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Abstract

Large language models (LLMs) have achieved
overwhelming success but require massive stor-
age and computational resources to support the
generative inference. Post-training quantiza-
tion (PTQ) is a promising approach to reduce
memory usage, latency and energy consump-
tion of the deployment of LLMs. However,
the presence of outliers makes most existing
PTQ methods dedicated to dynamic quantiza-
tion, which turns out hardware-unfriendly and
often leads to large quantization errors in static
scenarios. To address the above limitations, we
introduce a Static Hierarchical Mix-precision
Quantization method (SHMQ), which enables
near-lossless and hardware-friendly compres-
sion of LLMs. Theoretically, our proposed
SHMQ quantifies both inter-layer and intra-
layer sensitivity through unified derivations
involving Hessian. Specifically, SHMQ con-
ducts a systematic precision allocation strategy,
which seamlessly integrates coarse-grained
inter-layer and fine-grained intra-layer static
mix-precision quantization. Furthermore, the
permutation procedure, which reorders sen-
sitive channels and insensitive channels that
share similar distribution, is leveraged to mit-
igate static quantization error. Our proposed
SHMQ achieves 75.58% on zero-shot reason-
ing tasks in W4.8A8 Qwen2.5-7B-Instruct, nar-
rowing the accuracy gap to merely 0.13% while
yielding averaged 2.86× practical speedup.

1 Introduction

Large language models (LLMs) have demonstrated
unprecedented success across various domains, in-
cluding language understanding, generation, rea-
soning(Zhang et al., 2022; Touvron et al., 2023;
Dubey et al., 2024; Yang et al., 2024), and code gen-
eration(Roziere et al., 2023). However, the efficient
deployment and generative inference of LLMs re-

*Equal contribution.
†Corresponding author.

Figure 1: Static quantization exhibits notably higher in-
ference efficiency than dynamic quantization, as its pre-
defined quantization parameters eliminate the real-time
computation overhead in dynamic quantization. Evalua-
tion is performed on a mix-precision setup (W4A8 with
20% W8A8), where MatMul is partitioned into W4A8
and W8A8 operations, similar to QUIK.

quire considerable storage and massive computa-
tional resources, which becomes an obstacle to the
application of LLMs.

Post-training quantization (PTQ) serves as a
promising technique for tackling computational
and memory bottlenecks in LLM inference, which
meets the urgent need for efficient deployment on
cloud-server and on-device scenarios. However,
outliers(Lin et al., 2024) severely damage quan-
tization performance by expanding the quantiza-
tion range, hindering the efficacy of representa-
tions for normal values. Recent research alleviates
the effect of outliers by mix-precision quantiza-
tion. Prior mix-precision methods focus on impor-
tance(Ashkboos et al., 2023; Dumitru et al., 2024)
or saliency(Huang et al., 2024) metric to identify
outliers, and preserves outliers in high precision.
They have greatly enhanced the LLMs’ capacity un-
der quantization. However, these schemes conduct
quantization from a single point view of either inter-
layer or intra-layer. The interaction between inter-
layer mix-precision quantization and intra-layer
mix-precision quantization is not explored. Mean-
while, the vast majority of current PTQ methods

2573



Figure 2: (a) The min/max and variance of outliers
vary significantly across different channels. The inter-
channel outlier disparities motivates intra-layer mix-
precision quantization. (b) The outlier ratio exhibits
disparities among different linear layers, which inspires
inter-layer mix-precision quantization.

rely heavily on dynamic quantization, which cal-
culates quantization scales runtime, thus enabling
better adaptability to distinct distributions. Unfortu-
nately, dynamic quantization leads to low efficiency
on GPU and incompatibility on some edge devices,
e.g., NOVATEK NT98690 with 6.8TOPS NPU. In
contrast, static quantization pre-calculates quanti-
zation scales and achieves a substantial reduction
in overhead(Chen et al., 2024), as depicted in Fig-
ure 1. This leads to an important question: Can we
establish a systematic scheme to handle outliers
and improve the performance of efficient static
quantization?

In this paper, we propose a novel quantization
method called Static Hierarchical Mix-precision
Quantization (SHMQ). SHMQ is established based
on the insight that outliers exhibit great disparities
among different channels and linear layers, as de-
picted in Figure 2. Theoretically, SHMQ analyzes
the perturbation introduced by quantization and de-
rives the quantization sensitivity as a unified metric
to assess the sensitivity of inter-layer and intra-
layer weights. Concretely, SHMQ establishes a
systematic mix-precision quantization scheme via
sensitivity metric in two complementary perspec-
tives, i.e., inter-layer and intra-layer mix-precision
quantization. Furthermore, the identification and
permutation are decoupled and executed sequen-
tially. The permutation procedure guarantees sen-
sitive and insensitive channels that share similar
distribution clusters together, mitigating the static
quantization error. Experiments demonstrate that,
without any fine-tuning or retraining, SHMQ al-
lows the LLMs to achieve practical speedup while

maintaining near-lossless performance. The static
SHMQ outperforms prior dynamic mix-precision
approaches in performance and acceleration, show-
ing great potential for static-only platforms.

2 Related Work

Large language models: Large language mod-
els have demonstrated extraordinary performance
across domains, including language understanding,
generation, reasoning(Touvron et al., 2023; Dubey
et al., 2024; Yang et al., 2024), and code genera-
tion(Roziere et al., 2023), laying the foundation for
artificial general intelligence. However, massive
storage and computational resources are required
to support the generative inference of LLMs, pos-
ing a significant challenge to the deployment of
LLMs in resource-constrained scenarios. Prior re-
search mitigates this challenge through quantiza-
tion(Ma et al., 2024), pruning(Wang et al., 2024;
Frantar and Alistarh, 2023), low-rank decomposi-
tion(Zhang et al., 2024; Dettmers et al., 2024a) and
other techniques(Li et al., 2024).

Post-training quantization for LLMs: Post-
training quantization gains remarkable attention for
enhancing the inference efficiency of LLMs. How-
ever, the presence of outliers in LLMs critically
compromises post-training quantization efficacy,
driving the development of diverse strategies that
eliminate outliers(Lin et al., 2024) and achieve op-
timal performance-efficiency tradeoffs. The PTQ
techniques can be divided into two main cate-
gories(Gong et al., 2024; Liu et al., 2024), equiv-
alent transformation(Ma et al., 2024; Shao et al.,
2023) and mix-precision quantization(Lee et al.,
2023; Zhao et al., 2023). For equivalent transfor-
mation, SmoothQuant(Xiao et al., 2023a), Omni-
Quant(Shao et al., 2023), and OS+(Wei et al., 2023)
employ channel-wise scaling strategies to redis-
tribute quantization difficulty between activations
and weights. QuaRot(Ashkboos et al., 2024), Spin-
Quant(Liu et al., 2024), and DuQuant(Lin et al.,
2024) harness Hadamard rotation to remove out-
liers and benefit quantization. As for mix-precision
quantization, SpQR(Dettmers et al., 2024b) picks
out and stores unstructured outliers in high pre-
cision, while the other weights are quantized to
much lower bit-width with very small group size.
Atom(Zhao et al., 2023) and QUIK(Ashkboos et al.,
2023) adopt the diagonal entries of Hessian and l∞
norm respectively as importance metrics to detect
critical channels, followed by quantization with
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Figure 3: The framework of SHMQ. SHMQ first conducts inter-layer precision allocation based on layer-wise
sensitivity to quantization. The intra-layer precision allocation is followed to identify the sensitive channels within
the single layer. Eventually, the decoupling of identification and permutation is leveraged to cluster both sensitive
and insensitive channels, which share similar distribution, to mitigate the static quantization error.

more bits. SliM-LLM(Huang et al., 2024) utilizes
pruning metric from SparseGPT(Frantar and Alis-
tarh, 2023) to quantify the saliency of weights from
different groups, thus assigning more bit-widths
to important groups. MixLLM(Zheng et al., 2024)
calculates the mix-precision metric for output chan-
nels in the global view, allocating higher bit-widths
to the most salient output features. Recently, an-
other line of work emerges, which addresses out-
liers through prefixing tokens(Son et al., 2024;
Chen et al., 2024) in the KV cache on the basis of
attention sinks(Sun et al., 2024; Xiao et al., 2023b).
However, the above methods struggles to system-
atically address outliers in static quantization. To
tackle this, we devise SHMQ, a systematic frame-
work rooted in the interaction between inter-layer
and intra-layer outliers. To the best of our knowl-
edge, SHMQ represents the pioneering method that
achieves near-lossless static quantization.

3 Methods

3.1 Modeling for Optimal Quantization

We theoretically analyze the perturbation induced
by quantization in the loss function. The perturba-
tion introduced by quantization can be expressed
as:

δL =
1

2
δW⊤HδW (1)

where L and δL denotes the loss function and the
perturbation of loss. H = E[ ∂2

∂W 2L(W )] refers to
Hessian. The quantization error of weight matrices
can be expressed as δW = W − WQ, W and
WQ represent the full precision and quantization
versions of weights.

We reconsider the aforementioned formula from
an element-wise perspective, the perturbation in-
curred by every single weight parameter can be
formulated as:

δL =
1

2

∑

l∈L

∑

j∈cin

∑

i∈cout
hli,j ·(wl

i,j−Q(wl
i,j))

2 (2)

where δwl
i,j = wl

i,j−Q(wl
i,j) denotes the weight

quantization error of the ith row and jth column
from the lth layer. cin and cout are the input and
output channel of the weight tensor. hli,j ∈ H rep-
resents a single element from Hessian associated
with the quantization error δwl

i,j . Note that the
single element of Hessian hli,j just represents the
scaling factor to each weight quantization error, and
requires further derivation for practical calculation.

The optimal comprehensive quantization strat-
egy can be achieved by optimizing the following:

Ql
i,j

∗
= argmin

Ql
i,j

1

2

∑

l∈L

∑

j∈cin

∑

i∈cout
hli,j · δwl

i,j
2

(3)
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The overall optimization is challenging due to
Hessian complexity and vast search space. We
address Hessian complexity with efficient approxi-
mation, and tackle the large space via multi-stage
optimization. Thus, the objective decomposes into
two sub-problems:





Ql∗ =argmin
Ql

1

2

∑

l∈L
hl · δwl,

Qi,j
∗ =argmin

Qi,j

∑

j∈cin

∑

i∈cout
hli,j · δwl

i,j
2

s.t. Qi,j ∈ Ql∗

(4)

where hl ·δwl denotes the sum quantization error
of lth layer. The overall optimization can be solved
through two stages. The first goal of equation 4 is
to obtain optimal layer-wise quantization strategy
Ql∗. Once the layer-wise quantization strategy is
fixed, the second goal is to determine the optimal
quantization strategy for each individual weight
parameter in the same layer.

3.2 The Proposed SHMQ
We address two sub-optimization problems in equa-
tion 4 via SHMQ. The overall framework of SHMQ
is depicted in Figure 3. In order to minimize the
perturbation to the final loss δL, SHMQ firstly cal-
culates layer sensitivity and determines the optimal
inter-layer mix-precision quantization. Secondly,
SHMQ calculates the sensitivity of each channel to
perform the best intra-layer mix-precision quanti-
zation. Following equation 4, we define the quanti-
zation sensitivity of the (ith, jth) element from the
lth layer as:

Sl
i,j =

1

2
hli,j · (wl

i,j −Q(wl
i,j))

2 (5)

The above metric quantifies the extent to which
the weight is sensitive to quantization, serving as
a unified metric to guide both inter-layer and intra-
layer mix-precision quantization.

3.2.1 Inter-layer Mix-precision Quantization
We present Inter-layer Mix-precision Quantization
to determine the optimal precision allocation to lin-
ear layers. We take 1

2

∑
j∈cin

∑
i∈cout h

l
i,j · δwl

i,j
2

as sensitivity indicator for each layer and allo-
cate bit-widths to them accordingly. However, it’s
nearly impossible to construct explicit inter-layer
Hessian. We harness the Fisher information matri-
ces(Kim et al., 2023) as an effective alternative for

INT8

INT4

(a) Coupled Identification and permutation.

(b) Decoupled Identification and permutation.

INT8

INT4

Identify Permute

Identify

Permute

Groups

Groups

Figure 4: The comparison of the coupled and decoupled
identification and permutation. The red line indicates
the variance within the group. The decoupling of the
identification and permutation procedure leads to flat
distributions, which benefits static quantization.

explicitly computing the layer sensitivity metric.
The approximation of Hessian can be expressed as:

H ≈ F =
1

|D|
∑

D

gg⊤ (6)

where D denotes the calibration dataset consist-
ing of |D| samples. g represents the gradient vector
generated by the backpropagation of the data sam-
ple from D. Subsequently, the sensitivity of lth
layer can be obtained by:

Sl
InterMQ =

1

2

1

|D|
∑

D

∑

i∈cout
(g⊤δwl

i,:)
2 (7)

where δwl
i,: represents the quantization error vec-

tor of the ith output channel. The detailed proof is
provided in Appendix A.

The approximation addresses the challenge of
explicitly constructing Hessian in LLMs while also
accounting for interactions among different neu-
rons. After that, a novel sensitivity-determined
mapping is proposed and leveraged to convert the
sensitivity indicator to the bit-widths of each layer.
The sensitivity-determined mapping can be written
as:

U l =
Sl
InterMQ ·∑ rl∑
Sl
InterMQ · rl

· (Ut − Ub) + Ub (8)

rl =
clin · clout

minl∈L clin · clout
(9)

where Sl
InterMQ denotes the sensitivity score of

the lth layer, rl represents the ratio of the lth pa-
rameter count to the minimal parameter count of

2576



Table 1: PPL (↓) for LLaMA and Qwen models under W4.8A8 mix-precision quantization. -I denotes Instruct.

Dataset Type Method LLaMA2-7B LLaMA2-13B LLaMA3.1-8B Qwen2.5-1.5B Qwen2.5-7B-I Qwen2.5-14B-I

WikiText2

- FP16 5.47 4.88 6.24 9.26 7.46 5.69

Dynamic
QUIK 5.70 5.02 6.66 9.95 7.78 6.17
Atom 5.70 5.02 6.67 9.90 7.80 6.16

Static
MixLLM 6.04 5.37 7.51 11.51 9.19 7.19
SHMQ 5.58 4.96 6.60 9.51 7.58 6.04

C4

- FP16 6.97 6.47 8.96 13.11 10.89 9.38

Dynamic
QUIK 7.20 6.59 9.53 13.89 11.33 9.75
Atom 7.21 6.59 9.54 13.80 11.30 9.73

Static
MixLLM 7.71 7.04 10.75 15.66 12.91 10.58
SHMQ 7.12 6.59 9.46 13.48 11.06 9.68

all layers. Ut and Ub are the target ratio and base
ratio of high precision, respectively. U l stands for
the allocated high precision ratio of lth layer. The
sensitivity-determined mapping allocates larger bit-
widths to more sensitive layers, in pursuit of opti-
mal utilization of finite precision budget.

3.2.2 Intra-layer Mix-precision Quantization
Once the optimal layer-wise bit-widths are deter-
mined, we introduce Intra-layer Mix-precision
Quantization (IntraMQ) to allocate optimal pre-
cision to each channel.

Concretely, we proceed with the derivation in
equation 5. The quantization error can be easily
obtained and the single element of Hessian hli,j can
be solved following the generalized Optimal Brain
Surgeon framework(Frantar et al., 2023). The sen-
sitivity metric for each weight parameter can be
expressed as:

Sl
i,j =

1

2

(wl
i,j −Q(wl

i,j))
2

[(X lX l⊤ + λmean(diag(X lX l⊤))−1]j,j
(10)

where we adopt H = XX⊤ as the alternative
way to efficiently compute Hessian. λ is the damp-
ening factor. Our proposed IntraMQ calculates the
quantization sensitivity of each parameter using the
above formula. The rationale behind using different
approximation for Hessian is provided in Appendix
A. After that, the Manhattan Norm is leveraged
to accumulate the sensitivity of each weight with
respect to the input channel. The SIntraMQ can be
expressed as:

SIntraMQ = ||Sl
:,j ||1 =

∑

i∈cout
|Sl

i,j | (11)

where SIntraMQ performs as a sensitivity indi-
cator for each input channel and is employed to

identify the most sensitive ones accordingly. The
identification process can be expressed as:

Csen = I(SIntraMQ,K) (12)

where Csen denotes the sensitive channels, I
represents TopK function and K equals to ⌊cin ·
U l⌉.

3.2.3 Decoupled Identification and
Permutation

Prior mix-precision methods directly store the sen-
sitive channels in high precision and quantize in-
sensitive channels in low precision. However, we
argue that the mix-precision quantization strategy
actually couples the identification and permutation
procedure, lacking the capability to perceive the
distributional properties. The coupling gives rise
to fluctuations in the distribution and poses a great
challenge to static quantization. The difference
of the coupled and decoupled identification and
permutation is shown in Figure 4.

We decouple the identification and permutation
procedures and execute them sequentially. Firstly,
channels are sorted in ascending order of their quan-
tization sensitivity and and partitioned into sensi-
tive Csen and insensitive Cinsen clusters based on
equation 12. Then, we rearrange channels in sen-
sitive cluster Csen based on their magnitude, aim-
ming to minimize group-wise distribution variance.
The insensitive cluster Cinsen are processed in the
same way. Eventually, we conduct uniform quanti-
zation to the permuted sensitive channels and insen-
sitive ones with different bit-widths, in the pursuit
of retaining the maximum capacity of LLMs.

4 Experiments

4.1 Experimental Settings
This paper mainly focuses on W4A8 plus 20%
W8A8 (W4.8A8) quantization and conducts ab-
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Table 2: Zero-shot QA (↑) results of LLaMA and Qwen models under W4.8A8 mix-precision quantization.

Model Type Method ARC-C ARC-E BoolQ HellaSwag PIQA WinoGrande Avg.

LLaMA2-7B

- FP16 46.25 74.58 77.77 76.00 79.05 69.22 70.48

Dynamic
QUIK 45.65 74.41 77.49 75.10 79.16 68.98 70.13
Atom 45.39 73.99 75.81 75.20 78.62 69.06 69.68

Static
MixLLM 43.60 71.97 74.22 74.49 77.91 68.43 68.44
SHMQ 44.45 73.27 78.50 76.13 78.13 70.64 70.19

LLaMA2-13B

- FP16 49.06 77.40 80.61 79.37 80.52 72.30 73.21

Dynamic
QUIK 48.63 76.77 80.03 78.66 79.71 71.82 72.60
Atom 49.32 76.85 80.28 78.86 79.98 71.58 72.81

Static
MixLLM 48.38 75.38 78.69 77.61 79.16 71.35 71.76
SHMQ 48.46 77.15 82.23 77.81 80.63 72.38 73.11

LLaMA3.1-8B

- FP16 53.50 81.10 82.08 78.93 81.12 73.56 75.05

Dynamic
QUIK 51.62 79.42 81.80 77.78 80.69 73.32 74.11
Atom 52.30 78.96 81.22 78.28 81.12 71.90 73.96

Static
MixLLM 51.02 76.85 79.42 75.84 79.71 70.01 72.14
SHMQ 53.84 80.05 81.56 78.30 79.71 74.19 74.61

Qwen2.5-7B-Instruct

- FP16 55.03 81.14 86.39 80.50 80.41 70.80 75.71

Dynamic
QUIK 53.92 78.03 86.18 79.59 78.73 69.38 74.31
Atom 53.58 76.47 85.93 79.52 77.75 70.96 74.04

Static
MixLLM 51.02 73.32 82.23 77.36 77.64 64.09 70.94
SHMQ 55.97 80.60 86.70 79.66 80.09 70.48 75.58

Qwen2.5-14B-Instruct

- FP16 62.20 81.48 88.01 84.33 81.77 76.09 78.98

Dynamic
QUIK 60.67 80.85 88.41 83.54 80.36 74.59 78.07
Atom 60.49 81.06 87.65 83.71 80.47 74.43 77.97

Static
MixLLM 57.59 79.08 85.69 81.31 78.62 71.03 75.55
SHMQ 60.41 80.35 87.52 83.92 80.63 76.32 78.19

lations on the proportion of W8A8. We randomly
select 128 samples from WikiText2(Merity et al.,
2016) as calibration data, each with 2048 tokens.
The base ratio of high precision UB is set as 12.5%
for most LLMs. SHMQ applies per-group sym-
metric static quantization to weights and activa-
tions. The group size is equal to 128. We com-
pare SHMQ with QUIK(Ashkboos et al., 2023),
Atom(Zhao et al., 2023) and MixLLM(Zheng et al.,
2024). We evaluate SHMQ on LLaMA2(Touvron
et al., 2023), LLaMA3.1(Dubey et al., 2024) and
Qwen2.5(Yang et al., 2024) series models. We mea-
sure the perplexity of these models on the Wiki-
Text2(Merity et al., 2016) and C4(Raffel et al.,
2020) datasets. Additionally, we assess the zero-
shot accuracy on a diverse set of datasets, namely
ARC(Clark et al., 2018), BoolQ(Clark et al., 2019),
HellaSwag(Zellers et al., 2019), PIQA(Bisk et al.,
2020), and WinoGrande(Sakaguchi et al., 2021).
Due to page limit, more implementation details, ex-
perimental results and visualizations can be found
in Appendix A.

4.2 Main Results

As shown in Table 1, our SHMQ demonstrates
performance that is comparable to the full preci-

sion models. For instance, the quantized LLaMA2-
7B using SHMQ achieves 5.58 perplexity, leav-
ing a negligible gap compared to the correspond-
ing full precision model’s perplexity of 5.47. The
marginal difference validates the effectiveness of
SHMQ in preserving LLMs’ performance under
static quantization. Table 2 exhibits the comparison
of SHMQ with other PTQ methods on zero-shot
commonsense reasoning tasks. We can observe
that the static SHMQ outperforms existing PTQ
methods relying on dynamic quantization. In ad-
dition, SHMQ obtains a negligible gap compared
with FP16 in terms of LLMs’ performance. For
example, the full-precision and quantized variants
of LLaMA2-13B exhibit average zero-shot accura-
cies of 73.21% and 73.11% respectively, with an
extremely slight difference of 0.1%. The negligible
gap strongly demonstrate the efficacy of SHMQ.
As for LLaMA3.1-8B, previous quantization meth-
ods cause approximately 3% decrease in averaged
accuracy. Conversely, SHMQ achieves a 74.61%
average accuracy across six zero-shot common-
sense reasoning tasks, surpassing the second-best
approach QUIK by 2.33%. Meanwhile, SHMQ
narrows the gap to full-precision to only 0.44% on
LLaMA3.1-8B.
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Table 3: Layer-wise speedups on a single GPU for dif-
ferent layer sizes. Numbers in brackets indicate the
speedup compared to FP16.

Layer Size (cin, cout) FP16 (ms) Dynamic (ms) SHMQ (ms)

(4096,4096) 0.499 0.469 (1.06×) 0.272 (1.83×)
(11008,4096) 1.356 0.702 (1.93×) 0.504 (2.69×)
(14336,4096) 1.758 0.866 (2.03×) 0.635 (2.77×)
(5120,5120) 0.776 0.535 (1.45×) 0.335 (2.32×)

(13824,5120) 2.103 0.891 (2.36×) 0.656 (3.21×)
(8192,8192) 1.953 0.896 (2.18×) 0.659 (2.96×)

(28672,8192) 6.948 2.195 (3.17×) 1.650 (4.21×)

The layer-wise speedup ratios of dynamic and
static quantization compared to FP16 is shown in
Table 3. SHMQ greatly reduces the latency and
achieves 1.83× to 4.21× inference speedups across
different layer sizes, surpassing dynamic quantiza-
tion speedups by a significant margin. SHMQ en-
ables both near-lossless compression and efficient
deployement of LLMs.

We conduct deployment experiments on a repre-
sentative edge device: NOVATEK NT98690 with
6.8TOPS NPU. We implement layer-wise infer-
ence on the NOVATEK NT98690 with 6.8TOPS
NPU and compare the latency between 16-bit inte-
ger (Baseline) and our mixed-precision quantized
model (W4A8 with 20% W8A8 static quantiza-
tion) across varying sequence lengths. The layer
size is 4096×4096, one of the common layers in
LLMs. The results in Table 4 show that SHMQ
achieves 2.77× to 2.81× speedup over 16-bit in-
teger, significantly reducing inference latency for
large language models on edge devices. These com-
parisons validate SHMQ’s practical efficiency and
hardware-friendliness on edge devices.

Table 4: The speedup of SHMQ on edge device NO-
VATEK NT98690 with 6.8TOPS NPU.

Sequence Baseline (µs) SHMQ (µs) Speedup

512 74522 26917 2.77×
1024 148778 52986 2.81×
2048 297384 106193 2.80×

4.3 Ablation Studies
4.3.1 Module-wise Impact
We validate the effectiveness of each component
on Qwen2.5-7B-Instruct. Experimental results in
Table 5 manifest that the absence of any one of the
three modules will lead to performance degradation.
In conclusion, the best quantization performance is
acquired by the seamless combination of InterMQ,
IntraMQ, and Decoupling components.

Table 5: Ablation study of each component in Qwen2.5-
7B-Instruct, evaluated on WikiText2 dataset.

Bits InterMQ IntraMQ Decoupling WikiText2 ↓
FP16 - - - 7.46

W4.8A8

× × × 8.13
✓ × × 8.00
× ✓ × 7.99
× ✓ ✓ 7.95
✓ ✓ ✓ 7.58

4.3.2 Proportion of High Precision

We study the influence of the proportion of W8A8
on quantization performance using LLaMA3.1-8B
in Table 6. We vary the proportion of INT8 from
0% to 100%. The performance of the quantized
model improves as the bit-width increases. In the
setting where all weights are quantized into INT8,
i.e., W8A8, the performance gap between the quan-
tized model and the full precision model is minimal.
The minimal perplexity gaps on WikiText2 and C4
are 0.08 and 0.09 respectively, which demonstrates
lossless capability under static quantization.

Table 6: Ablation study of the proportion of high preci-
sion in LLaMA3.1-8B, evaluated on WikiText2 and C4
datasets.

W8A8 Proportion Bits WikiText2 ↓ C4 ↓
FP16 - 6.24 8.96
0% W4A8 6.70 9.58
10% W4.4A8 6.65 9.52
20% W4.8A8 6.60 9.46
50% W6A8 6.47 9.27
100% W8A8 6.32 9.05

5 Conclusions

In conclusion, this paper presents SHMQ, an inno-
vative static quantization strategy that effectively
addresses the challenge of outliers and enables the
near-lossless performance of LLMs. At its core,
SHMQ leverages the theoretical quantization sensi-
tivity as a unified metric to conduct both the coarse-
grained inter-layer mix-precision quantization and
the fine-grained intra-layer mix-precision quantiza-
tion. Additionally, the decoupling of identification
and permutation is proposed to mitigate the static
quantization error. SHMQ bridges the accuracy
gap between full precision and static quantization
of W4.8A8, enhancing the deployment of LLMs in
resource-constrained scenarios.
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Limitations

In this paper, we propose a novel static mix-
precision quantization technique, conducting mix-
precision quantization via two complementary
perspectives, i.e., inter-layer and intra-layer mix-
precision quantization. This method has demon-
strated near-lossless performance under efficient
static quantization scenarios. The SHMQ can be
integrated with other techniques, e.g., LoRA, to fur-
ther enhance the compressed models’ performance.
This merits in-depth investigation in our upcoming
research endeavors.
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A Appendix

We detailed the content of Appendix A here:
Section A.1 gives detailed theoretical deriva-

tions of inter-layer sensitivity metric, sensitivity-
determined mapping and intra-layer sensitivity met-
ric.

Section A.2 elaborates on the rationale behind
using different Hessian approximations for inter-
layer and intra-layer mixed precision quantization.

Section A.3 presents more experimental results
of our proposed SHMQ, including implementation
details, more comparison results, ablation studies,
the time of calculating sensitivity metric, and inter-
layer mix-precision visualizations.

A.1 Theoretical Derivations

A.1.1 Derivation of Inter-layer Sensitivity
Metric

We present theoretical derivation of inter-layer sen-
sitivity metric in this section. Let wl

i,: denote the
ith output channel of the lth layer, the inter-layer
sensitivity is formulated as:

Sl
InterMQ =

1

2

∑

i∈cout
δwl

i,:
⊤
Hδwl

i,: (13)

H ≈ F =
1

|D|
∑

D

gg⊤ (14)

We leverage Fisher information matrices to ap-
proximate Hessian. The above formula can be con-
verted into:

Sl
InterMQ =

1

2

∑

i∈cout
δwl

i,:
⊤
Fδwl

i,:

=
1

2

1

|D|
∑

D

∑

i∈cout
δwl

i,:
⊤
gg⊤δwl

i,:

=
1

2

1

|D|
∑

D

∑

i∈cout
(g⊤δwl

i,:)
2

(15)

where D denotes the calibration dataset consist-
ing of |D| samples. g represents the gradient vector
generated by the backpropagation of the data sam-
ple from D.

A.1.2 Derivation of Sensitivity-determined
Mapping

This section gives detailed proof that sensitivity-
determined mapping guarantees that the allocated
bit-widths are equal to the predefined target bit-
widths. Assume that we have allocated precision
to each layer following:

U l =
Sl
InterMQ ·∑ rl∑
Sl
InterMQ · rl

· (Ut − Ub) + Ub (16)

rl =
clin · clout

minl∈L clin · clout
(17)

where U l represents the proportion of high pre-
cision allocated to lth layer. The overall proportion
of high precision Uall can be expressed as:

Uall =

∑
l∈L U l · clin · clout∑

l∈L clin · clout

=

∑
l∈L U l · rl∑

l∈L ·rl

=

∑
l∈L (

Sl
InterMQ·∑ rl∑
Sl
InterMQ·rl

· (Ut − Ub) + Ub) · rl
∑

l∈L ·rl

=
(Ut − Ub)

∑
Sl
InterMQ·rl·(

∑
rl)∑

Sl
InterMQ·rl

+ Ub
∑

l∈L rl
∑

l∈L ·rl

=
(Ut − Ub)

∑
l∈L rl + Ub

∑
l∈L rl∑

l∈L ·rl
=Ut − Ub + Ub

=Ut

(18)
We can conclude that the overall proportion of

high precision Uall is equal to predefined target Ut.

A.1.3 Derivation of Intra-layer Sensitivity
Metric

We proceed on the perturbation caused by quanti-
zation as:

δL =
1

2
δW⊤HδW (19)

Assume that we conduct quantization on wl
i,j ,

the quantization can be formulated as:
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δwl
i,j + wl

i,j = Q(wl
i,j) (20)

We aim to minimize the perturbation after quan-
tizing wl

i,j . This is a convex optimization problem
subject to constraints. We can solve this by opti-
mizing the following:

argmin
Ql

i,j

1

2
δW⊤HδW+λ(e⊤q δw

l
i,j+wl

i,j−Q(wl
i,j))

(21)
We compute the partial derivatives of the above

equation with respect to δwl
i,j and λ respectively,

and set each derivative to zero.





1

2
(H +H⊤)δwl

i,j + λe⊤q =0

e⊤q δw
l
i,j + wl

i,j −Q(wl
i,j) =0

(22)

Then, we can obtain λ and δwl
i,j . Therefore, the

sensitivity of each element is as:

Sl
i,j =

1

2

(wl
i,j −Q(wl

i,j))
2

[H l−1
]j,j

(23)

However, the inverse of the Hessian is difficult
to compute and quite time-consuming. We refrain
from Fisher matrices since computing the inverse of
the Fisher matrices presents comparable computa-
tional difficulties. We utilize Levenberg-Marquardt
approximation(Frantar and Alistarh, 2022; Mar-
quardt, 1963), i.e., H = XX⊤, as the alternative
way to efficiently compute Hessian. The Cholesky
decomposition(Krishnamoorthy and Menon, 2013)
is subsequently adopted to compute the inverse of
the proxy Hessian. The sensitivity score of wl

i,j is
formulated as:

Sl
i,j =

1

2

(wl
i,j −Q(wl

i,j))
2

[(X lX l⊤ + λmean(diag(X lX l⊤))−1]j,j
(24)

where we adopt H = XX⊤ as the alternative
way to efficiently compute Hessian. λ is the damp-
ening factor.

A.2 The Discussion on the approximation of
Hessian

We leverage two different Hessian approximations
for inter-layer mix-precision quantization and intra-
layer mix-precision quantization, i.e., Fisher ap-
proximation in interMQ and H = XX⊤ in in-
traMQ. We explain the technical motivations for
this dual strategy in this section.

Figure 5: The comparison of H = XX⊤ and Fisher
approximation of Hessian for interMQ.

Firstly, we demonstrate why the Fisher approx-
imation of the Hessian is unsuitable for intraMQ.
The explicit Fisher can be constructed through gra-
dient. However, constructing explicit Fisher con-
sumes massive computional resources and memory.
Consequently, prior studies often resort to diago-
nal approximations of the Fisher to mitigate these
challenges(Kim et al., 2023). Yet, the diagonal ap-
proximation ignores the interaction among model
parameters. We derive as equation 7 to calculate
inter-layer sensitivity metric. This equation 7 sig-
nificantly reduces memory consumption by implic-
itly constructing the Fisher while accounting for
parameter interdependencies. The drawback of this
approach is that it can only derive inter-layer sensi-
tivity metric. We still need to explicitly construct
the Fisher to compute intra-layer sensitivity metric.
Moreover, the inverse of Fisher is necessary since
we need to account for the interactions between
model parameters. The inverse of Fisher poses
significant computational and memory challenges.
As a result, we refrain from Fisher for computing
intra-layer sensitivity metric.

As mentioned in the main text, we leverage
H = XX⊤ as the alternative way to efficiently
compute Hessian for intra-layer sensitivity metric.
This lead to another question: why the H = XX⊤

approximation is unsuitable for interMQ. Current
research suggests that the hidden states of trans-
formers tend to grow as the depth of layer in-
creases. This trend leads to a bias where deeper
layer in the model have higher sensitivity if we
adopt H = XX⊤ for interMQ. The comparison
of H = XX⊤ and Fisher for interMQ is shown
in Figure 5. The sensitivity metric grows as the
the depth of the layer increases under H = XX⊤

approximation of Hessian. This bias incorrectly re-
flects the layer-wise sensitivity, potentially leading
to suboptimal precision allocation in quantization.
In contrast, the Fisher approximation regard layers
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Table 7: Ablation study of different Hessian approximation for inter- and intra-layer mix-precision quantization.

Inter-layer Intra-layer Wiki C4 ARC-C ARC-E BoolQ HellaSwag PIQA WinoGrande Avg.

FP16 5.47 6.97 46.25 74.58 77.77 76.00 79.05 69.22 70.48
Fisher XX⊤ 5.58 7.12 44.45 73.27 78.50 76.13 78.13 70.64 70.19
XX⊤ XX⊤ 5.61 7.16 44.37 72.47 78.41 76.00 77.58 69.30 69.69
Fisher Fisher 5.58 7.11 44.80 72.81 78.44 76.25 77.37 69.93 69.93

at the beginning and end of the LLMs are more
sensitive to quantization. Consequently, we lever-
age Fisher for InterMQ, which is agnostic to the
magnitude of the hidden states.

We investigate the impact of different Hes-
sian approximation for inter- and intra-layer mix-
precision quantization through ablation studies.
The experimental results on Llama-2-7B are pre-
sented in the Table 7. The performance of the quan-
tized model degrades when we utilize H = XX⊤

for both inter- and intra-layer Hessian approxima-
tion. Current research suggests that the hidden
states of transformers tend to grow as the layer
depth increases. This trend leads to a bias where
deeper layers in the model exhibit higher sensi-
tivity when we adopt H = XX⊤ for interMQ.
The introduced bias accounts for the performance
degradation. We compare SHMQ with Fisher in-
formation for both inter- and intra-layer Hessian
approximation. The performance discrepancies are
negligible. However, Fisher for inter- and intra-
layer Hessian requires significantly more compu-
tational resources and time compared to SHMQ.
For instance, on the Llama-2-7B model, Fisher for
all consumes an additional 8.9GB of GPU memory
and takes 6 minutes longer to complete sensitivity
calculations. Note that we implemented Fisher for
intra-layer Hessian approximation following the
OAC (Edalati et al., 2025) (block-wise diagonal
Fisher), since the complete explicit Fisher matrix
is computationally infeasible.

A.3 More Experimental Results

A.3.1 Implementation Details

We benchmark SHMQ against state-of-the-art base-
lines QUIK (Ashkboos et al., 2023), Atom (Zhao
et al., 2023), and MixLLM (Zheng et al., 2024).
For QUIK and Atom, we adopt group-wise quan-
tization to weights and dynamic quantization to
activations. Given that MixLLM’s codebase was
not publicly available, we reproduced MixLLM by
implementing group-wise quantization for weights
and static quantization for activations.

SHMQ permutes activation and weight matrices
to cluster channels that possess similar distribution,
thus mitigating static quantization error. However,
the permutation of activation matrices still needs
to be performed online, which can be computation-
ally expensive. To address this, we integrate the
activation matrix permutation operations with prior
operators. For instance, the reordering of the input
activation of q_proj/k_proj/v_proj linear layers is
fused into the prior normalization layer.

The integration of the permutation operator with
the normalization layer necessitates that the allo-
cated high precision ratios and the reordering in-
dices of parallel linear layers are the same. To
achieve this, the calculation of both inter-layer
quantization sensitivity and intra-layer quantiza-
tion sensitivity needs to be slightly modified. In
inter-layer mix-precision quantization, we calculate
the mean sensitivity of parallel linear layers to sub-
stitute individual layer sensitivity. Consequently,
we guarantee that the allocated high precision ra-
tio of q_proj/k_proj/v_proj linear layers are the
same. Similarly, the allocated high precision ratio
of up_proj/gate_proj linear layers is consistent. In
intra-layer mix-precision quantization, SHMQ first
concatenates the element-wise sensitivity matrices
of parallel linear layers and applies the Manhat-
tan norm to get the final sensitivity of each input
channel. As a result, the permutation procedure
of parallel linear layers is the same. Namely, the
reordering of q_proj/k_proj/v_proj is consistent, so
as to up_proj/gate_proj. The implementation ap-
proach effectively minimizes the overhead of the
permutation operator and leads to negligible impact
on quantized LLMs.

We present a detailed configuration of SHMQ
hyperparameters. Firstly, we give a configuration
about UB , which determines the base precision of
each linear layer. The base proportion of high preci-
sion UB is set as 12.5% for most LLMs. Secondly,
the dampening factor λ is set as 0.1 in equation
10. Finally, we take the product of activations and
weights’ l∞ as the permutation metric, which takes
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Table 8: Zero-shot QA (↑) results of Qwen2.5-1.5B model under W4.8A8 mix-precision quantization.

Model Type Method ARC-C ARC-E BoolQ HellaSwag PIQA WinoGrande Avg.

Qwen2.5-1.5B

- FP16 45.05 71.51 72.97 67.73 75.95 63.38 66.10

Dynamic
QUIK 44.03 69.65 71.04 66.30 75.73 63.61 65.06
Atom 43.24 69.39 71.62 66.15 75.36 63.85 64.94

Static
MixLLM 39.68 65.91 57.92 63.23 72.20 59.51 59.74
SHMQ 43.00 70.83 73.46 66.49 75.63 63.77 65.53

Table 9: The performance comparison between rotation-based quantization methods and SHMQ.

Model Type Method Wiki ARC-C ARC-E BoolQ HellaSwag PIQA WinoGrande Avg.

Llama-2-7B

- FP16 5.47 46.25 74.58 77.77 76.00 79.05 69.22 70.48

Dynamic
QuaRot 5.66 45.22 73.74 77.25 74.97 77.97 68.98 69.69
SpinQuant 5.64 43.17 73.23 76.94 75.12 78.56 69.38 69.40

Static SHMQ 5.58 44.45 73.27 78.50 76.13 78.13 70.64 70.19

Llama2-13B

- FP16 4.88 49.06 77.40 80.61 79.37 80.52 72.30 73.21

Dynamic
QuaRot 5.02 50.00 76.52 79.45 78.55 79.87 72.38 72.80
SpinQuant 5.01 48.63 76.39 81.41 78.43 80.25 72.14 72.88

Static SHMQ 4.96 48.46 77.15 82.23 77.81 80.63 72.38 73.11

Llama3.1-8B

- FP16 6.24 53.50 81.10 82.08 78.93 81.12 73.56 75.05

Dynamic
QuaRot 6.70 51.19 77.31 80.24 77.57 80.36 73.32 73.33
SpinQuant 6.68 50.00 78.11 80.41 80.40 77.64 72.53 73.18

Static SHMQ 6.60 53.84 80.05 81.56 78.30 79.71 74.19 74.61

both activations and weights into consideration.

A.3.2 More Comparison Results
The Comparison on Qwen2.5-1.5B Model. We
show zero-shot QA results of Qwen2.5-1.5B model
under W4.8A8 mix-precision quantization in Table
8. As shown in Table 8, SHMQ demonstrates con-
sistent improvements across six zero-shot common-
sense reasoning tasks. Dynamic QUIK achieves
the best averaged accuracy of 65.06% among pre-
vious mix-precision quantization methods. How-
ever, there is still a significant gap compared to
full precision model. Impressively, static SHMQ
outperforms dynamic QUIK by 0.47% and narrows
the gap relative to FP16 to merely 0.57%. The
negligible gap validates the great performance of
SHMQ, highlighting its superiority in practical ap-
plications.

Evaluations on MMLU. To validate the gen-
erality of SHMQ, we also conduct evaluation
on Massive Multitask Language Understanding
(MMLU)(Hendrycks et al., 2021). The MMLU
evaluation results are shown in Table10. The ex-
perimental results demonstrates the great potential
of proposed SHMQ. For instance, SHMQ achieves
54.66 in LLaMA2-13B on MMLU task, with a
mere 0.4% performance drop compared to FP16.
As for Qwen2.5-7B-Instruct, FP16 and SHMQ

achieve 74.27% and 73.34% on MMLU respec-
tively. This marginal accuracy degradation is re-
markable, especially given that static SHMQ re-
duces computational and memory overhead sub-
stantially.

The Comparison with Rotation-based Meth-
ods. We also compare SHMQ with QuaRot and
SpinQuant, two representative rotation-based ap-
proaches. The results in Table 9 demonstrate
that our method, SHMQ, achieves superior per-
formance compared to these approaches. For in-
stance, SHMQ demonstrates superior performance
over QuaRot and SpinQuant by margins of 1.28%
and 1.43%, respectively, when evaluated on the
Llama-3.1-8B model for zero-shot common sense
reasoning tasks. These improvements maintain
their consistency when applied to the Llama-2-7B
and Llama-2-13B models.

A.3.3 Ablation on Base Proportion

We also conduct ablations on the base proportion
UB of sensitivity-determined mapping in Table 11.
We vary the base proportion UB from 5% to 15%,
and find the lowest perplexity is obtained when UB

equals to 12.5%. The base proportion UB guaran-
tees that each linear layer possess high precision
budget to preserve outliers.
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(a) The proportion of high precision allocated to each layer
on LLaMA2-7B.

(b) The proportion of high precision allocated to each layer
on LLaMA2-13B.

Figure 6: The proportion of high precision allocated to each layer on LLaMA and Qwen series models.

Table 10: MMLU (↑) results of LLaMA and Qwen
models under W4.8A8 static quantization.

Model Method STEM humanities social science other ALL

LLaMA2-7B
FP16 36.65 43.32 51.77 52.50 45.86
SHMQ 36.88 42.32 50.70 51.45 45.09

LLaMA2-13B
FP16 43.57 53.26 63.05 60.76 55.06
SHMQ 44.00 52.05 62.46 60.98 54.66

LLaMA3.1-8B
FP16 56.06 59.96 76.18 71.62 65.37
SHMQ 55.20 58.51 74.78 71.28 64.31

Qwen2-7B-Instruct
FP16 70.84 68.23 84.01 76.99 74.27
SHMQ 69.91 67.08 83.20 76.68 73.34

Table 11: Ablation studies on UB in Qwen2.5-1.5B,
evaluated on C4 dataset.

Base proportion UB FP16 5% 10% 12.5% 15%

C4 ↓ 13.11 13.51 13.50 13.48 13.52

A.3.4 Ablation on Calibration Dataset

We conduct comprehensive ablation studies on cal-
ibration data to validate the robustness of SHMQ.
All experiments are performed on Llama-2-7B.
First, we evaluate the quantized model’s perfor-
mance using varying numbers of calibration sam-
ples (32, 64, 128, and 256) in Table 12. Next, we
perform ablation studies on the sequence length
of calibration data (512, 1024 and 2048) in Table
13. Finally, we assess performance using different
calibration datasets in Table 14: WikiText2, C4,
and Pile.

The PPL metric demonstrates negligible fluctu-
ations when tested with different calibration data
configurations. The quantized model maintains
consistent performance across varying calibration
sample sizes, different sequence lengths, and di-
verse calibration datasets. These findings demon-
strate that SHMQ exhibits significant robustness to
the calibration data.

Table 12: Ablation study of the calibration samples in
Llama-2-7B, evaluated on WikiText2 and C4 datasets.

Samples WikiText2 C4

32 5.572 7.119
64 5.569 7.116

128 5.581 7.117
256 5.570 7.116

Table 13: Ablation study of the sequence length of
calibration data in Llama-2-7B, evaluated on WikiText2
and C4 datasets.

Sequence Length WikiText2 C4

512 5.573 7.114
1024 5.575 7.114
2048 5.581 7.117

Table 14: Ablation study of the calibration datasets in
Llama-2-7B, evaluated on WikiText2 and C4 datasets.

Dataset WikiText2 C4

WikiText2 5.581 7.117
C4 5.577 7.115
Pile 5.578 7.117

A.3.5 The Time of Calculating Sensitivity
Metric

Table 15 shows the time of calculating sensitiv-
ity metric in SHMQ. SHMQ identifies and allo-
cates more bit-widths to sensitive layers. Then,
sensitive channels are picked out and both sensitive
and insensitive channels are reordered to conduct
mix-precision quantization. SHMQ demonstrates
remarkable efficiency in identifying sensitive chan-
nels. Specifically, it requires merely 59 seconds
for Qwen2.5-1.5B and 6min56s for Qwen2.5-7B-
Instruct on a single GPU, showcasing its rapid and
effective operation.
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Table 15: The time of calculating sensitive metric in
SHMQ on Qwen2.5.

Model Qwen2.5-1.5B Qwen2.5-7B-Instruct Qwen2.5-14B-Instruct

Time 59s 416s 668s

A.3.6 Inter-layer Mix-precision Visualizations
We allocate high precision to each layer based on
their sensitivity to quantization. In this section, we
present the visualizations of the proportion of high
precision allocated to each layer. The visualizations
of LLaMA models are depicted from Figure 6a to
Figure 6b. The inter-layer mix-precision quantiza-
tion eliminates the problem of large variations in
outlier proportions among different layers.
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