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Abstract

Traditional Retrieval-augmented Generation
systems struggle with complex multi-hop ques-
tions, which often require reasoning over mul-
tiple passages. While GraphRAG approaches
address these challenges, most of them rely on
expensive LLM calls. In this paper, we propose
GRIEVER, a lightweight, low-resource, multi-
step graph-based retriever for multi-hop QA.
Unlike prior work, GRIEVER does not rely on
LLMs and can perform multi-step retrieval in a
few hundred milliseconds. It efficiently indexes
passages alongside an associated knowledge
graph and employs a hybrid retriever combined
with aggressive filtering to reduce retrieval la-
tency. Experiments on multi-hop QA datasets
demonstrate that GRIEVER outperforms con-
ventional retrievers and shows strong potential
as a base retriever within multi-step agentic
frameworks.

1 Introduction

Recent efforts have highlighted the benefits of
combining Large Language Models’ (LLMs) para-
metric memory with non-parametric sources of
knowledge to address complex user queries. The
Retrieval-augmented Generation (RAG) paradigm
exemplifies this approach, using non-parametric
memory to guide LLMs towards more accurate
responses (Lewis et al., 2020). While effective
for simpler queries, multi-hop question answering
(QA) remains a more demanding task, requiring
reasoning across multiple passages or documents.

Recent GraphRAG approaches have proposed
more sophisticated retrieval strategies that bridge
the semantic meaning of passages (or documents)
by interlinking the entities they contain (Fang et al.,
2024; Li et al., 2024; Gutierrez et al., 2024; Shen
et al., 2025). They usually work by leveraging

†Work done while at Huawei Edinburgh Research Centre.

an alignment of an index of passages with an in-
dex of triples extracted from these passages (Fang
et al., 2024; Gutierrez et al., 2024; Li et al., 2024;
Shen et al., 2025). However, such methods often
rely on expensive LLM calls, incurring significant
deployment costs, limiting their applicability in
resource-constrained environments.

In this work, we focus on efficient retrieval and
we propose: GRIEVER, a graph-based retriever
that resolves multi-hop challenges without relying
on online LLM calls. We take the alignment be-
tween a passage and triples index to the extreme,
and we propose a hybrid indexing paradigm on top
of the structure of the extracted graph tailored to
the needs of partial triples retrieval and synonym
expansion. We build a lightweight, graph-based
retrieval strategy using this hybrid index that ex-
pands triple reasoning chains to approximate suit-
able relevant passages across distant semantic hops.
Low-latency and results filtering considerations are
applied to reduce the computational retrieval load.

We evaluate GRIEVER on popular multi-hop
QA datasets: MuSiQue, 2Wiki and HotpotQA.
GRIEVER achieves superior passage recall perfor-
mance compared to other conventional base retriev-
ers, and in many cases comparable to LLM-based
GraphRAG approaches, while running at least an
order of magnitude faster. Furthermore, we find
that in settings with more flexible runtime require-
ments, when GRIEVER can be combined with agen-
tic frameworks (i.e. GEAR) to provide relative re-
call gains of up to 4.9%. Our contributions can be
summarised as follows:

• We refine the GraphRAG paradigm of align-
ing a passage and triples index by introducing
efficiency and robustness considerations for
hybrid passage and partial triple retrieval.

• We propose an iterative methodology for ex-
panding triples associated with a preliminary
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set of retrieved passages by considering filter-
ing unsuitable candidate entity nodes.

• We demonstrate the value of GRIEVER within
multi-step, agentic frameworks enabling per-
formance convergence within less iterations.

2 Related Work

Our work draws inspiration from multi-hop QA
using combinations of LLMs with graphical struc-
tures. In recent years, several architectures intro-
duced a separate, offline indexing phase during
which they form a hierarchical representation of
the information included in a knowledge of textual
passages (Chen et al., 2023; Sarthi et al., 2024;
Edge et al., 2024).

Fang et al. construct reasoning chains through
an auto-regressive reasoning chain constructor, and
generate answers either directly from these reason-
ing chains or by retrieving original context docu-
ments. Li et al. use an LLM agent that is capable
of selecting between a set of predefined actions on
how to traverse the nodes of the extracted knowl-
edge graph given an input question, in real-time.
HippoRAG leverages an alignment of passages and
extracted triples in order to retrieve passages based
on the Personalised PageRank algorithm (Gutier-
rez et al., 2024). While the proposed retriever re-
sults in considerable improvements for single- and
multi-step retrieval (i.e. when coupled with IR-
CoT (Trivedi et al., 2023)), it remains agnostic to
the semantic relationships of the extracted triples.
Shen et al. introduce a new graph-based retrieval
framework that uses a small semantic model for
exploring multi-hop relationships. While the pro-
posed system: GEAR leads to a reduction in LLM
token utilisation, similarly to HippoRAG, it still
relies on an LLM for its retrieval step—leading to
significant runtimes.

In this paper, we build upon a similar alignment
of passages and extracted triples, refining the ap-
proach by incorporating retrieval efficiency consid-
erations and enabling the retrieval of partial triples,
without relying on LLMs for addressing multi-
hop QA scenarios. Our revision of conventional
GraphRAG approaches enables retrieval runtimes
of under one second while maintaining competi-
tive performance compared to significantly more
computationally expensive alternatives.

3 Problem Setting

The problem involves multi-step passage retrieval,
where a given question requires the information
from multiple passages to be combined in order
to answer a question (Trivedi et al., 2022; Yang
et al., 2018; Ho et al., 2020). Additionally, we
assume an alignment of an index containing these
passages with an index of triples extracted from
these passages (Trivedi et al., 2023; Gutierrez et al.,
2024; Shen et al., 2025). These triples represent
atomic facts within their source passages. They
are subsequently organised into a graph bridging
passages sharing common entities.

We approach the problem from a low-resource
perspective, where multi-hop capabilities are re-
quired but results must be returned within hundreds
of milliseconds (100− 500 ms).

4 GRIEVER

Similar to other works in the RAG space, GRIEVER

relies on the existence of a corpus of passages and
associated graph triples, which can be extracted
directly from the passages. GRIEVER introduces
an offline index building step (described in detail
in Section 4.1). The relevant considerations go
beyond conventional alignments of passages and
triples indices, ensuring efficient retrieval capabili-
ties during online, querying time, which is subse-
quently described in Section 4.2.

4.1 Offline Index Construction

The overall architecture of GRIEVER includes an
initial offline step, where the index structure is cre-
ated. GRIEVER uses three different indices:

• passages: contains the uniquely identified
passages with their document title, passage
content and associated triples information;

• partial_triples: contains partial triples,
i.e., subject-predicate or predicate-object pairs
alongside the passage ids from which the
triple partials were extracted and the list of
partial’s complement entities; and,

• same_as: contains a list of synonyms along
with a list of passage ids from which these
synonyms are extracted.

Further information about the structure of the
indices used by GRIEVER is provided in Ap-
pendix A.1. The role each index plays within the
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Figure 1: The architecture of GRIEVER.

retrieval framework is shown in Figure 1 and ex-
plained in details in Section 4.2

4.2 Online Multi-Step Retrieval
Once the offline index construction is concluded,
the indices can be used by an online multi-step it-
erative retrieval system, c.f. Figure 1. Algorithm 1
shows the iterative retrieval process in further de-
tail. Figure 2 shows an example of a multi-hop
query requiring information from two different pas-
sages. Each online iteration of GRIEVER achieves
its functionality following three retrieval steps.

• The first retrieves the passages alongside their
associated triples given a query by relying on
the passages index.

• The second step retrieves synonyms of enti-
ties using the same_as index to improve path
recall by enabling the joining of entities that
appear in triples connected to the sub-graph
retrieved in the preceding step.

• The third one shortlists the triples obtained
with passages using the partial_triples
by selecting those scored the highest with re-
spect to the original text query.

4.2.1 Relative Clause Splitting
The first part of the pipeline is a lightweight relative
clause splitter. Relative clause connectors (shown
in bold in the example query below) are used to
split the query and the split parts, e.g.:

D1

D2

[Q1] = “Who married the publisher of abolitionist newspaper The North Star?”
[Q2] = “Who married Fredrick Douglas”

The North Star (anti-slavery newspaper). The North 
Star was a nineteenth - century anti-slavery 
newspaper published from the Talman Building in 
Rochester, New York by abolitionist Frederick 
Douglass. The paper commenced …

Helen Pitts Douglass (1838–1903) was an American 
suffragist and abolitionist, known for being the 
second wife of Frederick Douglass. She also created 
the Frederick Douglass Memorial and Historical 
Association.

[D1]: [score=0.925] [D2]: [score=0.878]

(The North Star)-[published_by]->(Frederick Douglass)-[spouse]->(Helen Pitts Douglass)

Associated Triple:
• s=(The North Star)
• p=[published_by]
• o=(Frederick Douglass)

Associated Triple:
• s=(Frederick Douglass)
• p=[spouse]
• o=(Helen Pitts Douglass)

Figure 2: Example of an input query for GRIEVER.

q =“When did Napolean occupy the city where
the mother of the woman who brought Louis XV
style to the court died?”

Then for each split point, a new sub-query is
generated by joining the parts from the split point
until the end. Those sub-queries are fired in parallel
and their results are combined at the end.

The benefit of splitting the query is that for
queries with multiple relative clauses, each clause
may correspond to a different passage to be re-
trieved. Using the entire query in the first iteration
can introduce mixed signals, making it difficult
to retrieve the first hop. This is a lightweight yet
effective way of addressing this issue.

4.2.2 Passage Retrieval
Given a query, the first step is to retrieve the set of
best-matching passages. Hybrid retrievers are able
to combine the benefits of both sparse and dense re-
trievers. Reciprocal Rank Fusion (RRF) is the most
widely used method to combine results from both
dense and sparse retrievers (Cormack et al., 2009).
While the underlying retrievers are independent
and can be called in parallel, the dense retriever is
normally much slower than the sparse one. The
latency of the dense retriever primarily depends on
the dimensionality of the embedding vectors and
the number of candidates for which similarity is
computed (Malkov and Yashunin, 2020).
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In order to minimise the latency of the dense
retriever, we propose a Composed retrieval strategy
which is presented in detail below.

Optimising Hybrid Retrieval Latency In or-
der to further optimise the runtime of each base
retrieval call within GRIEVER, we minimise the
number of candidates that will be considered by the
dense retrieval by relying on a candidate set filter
based on the results of the sparse retriever. As we
show in our experiments (see Table 1), the overall
runtime is often lower, as the benefit of parallelis-
ing the sparse retriever does not compensate for the
speed-up due to filtering.

When aggregating results from the dense and
sparser retrievers, RRF is a robust popular option,
which ignores scores and relies on rankings only.
Since the passage retrieval scores can be used in
the final ranking and combined with other types of
scoring, it makes sense to use more meaningful and
comparable scores. The details about the passage
scoring are presented in the next section.

In the first iteration, the only input is the query
itself. After the first iteration, there are filtering op-
portunities which can be used to further reduce the
passages query runtime. The first iteration pro-
duces a sub-graph, which can be extended given a
rewritten query at a subsequent iteration (c.f. Sec-
tion 4.5). For the sub-graph extension, it is assumed
that any new passages should contain triples that
connect them with the existing sub-graph. That is,
the subjects or objects of the triples should match
those in the edges of the sub-graph. The set of join-
able entities in the sub-graph can be used to filter
the passages, ensuring that at least one of them is
contained in the subjects or objects field in the
passage index (see Appendix A.1). Additionally,
the passage_id set can be used as an inverse filter
to ensure passage novelty.

4.2.3 Join Entities Synonym Expansion
In the context where the graph is formed by text
triplets, the aforementioned subjects or objects
filter would miss cases where the join entity ap-
pears on different triples as different aliases, e.g.,
“LeBron James” and “LeBron Raymone James Sr.”.

In order to address such cases and improve
coverage, we consider the same_as index in or-
der to expand the sub-graph of the joined entities
with their synonyms. The set of already retrieved
passage_ids can be used to filter the same_as
query, so that only synonyms relevant to the in-

tended meaning of the entity (i.e. based on the
context in those passages) are retrieved. This helps
avoid retrieving synonyms related to an alternative
or incorrect sense of the entity name. For instance,
without passage_id filtering, the name Orange
may be expanded with synonyms corresponding
to different entities, such as a company, a fruit, or
something else entirely.

4.2.4 Triples Shortlisting
Once the top-k passages are retrieved, their asso-
ciated triples can be directly obtained without an
extra query, since they are included in triples
field of the partial_triples index. Since each
passage may contain several triples, the total num-
ber of triples retrieved can be quite high. This may
be problematic, as the final triple scoring relies on
an efficient vector-based matcher that requires the
entities in each triple to be encoded (Stoilos et al.,
2022). Consequently, the encoding operation can
become costly if too many triples are considered.

The partial_triples is used to shortlist the
set of triples considered in the unsupervised tagger,
c.f. Algorithm 2 for further details. This index
is used instead of a full triples_index, since in
the QA setting the whole triple is not expected
to appear within an input natural language query
(Mohammed et al., 2018). Instead, only a combi-
nation of a predicate (or property) and a subject
or object is expected to be contained in the origi-
nal query. The example in Figure 2 illustrates this.
The first hop information of “Who married the pub-
lisher of abolitionist newspaper The North Star?”
is supposed to be addressed by the triple (The
North Star)-[published_by]->(Frederick
Douglass). The entity Frederick Douglas is
the example of the required joining entity, which is
originally unknown and will be included to join
the first hop triples with the ones for the next
hop (Frederick Douglass)-[spouse]->(Helen
Pitts Douglass).

In the partial_triples index, the concatena-
tion of subject + predicate and predicate +
object (if an inverse partial triple) is indexed for
computing the relevant dense retriever embeddings.

4.3 Vector-based Entity Matcher

We use a lightweight vector-based matcher on the
token-level embeddings, encqt , of a sentence en-
coder. The embeddings for an n-gram, ng, derived
from q, are computed after aggregating the corre-
sponding ng token-level embeddings as follows:

2567



Retriever R@5 R@10 R@15 ms@5 ms@10 ms@15

M
uS

iQ
ue

BM25 0.351 0.41 0.442 23±5 25±6 27±6
Dense 0.319 0.383 0.420 294±12 292±11 292±11
RRFHybrid 0.394 0.472 0.505 295±11 295±10 294±10
Composed 0.417 0.492 0.533 135±8 134±7 168±13
GRIEVER 0.456 0.539 0.573 425±122 441±135 509±127

2W
ik

i
BM25 0.64 0.668 0.68 38±15 44±16 48±17
Dense 0.467 0.515 0.539 467±24 467±24 472±23
RRFHybrid 0.64 0.673 0.685 469±24 472±25 475±24
Composed 0.624 0.662 0.677 159±22 229±26 297±29
GRIEVER 0.676 0.738 0.751 435±93 476±77 603±77

H
ot

po
tQ

A

BM25 0.668 0.82 0.887 18±3 21±3 24±3
Dense 0.728 0.799 0.842 61±3 61±3 62±3
RRFHybrid 0.776 0.879 0.917 63±3 61±3 63±3
Composed 0.784 0.886 0.919 76±5 96±8 115±7
GRIEVER 0.813 0.909 0.937 273±59 300±49 337±53

Table 1: Retrieval performance and runtime comparison on MuSiQue, 2Wiki and HotpotQA.

enc (ng|q). This means that the rather expensive
encoding step happens once for each q. enc (q) is
used for dense retrieval and the intermediary encqt
are reused to compute the n-gram embeddings.

The resulting n-gram embeddings are used to
compute similarity scores against the embeddings
of the named entities. The candidate named enti-
ties come from the subjects or objects of shortlisted
triples. If synonyms exist for a given entity e, each
synonym is encoded separately. We denote the
entity matching score, sqe , as the maximum similar-
ity score observed for an entity and its synonyms
across all candidate n-grams derived from q.

4.4 Scoring: From Triples to Paths and
Passages

Let a triple tj be denoted as tj = (sj , pj , oj),
its corresponding partial triples as t′j =
{(sj , pj) , (pj , oj)} and {sj , oj} be the set contain-
ing the two entities in tj . The score of a partial
triple u ∈ t′j can be computed as the average of
its predicate score, sqpj and its entity score sqej s.t.
ej ∈ {sj , oj}multiplied by the inverse partial triple
frequency:

squ =
sqej + sqpj

2 (1 + log freq (ej , pj))
, (1)

where ej ∈ u ∩ {sj , oj}. The triple scores are
computed as the maximum score across their cor-
responding partial triples, as follows:

sqtj = max
({

squ ∀u ∈ t′j
})

(2)

The multi-hop path scores are updated every
time a new triple is added to the path chain. The

running score of a path is defined as the average of
the scores of the triples composing the path. For
determining the score of a passage, we iterate over
all the paths containing a triple associated with it.
The score of a passage is the maximum score of
the multiplication of the triple score itself with the
score of each path in which this triple participates.
Those passage scores are used to rank the final
GRIEVER results.

4.5 Heuristic-based Query Re-writing

After identifying the highest-scoring entities us-
ing the vector-based matcher (see Section 4.3), we
attempt to rewrite the query from the previous it-
eration by removing mentions of matched entities,
along with relations from the shortlisted triples
when they are matched. If successful, we replace
the identified mention in the query with the remain-
ing unmatched entity in the corresponding triples.

Retriever
MuSiQue 2Wiki HotpotQA

EM F1 EM F1 EM F1

BM25 18.4 27.6 42.4 47.7 43.8 57.2
Dense 15.2 25.4 23.6 28.4 42.1 55.0
RRFHybrid 20.0 30.2 43.8 48.0 45.4 58.5
Composed 19.0 29.5 43.8 47.7 43.3 57.1
GRIEVER 21.6 32.6 42.0 48.2 46.2 59.8

Table 2: End-to-end QA performance with top- 5 re-
trieved passages.

5 Experiments

We conduct experiments on three popular pub-
lic multi-hop question answering benchmarks:
MuSiQue (Trivedi et al., 2022), HotpotQA (Yang
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Setup
MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

w/ partial_triples 0.456 0.539 0.573 0.676 0.738 0.751 0.813 0.909 0.937
w/ full_triples 0.457 0.536 0.570 0.667 0.722 0.740 0.787 0.900 0.932
w/o shortlisting 0.452 0.532 0.574 0.594 0.695 0.713 0.739 0.870 0.916
w/o composed_retriever 0.438 0.514 0.555 0.672 0.733 0.731 0.792 0.887 0.920

Table 3: Ablation study of GRIEVER’s performance across different index configurations; with a partial triples
index, with a full instead of a partial triples index, without triples shortlisting and with RRFHybrid instead of
Composed retriever for passage retrieval.

Retriever
MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15

GEAR + RRFHybrid 55.6 66.1 69.3 88.4 94.5 95.2 93.1 96.3 96.7
GEAR + GRIEVER 55.7 66.6 69.8 88.3 94.7 95.7 92.5 95.7 96.9

IRCOT + RRFHybrid 52.57 58.30 59.98 76.00 80.60 − 79.55 82.55 −
IRCOT + GRIEVER 54.98 61.03 62.58 77.00 83.80 − 80.10 86.60 −

Table 4: Retrieval performance of GRIEVER against RRFHybrid as base retriever within agentic, multi-step
frameworks (i.e. GEAR and IRCOT).

et al., 2018), and 2WikiMultiHopQA (2Wiki) (Ho
et al., 2020). For MuSiQue and 2Wiki, we use the
data provided in the IRCoT paper (Trivedi et al.,
2023) which includes the full corpus, while for Hot-
potQA, we follow the same setting as HippoRAG
(Gutierrez et al., 2024) to limit experimental costs.

We measure both retrieval and QA performance.
For retrieval evaluation, we use Recall@k (R@k)
for k ∈ {5, 10, 15}. Following standard practices,
QA performance is evaluated with Exact Match
(EM) and F1 scores (Trivedi et al., 2023).

5.1 Baselines

We evaluate GRIEVER against stand-alone, single-
step retrievers: (i) BM25, (ii) Dense (using
SBERT), (iii) a hybrid approach combining BM25
and SBERT through RRF (i.e. RRFHybrid) and
(iv) the Composed retrieval strategy described in
Section 4.2.2.

5.2 Retrieval and QA

The retrieval results in Table 1 indicate that
GRIEVER with two iterations (i.e. with a sin-
gle query re-writing step) is able to consistently
outperform base retrievers across all settings and
datasets. This is achieved, without a major dif-
ference in average runtime, especially when com-
pared with the base Dense retriever. In fact, in
one of the settings (top-5 on 2Wiki), GRIEVER is
on average faster than Dense. It is important to
note that the GRIEVER results include two dense

retrieval queries to both the passages and the
partial_triples indices.

Moreover, GRIEVER’s retrieval performance is
not far from that of some agentic approaches for
graph-based retrieval. When comparing the re-
trieval results in Table 1 against the results reported
by (Shen et al., 2025), we observe that GRIEVER

performs comparably to, and in some settings even
surpasses, IRCoT+ColBERT and HippoRAG on
the MuSiQue, and HotpotQA datasets.

Table 2 confirms the hypothesis that better re-
trieval performance can translate into better perfor-
mance in the subsequent QA phase.

Ablation Study Table 3 shows that using the
partial_triples index within GRIEVER for
triple shortlisting appears to improve retrieval per-
formance. When attempting to match the entire
triple against the query (by using full_triples),
the absent joining entity can negatively impact the
similarity score. When removing the triples short-
listing entirely (wo/ shortlisting) results in
about 20–30% longer runtimes and using triples in-
dex instead of partial triples around 10–20% longer
runtimes. Replacing the Composed retriever with
RRFHybrid (wo/ composed_retriever) resulted
in performance drop and led to about twice the run-
time on average for the larger datasets MuSiQue
and 2Wiki.
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5.3 GRIEVER as a Base Retriever

Table 4 shows the impact of using GRIEVER as a
base retriever within agentic retrieval frameworks1:
IRCOT and GEAR. GEAR uses RRFHybrid as
a base retriever by default. Based on the default
length of their maximum reasoning chains, the max-
imum number of iterations is set to 4 for MuSiQue
and 2 for the HotpotQA and 2Wiki datasets. Swap-
ping their base retriever for GRIEVER results in
better retrieval performance overall.

6 Conclusion

In this paper, we introduced GRIEVER, a graph-
based retriever that addresses multi-hop retrieval
challenges without relying on online LLM calls.
Our lightweight design leverages an alignment be-
tween a textual passage index and an index of
schema-free triples, providing both efficiency and
robustness.

GRIEVER streamlines passage retrieval by
traversing high-scoring triple paths, enabling more
effective multi-hop reasoning within hundreds of
milliseconds. On popular multi-hop QA datasets,
GRIEVER achieves strong performance compared
to conventional base retrievers and, in many cases,
rivals LLM-based GraphRAG approaches.

Finally, we demonstrate the effectiveness of
GRIEVER in multi-step, agentic frameworks,
where it reduces the number of iterations required
to reach peak retrieval performance.

Limitations

Since GRIEVER is designed with a focus on low
response time and resource efficiency, in order to
remain comparable with popular baseline retrievers,
it exhibits certain limitations when used in isolation.
The simplicity of the query splitting, rewriting, and
entity matching mechanisms can occasionally lead
to incorrect triple chains and, consequently, incor-
rect answers. However, by relying on unsuper-
vised methods, we ensure that the retriever remains
lightweight and easily integrable into existing RAG
or agentic retrieval systems.

With this in mind, there is an inherent trade-
off between latency and performance when select-
ing sentence encoders for the query, passages, and
entity matcher. Encoding constitutes the primary
latency bottleneck, and the use of more complex

1GRIEVER is called with k = 5. For IRCOT, we set
max_iter=2 for 2Wiki and HotpotQA. Therefore we do not
report R@15 on those datasets for IRCOT.

models can significantly impact runtime. We leave
the exploration of performance using more power-
ful, auto-regressive semantic models to future work
(Lee et al., 2025).
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A Implementation Details

All indices are implemented using Elastic-
search. For the dense retriever, we use the
all-mpnet-base-v2 SBERT model with approxi-
mate k-nearest neighbour search and cosine simi-
larity for computing vector comparisons.

We employ GPT-4o mini for all methods that
require an LLM, including triple extraction. For
triple extraction, we reproduce the methodology
proposed by Gutierrez et al.; Shen et al..

A.1 GRIEVER’s Offline Indexing
GRIEVER uses three different indices:
(i) passages, (ii) partial_triples, and
(iii) same_as. The fields included in these indices
are presented below:
- passsages:

- id: uid
- doc_id: id
- title: text
- content: text
- triples: list[tuple[keyword]]
- subjects: list[keyword]
- objects: list[keyword]
- embedding: list[float]

- partial_triples:
- id: uid
- passage_ids: list[id]
- content: text
- subject: keyword
- predicate: keyword
- in_inverse: boolean
- objects: list[keyword]
- embedding: list[float]

- same_as:
- id: uid
- passage_ids: list[id]
- content: text
- aliases: list[keyword]
- embedding: list[float]

A.2 GRIEVER Iterative Retrieval
Algorithms 1 and 2 illustrate the online retrieval process and
triples shortlisting using the partial_triples index.
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Algorithm 1 The Iterative Multi-step Retrieval Process of GRIEVER

function GRIEVER_RETRIEVAL(q, k, n_i)
F ← ∅
Gq ← ∅
R ← ∅
for i ∈ range(n_i) do

if ¬F then
Ri ← composed_retrieval(q, k, “passages_index”, F )

else
Ri ← rrf_retrieval(q, k, “passages_index”, F )

end if
R ← R ∨ Ri

T ← shortlist_triples(q,Ri)
(scored_triples,Ej)← score_triples(q, T )
q ← rewrite_query(q, scored_triples,Ej)
F ← filter(“passage_ids”, {d.passage_id | d ∈ Ri}) ∧ filter(“subject|object”,Ej)
Gq ← extend_subgraph(Gq + T )

end for
return rank_passages(R,Gq)

end function

Algorithm 2 Shortlisting Triples with the Partial Triples Index

function SHORTLIST_TRIPLES(q, r, t_max)
T ← {t | d ∈ r, t ∈ d.triples}
E ← {t.subject | t ∈ T} | {t.object | t ∈ T}
E ← E ∨ expand_same_as(E)
F ← filter(“passage_id”, {d.passage_id | d ∈ r})∧

filter(“subject”, {t.subject | t ∈ T} | {t.object | t ∈ T})
PT ← rrf_retrieval(q, “partial_triples”, t_max, F )
T ← {t | (t ∈ T) ∧ ((t.s, t.p) ∈ PT ∨ (t.o, t.p) ∈ PT)}
Ej ← {o | p ∈ PT, (o ∈ p.objects) ∧ ((p.s, p.p, p.o) ∈ T ∨ (p.o, p.p, p.s))}
return (T, expand_same_as(Ej))

end function
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