21 but is being run with an
Y| H

older JVM (e.g., Java 17).
* Every JDK maps to a class file version number:
*Java 17 - 61.0
*Java 21 - 65.0
If you run a class compiled for a newer version on an older JVM,
@ the runtime cannot understand the bytecode format.
Concrete Fix:
1. Check your JDK versions:

Exception in thread "main"
java.lang.UnsupportedClassVersionError:
com/example/App has been compiled ...

Cause:
* The code is compiled with Java 21 but
run with an older JVM (e.g., Java 17).

“bash
* Class file version 65.0 corresponds to e e
Jz_wa ZL javac -version
Fix: @

* Ensure the runtime JVM matches the

compiler version: . .
“bash report the same major version.
as 2. Upgrade your runtime to Java 21:

!ava -verspn T Download and install JDK 21 from
{?yac RVErsIon [Adoptium](https://adoptium.net/) or Oracle.

. . -2 Update JAVA HOME_and your_PATH environmentvariable. _
Ulpgsia yaur AUl o Jva 21 1 3. Rebuild your project after updating the JDK.
| 4. Alternative (compatibility mode):

| If you must target an older runtime, use the "--release’ option

1

1

i

1

1

Make sure both the compiler (‘javac’) and runtime (‘java’)

to compile:
“bash
L _javac—release 17 MyAppijava - - __________________

Figure 3: The above example showcases the edits made by STACKFEED.(D) represents a more precise and struc-
tured state of information made from edits by STACKFEED. @) showcases a fix that was written more coherently
and with added details for the agent by observations made from trajectory.3) showcase added information from
train set on resolution.

2601

Dataset Train Eval Test Documents
Pony 31 32 45 601
ScipyM 22 22 98 3921
TensorflowM 9 9 26 5859
CLEvor News 30 30 60 138

Table 5: Dataset Statistics

A.5.1 Incomplete Knowledge Base

We adapt rwo code generation datasets from Evor (Su
et al., 2024), namely Evor-Pony. The dataset con-
sists of LeetCode problems and their solutions in low-
resource languages Pony and Ring respectively. Each
datapoint is supplemented with a corresponding lan-
guage documentation, with execution accuracy as the
success metric and execution failures as feedback to
the system. Given that these languages don’t appear
prominently in LLM pre-training data, the performance
of code generation RAG agents on these datasets de-
pends significantly on the quality of the Knowledge
Base. However, given that these languages have smaller
communities, their documentation isn’t as well main-
tained and often lacks critical information. . For the
purpose of evaluation on these datasets, we split them
into train, eval, and test splits as specified in Table 5.
To ensure that we have a good representation of fail-
ure cases during training, we first execute the RAG
pipeline on the entire dataset and divide the failures
at random in a 1:1:2 ratio for train, eval, and test re-
spectively. All the datapoints with successful execution
matches are put in the test split. We use the compiler
feedback from the executions as the expert feedback to
the STACKFEED system.

A.5.2 Incorrect Knowledge Base

For evaluating under this setting, we leverage the Evor-
ScipyM and Evor-TensorflowM datasets from Evor
and the CLARK-news dataset from Erase (Li et al.,
2025a). The Evor datasets consist of data science prob-
lems sourced from the DS-1000 dataset (Lai et al.,
2022), which are to be solved by artificially perturbed
versions of scipy and tensorflow libraries respectively,
while referring to the original unperturbed documenta-
tion. Similar to Pony and Ring, we use the execution
accuracy on a test bench as a success metric and use
compiler outcomes as expert feedback. We also follow
a similar approach for data splitting.

While fact retrieval is one of the most popular use
cases of RAG systems, evolving nature of information
requires us to keep the knowledge bases up to date.
To simulate these dynamic factual knowledge updates
we use the CLARK-news dataset from Erase (Li et al.,
2025a) which contains questions and their respective
answers extracted from Wikidata at different times-
tamps. Each timestamp is characterized by a set of arti-
cles that were added in the data at that time. For our
evaluation, we pool all the questions whose answers
changed for the first time at a given timestamp and split

them across train, eval and test splits in a 1:1:2 ratio
(Table 5).

A.6 Example of Automatic Edits in Evor-Scipy

This is a case in which both PromptAgent-E and
STACKFEED opt to append sections to the end of
a document about sparse matrices in the modified ver-
sion of SciPy provided in the Evor Dataset.

Demonstrably, the baseline edits add unnecessary
information from the newScience.algorithm and new-
Science.Distribution modules to the document. The
document is about sparse matrices so the addition of
information about lineSearch and norm_ppf is not ap-
propriate for this document and it is causing the docu-
ment to become incoherent

On the other hand, the
STACKFEED are relevant to
and keep the document coherent.

edits made by
sparse matrices

Listing 2: PromptAgent-E Edits (Only showing the
added sections)

+# newScience.algorithm Module
+## Functions

% lineSearch (func, grad, initial_point,
< direction, xxkwargs)
Perform a line search to find the
> step size (alpha)
that satisfies the strong Wolfe
— conditions.

Parameters:
- func callable
The objective function to be
~— minimized.
- grad callable
The gradient of the objective
<~ function.
- initial_point ndarray
The starting point for the line
~ search.
Must be provided as a NumPy
~ array.

newScience.distribution Module
Functions

* norm_ppf (p_values)

Convert p-values to z-scores using the
<~ standard normal

distribution. This function is also
— known as the inverse

of the cumulative distribution function
<> (CDF) for the

standard normal distribution.

Parameters:
- p_values ndarray
An array of p-values to be converted
(%
Returns:
- z_scores ndarray

2602

The corresponding z-scores for the
— given p-values.

Example:

‘Y 'python

import newScience.distribution as nsd
import numpy as np

p_values = np.array([0.05, 0.025,
— 0.9751])
z_scores = nsd.norm_ppf (p_values)

print (z_scores)

A.7 Prompts used in STACKFEED

Listing 3: STACKFEED Edits (Only showing added
sections)

Custom Sparse Matrix Classes

When working with custom implementations
— of sparse matrices,
it is crucial to understand that the
— attributes and methods
described in this documentation are
~— specific to the
‘scipy.sparse.csr_matrix' class.
Custom sparse matrix classes may not
<~ have the same interface or
support the same operations.

##4# Disclaimer on Custom
> Implementations

Developers should not assume that custom
<> sparse matrix classes
will have attributes like ’'nnz’ or
< methods such as ’'nonzero’.
Instead, they should refer to the
— documentation or
implementation of the custom class to
— understand the available
attributes and methods.

####4# Example of Incorrect Assumption

‘Y 'python
Incorrect assumption that a custom
— SparseMatrix class has
"nnz’ attribute
sparse_matrix = SparseMatrix(...) #
<~ Custom sparse matrix class
if sparse_matrix.nnz ==
print ("The sparse matrix is empty.")
This may raise AttributeError if ’'nnz’
< 1s not an attribute of
SparseMatrix
Example of Correct Usage
python
Copy
Edit
Correct approach using methods
— supported by the custom class
sparse_matrix = SparseMatrix(...) #
<~ Custom sparse matrix class
if sparse_matrix.count_nonzero() == 0:
print ("The sparse matrix is empty.")
Alternatively, convert to a dense
~— array and use numpy’s
count_nonzero
dense_array = sparse_matrix.toarray ()
if np.count_nonzero (dense_array) ==
print ("The sparse matrix is empty.")

nun

There exists a Language Model based
software named CodeRAG that
automatically does the following task
for a developer:

{task} - {task_desc}

CodeRAG uses a knowledge base to perform
this task:
{kb_desc}

A developer used CodeRAG to perform the
task on multiple files, and CodeRAG
made some errors on them.

Here is one knowledge base file that was
involved in these errors:
nmwn
for i, file in enumerate (kb_files):
prompt += fll nn
File {i+1}:
id: {file[’id’]}
content: \n<file>\n{file[’content’]}\n</
file>\nll nn
if "special_notes"™ in file and file
["special_notes"] != "":
prompt += f"""\nspecial_notes: {
file[’special_notes’]}"""

The following are the reflections on the
errors made by CodeRAG:
{reflections_str}

The reflections show the relationship of
the file with the errors made by
CodeRAG.

If the file is named "None," it means
the information about the error on
which the reflection is based does not

fully fit any knowledge base file.

Your task is to use the reflections on
the errors made by CodeRAG and provide
a generalization on the issues with
the file and how it can be improved to
prevent the errors.

You should mention common issues found
in the reflections and provide a plan
for improving the knowledge base files

to prevent future errors. Use the
reflections to suggest additions or
changes in the file, explaining what
new content should be added to prevent
errors. Before suggesting your plan,
give context on the errors using code
snippets and other relevant
information from the reflections.

You have a scratchpad to reason and plan
your generalization. Your scratchpad
is for your use only and will not be
shared with anyone else.

The scratchpad is represented by the <
scratchpad></scratchpad> tags.

2603

Your generalization should follow this
format:

<scratchpad>

The contents of the scratchpad

</scratchpad>

<generalization>

Your generalization for this file

</generalization>

You must provide the filled-out
scratchpad and generalization in the
above format.

General guidelines:

1. Carefully analyze the reflections to
understand the errors CodeRAG is
making.

2. "None" is a special file,
representing that to fix the error,
the information should be in a new
file.

nun

Listing 4: Generalization Stage Prompt

nun

Your task is to reflect upon the errors
made by CodeRAG based on the user
feedback and provide a reflection on
the role of the knowledge base files
in the making of those errors.

Your reflection should be very specific
to the knowledge base files as these
reflections will be used to improve
the knowledge base files to prevent
such errors in the future.

There may be other causes for the error,
but you should only focus on whether
the knowledge base files could have
prevented the error.

You should also provide a way for
improving the knowledge base files to
prevent the error from happening again

You should try and see if there is any
error in the information provided by
the knowledge base or if the knowledge

base is missing some information that
could have prevented the error.

You also have to figure out if the file
should be edited or not. That you do
through the needs_editing flag.

You have a scratchpad in which you can
reason and plan your reflection. Your
scratchpad is for your use only and
will not be shared with anyone else.
This scratchpad is represented by the
<scratchpad> tags.

Your output should be in the following
format:

<scratchpad>

The contents of the scratchpad
</scratchpad>

<reflection>

<File 1>

File: Name of the first file
needs_editing: True/False

Reflection: The reflection for this file
</File 1>

<File 2>

File: Name of the second file
needs_editing: True/False

Reflection: The reflection for this file
</File 2>

</reflection>

You have to provide the filled-out
scratchpad and the reflection in the
above-described formats. You have to
reflect on all the files that were
extracted for the code file.

Here are some general guidelines to
follow:

1. You should first analyze the question
, the test bench, the feedback, and
the output to understand the error
made by CodeRAG.

2. Then you should carefully analyze the

knowledge base files to see if the
theme and the contents of any
knowledge base file are relevant to
the error. Particularly, you should
look out for files that have a factual

error related to the error or are
missing some information which should
have been in the file according to the
theme of the file.

a. Read the content of the file and
understand the theme of the file.
The theme of this file is of
course based on the file ID and
the content of the file but you
should also consider its
positioning in the knowledge base.

That means you should consider
the other files that were
extracted for the code file and
see how this file fits in with
them. For example, if the file is
a very basic general guide to the
task with other files providing
more detailed information, then it

would make sense for this file to
not have detailed information
about specific cases.

b. See if the file has any
information related to the error.
Check for relevant keywords and
how the file might have biased the

language model to make the error.

c. If the file has information
related to the error, see if the
information is correct and
complete. If the information is
incorrect or incomplete, the file
is responsible for the error.

d. If it doesn’t have information

2604

related to the error, check if it
makes sense for the file to have
information related to the error.
If it doesn’t make sense, the file
is not responsible for the error.
When deciding this, check whether
the information would be better
suited in any of the other
knowledge base files. If the
missing info fits better in
another file, then deem this file
to not be responsible for the
error as the missing content can
be better placed in the other file

e. If the file is responsible for
the error, explain the error in
your reflection and set the
needs_editing flag to True. And if

the file is not responsible for
the error, set the needs_editing
flag to False.

3. If none of the files have any error
or if you think the content for the
error should be in a new file, put a
file with the name "None" in your
reflection and for its reflection,
describe the error and mention why it
is not due to the knowledge base files

For the "None" file, the

needs_editing flag should always be

set to True. The "None" file should be
placed as File n+l where n is the

number of files extracted for the code
file.

4. Choose the least number of files for
editing, we want to change as few
files as we can for any error. For
example, i1if we have 5 knowledge base
files, unless very extreme cases, we
wouldn’t want to set the needs_editing

flag as True on more than 2 files.
Figure out what the most relevant
files for the error are and focus on
them.

5. When you choose to edit multiple
files, you should make sure that their

involvements in the error are
distinct and not overlapping. If they
are overlapping, think about whether
changing one file would be enough to

fix the error.
mmww

Listing 5: Selection Stage Prompt

nun

There exists a Language Model based
software named CodeRAG that
automatically does the following task
for a developer:

{test_bench_code}

The test bench code gives a code where a
function must be inserted and then it

is tested with some

test cases.

CodeRAG then outputted the following
code to answer the question:

if task_desc != "":
prompt += f"""
{task} - {task_desc}
nmwn
else:
prompt += f"""
{task}

nun

prompt += f"""

The developer used CodeRAG for a
question. The question is as follows:

{query}

In the gquestion, the developer provided
the following test bench code:
{test_bench_code}

The test bench code gives a code where a
function must be inserted and then it
is

tested with some test cases.

CodeRAG then outputted the following
code to answer the question:
{output_code}

Based on the above output, the developer
gave the following feedback to
CodeRAG:
{feedback}

CodeRAG uses a knowledge base to do this
task
{kb_desc}

The following files were extracted for
this particular code file (the content
of

each file is surrounded in <file></file>
tags) :
nmmwn
for i, instruction in enumerate (
instructions) :
prompt +: f nnn
File {i+1}:
id: "{instruction[’id’]}"
content: \n<file>\n{instruction[’content
"13\n</file>\n
nmmwn
if "special_notes" in instruction
and instruction["special_notes"]
|l— nwn.
prompt += f"""\nspecial_notes: {

instruction[’special_notes
I]}'lllll

wnn

prompt +=
Your task is to reflect upon the errors
made by CodeRAG based on the user
feedback.
You have to explain in detail the error
made by CodeRAG. The reflection should
be

2605

very specific to the question, the
output code and the feedback.

You should start by explaining the
question that CodeRAG was asked to
solve before talking about the error.

Your reflection should have relevant
code snippets from the output

code which have errors and what should
be done to fix them.
You should also add a small code example
to demonstrate the error and
potential methods to fix it.

You can talk about multiple different
methods here to address the error.

You have a scratchpad in which you can
reason and plan your reflection.

Your scratchpad is for your use only and
will not be shared with anyone else.

Your reflection should be in the
following format:

<scratchpad>

The contents of the scratchpad

</scratchpad>

<reflection>

Your reflection

</reflection>
mmw

nun

Listing 6: Reflection Stage Prompt

2606

