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Abstract
Retrieval-Augmented Generation (RAG) has
shown strong performance in open-domain
tasks, but its effectiveness in industrial do-
mains is limited by a lack of domain under-
standing and document structural elements
(DSE) such as tables, figures, charts, and for-
mulas. To address this challenge, we propose
an efficient knowledge distillation framework
that transfers complementary knowledge from
both Large Language Models (LLMs) and
Vision-Language Models (VLMs) into a com-
pact domain-specific retriever. Extensive ex-
periments and analysis on real-world indus-
trial datasets from shipbuilding and electrical
equipment domains demonstrate that the pro-
posed framework improves both domain under-
standing and visual-structural retrieval, outper-
forming larger baselines while requiring signif-
icantly less computational complexity.

1 Introduction

Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020) is increasingly adopted across various
industrial domains, contributing to task automa-
tion and improved information access (Gao et al.,
2023; Gutiérrez et al., 2024; Asai et al., 2024; Yu
et al., 2023). In RAG systems, the retriever plays
a critical role, as even the most advanced genera-
tion models can produce inaccurate outputs without
effective retrieval. However, domain-specific docu-
ments often contain document structural elements
(DSE) such as complex layouts, tables, figures, and
charts, along with specialized terminology, which
pose significant challenges for conventional retriev-
ers (Wang et al., 2024b, 2023). Therefore, develop-
ing retrievers that can effectively understand both
domain-specific semantics and DSE is essential for
building more accurate and reliable RAG systems
for industrial applications.

Effective understanding of both domain-specific
semantics and DSE by retrievers typically requires
expert-annotated datasets (Karpukhin et al., 2020),

but their construction demands significant time and
cost (Ding et al., 2024; Zhukova et al., 2025; Chand-
hiramowuli et al., 2024). While previous work has
attempted to inject domain knowledge into retriev-
ers through synthetic data and knowledge distilla-
tion (Izacard and Grave, 2021), these approaches
often overlook the structural complexity inherent.
By contrast, visual retrievers that leverage DSE and
visual characteristics (Xu et al., 2020) have shown
strong performance in domain-specific retrieval,
but the high computational cost limits their appli-
cability in real-world industrial settings (Béchard
and Ayala, 2025; Huang et al., 2024a). To build
RAG system for industrial applications, we need
efficient retrievers capable of domain adaptation
and understanding DSE.

In this work, we pose the following research
question: How can we build an efficient train-
ing framework enabling retrievers to adapt to
specific domains while capturing DSE? To ad-
dress the question, we propose a novel domain
knowledge distillation framework that transfers
both textual and visual understanding from large
teacher models into a student model. By leverag-
ing an LLM to generate synthetic queries and a
VLM to compute ranking scores reflecting DSE,
we enable the student model to jointly learn domain
semantics and structural awareness. This approach
addresses the semantic-structural gap in existing
domain-specific retrievers while overcoming the
computational inefficiency of VLM-based multi-
modal retrievers, making it practical for latency-
sensitive industrial deployment.

To evaluate the effectiveness of the proposed
framework, we construct retrieval benchmarks in
shipbuilding and electrical equipment domains and
compare our method against a range of baseline re-
trievers. Experimental results show that our model,
trained using the proposed distillation framework,
achieves the highest retrieval accuracy across all
evaluation metrics, with the lowest latency and

2551



𝑑𝑜𝑐
𝑝𝑜𝑠

𝒅𝒐𝒄𝑛𝑒𝑔

𝑞

Distillation of LLM’s Knowledge

𝑖𝑚𝑔
𝑝𝑜𝑠

𝑖𝑚𝑔1
𝑛𝑒𝑔

𝑠
𝑝𝑜𝑠

𝑠1
𝑛𝑒𝑔

𝑠𝑛
𝑛𝑒𝑔𝑖𝑚𝑔𝑛

𝑛𝑒𝑔

…

…

Distillation of VLM’s Knowledge

Ƹ𝑠
𝑝𝑜𝑠

Ƹ𝑠𝑖
𝑛𝑒𝑔

𝑞

𝑑𝑜𝑐
𝑝𝑜𝑠

𝑑𝑜𝑐𝑖
𝑛𝑒𝑔

K
L
D

Training Retrievers

𝑠
𝑝𝑜𝑠

𝑠𝑖
𝑛𝑒𝑔

1

2 3

Teacher 
VLM

Teacher 
LLM

Student 
Model

Generated
Query

Positive 
Document 
Sampling

Negative
Document 
Sampling

Indexing

Multi-format 
Documents

Multi-format 
Documents Database

𝑞

𝑞

𝑞

𝑞

𝑞

Figure 1: Overview of the proposed knowledge distillation framework. An LLM generates synthetic queries with
positive and hard negative documents to capture domain semantics, while a VLM provides fine-grained ranking
scores reflecting structural and visual elements such as tables, figures, and layouts. The student retriever is trained
with these complementary signals through contrastive learning and KL divergence to jointly learn semantic relevance
and structural awareness.

FLOPs. Furthermore, in the evaluation for RAG
responses, our model achieves performance com-
parable to that of the teacher model. Our analysis
provides evidence that the proposed framework
enhances the models’ ability to understand domain-
specific content as well as visual and structural
information.

Our contributions are as follows:

1. We propose a novel domain knowledge distil-
lation framework for training efficient domain-
specific retrievers.

2. We distill semantic and visual knowledge of
LLMs and VLMs into a retriever using syn-
thetic query generation and fine-grained rank-
ing supervision, enabling it to capture seman-
tic and DSE.

3. Extensive experiments show that our
lightweight retriever, trained via the proposed
framework, achieves strong document-
specific retrieval performance with reduced
inference cost in latency and FLOPs.

2 Related Work

Domain-Specific RAG Various efforts have been
made to enhance the performance of Retrieval-
Augmented Generation (RAG) in domain-specific
settings (Lai et al., 2022; Cho and Lee, 2025). Re-
cent studies have particularly focused on improving
the capabilities of LLMs to better align with spe-
cialized domains (Xu et al., 2025; Zhang et al.,
2024a; Tao et al., 2024; dos Santos Junior et al.,
2024; Bhushan et al., 2025; Balaskas et al., 2025).
These works have fine-tuned LLMs with curated
domain benchmarks or LLM-generated synthetic
queries to improve answer accuracy. For the re-
trieval module itself, several studies distill knowl-
edge from powerful cross-encoder reader teachers
into lightweight retrievers using LLM-generated
data (Kim and Baek, 2025; Tamber et al., 2025; Yao
et al., 2024; Liang et al., 2020; Ma et al., 2020).
There are approaches leveraging LLMs to gener-
ate synthetic queries for effective retriever domain
adaptation. While effective, they have been strug-
gling to encode the DSE that characterizes real-
world industrial documents.

Multimodal RAG Recent works have introduced
layout-aware retrievers, often based on VLMs (Ma
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et al., 2024; Zhang et al., 2024b; Faysse et al., 2025)
and multimodal RAG that incorporate visual infor-
mation during retrieval and generation (Cho et al.,
2024; Suri et al., 2024; Yu et al., 2025; Abootorabi
et al., 2025). These methods leverage document
layout cues, rendered images, and multimodal con-
trastive learning to enhance both retrieval accuracy
and generation quality (Nacson et al., 2025; Wang
et al., 2024a). They demonstrate that visual signals
help models understand DSE and extract relevant
multimodal content from complex formats. How-
ever, visual retrievers often require higher FLOPs
and inference latency, which poses challenges for
real-world deployment (Chen et al., 2025; Faysse
et al., 2025; Sun et al., 2021).

3 Cross-Modal Knowledge Distillation
framework

In this work, we propose a novel knowledge dis-
tillation framework that simultaneously leverages
knowledge from both LLMs and VLMs to enhance
the performance of retrievers in domain-specific
RAG applications. First, our proposed framework
utilizes the query generation capabilities of LLMs
to augment high-quality training data for the re-
triever in specific domains. In addition, we lever-
age VLMs to capture visual semantic features from
documents of various formats and label the rele-
vance scores between the query and each document.
Finally, the distilled knowledge, derived from the
previously generated queries and relevance scores,
is transferred to domain-specific retrieval through
training. As illustrated in Figure 1, the proposed
framework consists of three main steps: query gen-
eration, rank score generation, and knowledge dis-
tillation.

3.1 Knowledge Distillation of LLMs using
Synthetic Query Generation

The goal of LLM-based knowledge distillation is to
construct training data consisting of multi-format
document and query pairs for contrastive retriever
training, which requires effective negative sam-
pling. In the initial stage of the framework, each
document is parsed at the page level to detect and
crop visual elements such as figures, tables, and di-
agrams. These cropped regions are then processed
by a VLM to generate textual descriptions that
capture both visual and structural semantics. This
ensures that the visual information is aligned with
the LLM-generated queries during the distillation

process. The post-processing details are provided
in Appendix A.

Subsequently, a positive document docpos is sam-
pled from a database containing a large collec-
tion of multi-format documents. To this end, we
extract a set of hard negative samples docneg =
{docneg

1 , doc
neg
2 , . . . , docnegn } from the database by

comparing the positive document docpos against all
other documents in the database and computing
their semantic similarity, ensuring that the selected
negatives are semantically similar but contextually
irrelevant. Incorporating multiple hard negatives
encourages the LLM to generate a more discrimi-
native query qi that is not only highly relevant to
docpos, but also distinguishable from its hard nega-
tives. Then, the LLM takes as input docpos, docneg,
and a designed prompt, and generates a synthetic
query q that is highly relevant to the positive while
unrelated to the negatives. The prompt details are
provided in Appendix Table 7.

3.2 Knowledge Distillation of VLMs using
Synthetic Ranking scores

The goal of VLM-based knowledge distillation is to
produce fine-grained relevance scores for synthetic
training pairs (q, imgpos) and (q, img

neg
i ) that re-

flect the visual semantics of multi-format docu-
ments using a VLM-based visual retriever. As illus-
trated in Figure 1, the teacher VLM takes as input
a query q paired with a positive document imgpos

and multiple hard negatives {img
neg
1 , . . . , img

neg
n },

and outputs a relevance score spos for the positive
pair and scores {sneg

1 , . . . , s
neg
n } for the negative

pairs. These scores reflect the visual-semantic align-
ment between the query and the document, consid-
ering the layout, visual structure, figures, and other
format-specific elements. By capturing these visual
semantics, the VLM-derived scores provide fine-
grained supervision signals for training a student
retriever via a ranking loss function, which encour-
ages the correct ordering of relevant and irrelevant
documents.

3.3 Training Retrievers through Multimodal
Synthetic data

To train the student retriever, we leverage synthetic
query-document pairs (q, docpos) and (q, doc

neg
i )

generated via LLM-based knowledge distillation,
along with fine-grained supervision signals distilled
from the VLM. These signals are used within con-
trastive learning, allowing the retriever to better
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Table 1: Comparison of retrieval performance of our retriever trained with the proposed framework and baseline
models in the shipbuilding domain. Bold and underline highlight the best and second best performance.

Model Params MRR nDCG HIT Complexity

@5 @10 @5 @10 @5 @10 Latency Flops

BM25 - 60.1 60.9 63.5 65.3 73.5 79.0 - -
BGE-M3 560M 76.7 77.1 79.4 80.4 87.7 90.7 1.0 1.0
Qwen3-Embedding-0.6B 596M 80.7 81.1 83.3 84.6 91.5 95.1 1.1 1.1
GTE-Qwen2-1.5B-instruct 1.5B 81.1 81.5 84.0 84.9 92.6 95.4 3.8 928.6
GTE-Qwen2-7B-instruct 7B 66.9 67.2 69.7 71.9 80.9 87.4 19.1 4642.9
Qwen3-Embedding-8B 8B 84.7 85.0 87.1 87.9 94.4 96.7 21.7 5107.1

GME-2B 2B 75.3 75.9 78.7 80.1 88.7 92.9 4.7 964.3
ColPali-3B 3B 81.6 82.0 84.4 85.4 92.8 95.9 21.2 5142.9
ColQwen2.5-3B 3B 87.9 88.2 90.0 90.5 95.9 97.4 9.3 2192.9

Google text-embedding-005 - 76.6 77.2 80.0 81.3 89.8 94.1 - -
Google text-embedding-large-exp-03-07 - 81.5 82.0 84.3 85.5 92.5 96.0 - -

Ours (BGE-M3) 560M 87.9 88.2 90.0 90.5 96.0 97.6 1.0 1.0
Ours (Qwen3-Embedding-0.6B) 596M 87.2 87.4 89.3 89.9 95.6 97.7 1.1 1.1

capture the distinction between semantically simi-
lar yet contextually different documents.

Specifically, given a query q, the student model
encodes the query, the positive document docpos,
and the hard negative documents docneg

i into vec-
tor representations. It then computes similarity
scores between the query embedding and each doc-
ument embedding to produce the predicted rele-
vance scores ŝpos and ŝ

neg
i . To further align the

retriever’s output with the teacher’s supervision
signal, we minimize the Kullback-Leible (KL) di-
vergence between the predicted relevance distri-
bution ŝi and the distilled distribution si, defined
as:

LKD =
∑

i

si log

(
si
ŝi

)
(1)

This objective encourages the student retriever
to approximate the fine-grained visual-semantic su-
pervision signals provided by the teacher VLM. By
incorporating both contrastive loss and knowledge
distillation loss, the retriever learns to rank posi-
tive documents higher than hard negatives while
preserving the DSE learned by the teacher.

4 Experiments

4.1 Experimental Settings

Dataset We conduct experiments using PDF data
collected from two industrial domains: shipbuild-
ing and electrical equipment. For the shipbuilding

domain, we build the train set (6,625 samples) us-
ing 10 PDF documents related to the marine vessel
field, and the test set (2,932 samples) using 9 PDF
documents related to the naval ship field. Similarly,
in the electric domain, we build the train set (4,109
samples) using 32 PDF documents related to the
IEC field and the test set (3312 samples) using 36
PDFs related to the IEEE field. The specific details
of these datasets are provided in Table 5.

Additionally, to investigate whether retrieval per-
formance affects the final RAG response quality
and how the proposed method impacts different
types of multimodal content, we constructed a
dataset in the shipbuilding domain, consisting of
real-world user queries and their corresponding re-
sponses. Specifically, we collected 100 instances,
with 20 examples for each type of multimodal el-
ement, including figures, tables, formulas, charts,
and plain text, resulting in a balanced set across
five content categories.

Baseline To evaluate the effectiveness of our
proposed retriever, we compare it against a di-
verse set of baseline models grouped into three
categories: (1) OCR-based text retrievers, (2)
visual retrievers, and (3) commercial embed-
ding models. The OCR-based text retrievers in-
clude BGE-M3 (Chen et al., 2024), GTE-Qwen2-
instruct (Yang et al., 2024a), and the recently re-
leased Qwen3-Embedding (Zhang et al., 2025).
The visual retrievers directly process document
images to preserve the visual structure and in-
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Table 2: Comparison of retrieval performance of our
retriever trained with the proposed framework and base-
line models in the electrical domain.

Backbone MRR@10 HIT@10

BM25 39.1 64.0
BGE-M3 54.1 78.0
Qwen3-Embedding-0.6B 55.5 81.2
ColQwen2.5-3B 58.7 82.3

Ours (BGE-M3) 62.0 86.1
Ours (Qwen3-Embedding-0.6B) 63.1 87.7

clude GME (Zhang et al., 2024b), ColPali and
ColQwen2.5 (Faysse et al., 2025). In addition, we
evaluate commercial embedding APIs, including
Google’s text-embedding-005 and text-embedding-
large-exp-03-07 (Team et al., 2023).

To evaluate the effectiveness of our proposed re-
triever within the RAG framework, we conducted
a comprehensive comparison against a diverse set
of baseline methods categorized into three groups:
text retrievers paired with LLM generators, VLM
retrievers paired with LLM generators, and VLM
retrievers paired with VLM generators, such as
M3DocRAG (Cho et al., 2024). Additionally, we
considered hybrid approaches combining VLM re-
trievers with text retrievers alongside LLM genera-
tors, such as VisdomRAG (Suri et al., 2024).

Settings We use BGE-M3 (Chen et al., 2024)
and Qwen3-Embedding (Zhang et al., 2025) as
the backbone models for our dense retriever. We
conducted our experiments using the Qwen3-
32B (Yang et al., 2025) model to generate the
synthetic queries and employed the ColQwen2.5-
3B (Faysse et al., 2025) visual retriever to generate
ranking scores for knowledge distillation. To evalu-
ate the performance of RAG, we employed Llama-
3.1-8B-instruct (Grattafiori et al., 2024) as the
question-answering language model, and Qwen2.5-
VL-7B (Yang et al., 2024b) as the VLM for process-
ing multimodal inputs. We evaluate retrieval perfor-
mance using MRR, nDCG (Järvelin and Kekäläi-
nen, 2002), and HIT. For efficiency, we report la-
tency and FLOPs, normalized to 1.0 based on BGE-
M3, the smallest model. We utilize RAGAs (Es
et al., 2024) to assess Retrieval-Augmented Gener-
ation performance, employing Google Gemini-2.0-
flash and text-embedding-005 models. For detailed
experimental settings, please refer to the Appendix
C.

Table 3: Evaluation of RAG performance using the RA-
GAs, with faithfulness, and answer correctness as eval-
uation metrics.

RAG Faith. Ans Cor.

BGE-M3 + LLM 86.4 39.9
Qwen3-Embedding-0.6B + LLM 88.2 41.3
ColQwen2.5-3B + LLM 89.9 44.2

M3DocRAG - 24.6
VisdomRAG 43.4 26.4

Ours (BGE-M3) + LLM 89.4 43.5

4.2 Experimental Results

Table 1 shows the performance of the retrievers
distilled using the proposed framework compared
to the baselines. Our retrievers outperform all base-
line models across all evaluation metrics. Specifi-
cally, the teacher model ColQwen2.5-3B (Faysse
et al., 2025) adopts a late interaction architecture,
which entails high computational and time com-
plexity, yet it still underperforms compared to our
retrievers. This result indicates that the proposed
framework is effective in enhancing retrieval perfor-
mance in specific domains. Moreover, as it achieves
the best performance with one of the smallest pa-
rameter models, it demonstrates high efficiency
with the lowest computational cost and retrieval
latency, making it well-suited for industrial deploy-
ment. Among the baseline retrievers, the visual
retriever ColQwen2.5-3B achieves the best perfor-
mance, indicating that it is particularly well-suited
to serve as a teacher model for distilling knowledge
into domain-specific retrievers within the proposed
framework. A t-test on the five independent training
results shows that the p-value for ours (BGE-M3)
is 0.171, indicating no statistically significant dif-
ference across runs.

To evaluate the robustness of the proposed frame-
work, we conducted additional experiments be-
yond the shipbuilding domain. Table 2 presents
the retrieval performance in the electrical domain.
Our retrievers significantly outperform all baseline
and backbone models. Specifically, Ours (BGE-
M3) improve over its backbone by 8.1 points in
HIT@10. In addition, Ours (Qwen3-Embedding-
0.6B) achieve notably better performance than
the teacher model ColQwen2.5-3B. These results
demonstrate that the proposed framework is robust
across multiple domains and suggest its potential
applicability to various real-world industrial do-
mains.
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Figure 2: Comparison of model Hit@5 scores across 5 query types (20 samples per type).

Table 3 shows RAG performance evaluated
using 100 curated queries designed to assess
diverse question types. The RAG performance
with our retriever trained via the proposed
framework was comparable to that using the
ColQwen2.5-3B teacher retriever. In contrast, both
M3DocRAG (Cho et al., 2024) and Visdom-
RAG (Suri et al., 2024) exhibit significantly lower
performance. Although their visual retrievers are
robust across domains and effective at retrieving rel-
evant content, the answer generation performance
is constrained by the limited capacity of VLMs to
understand domain-specific documents. As a result,
our framework proves effective in building accurate
and reliable domain-specific RAG systems.

4.3 Ablation study

We conduct an ablation study to evaluate the ef-
fectiveness of each component in our framework,
as shown in Table 4. Compared to the retriever
trained with our proposed framework, excluding
both the LLM-based query generation and the
VLM-based ranking score components results in
a noticeable performance drop. Furthermore, us-
ing a VLM to distill ranking scores yields better
performance compared to using the LLM-based
Qwen3-embedding-8B (Zhang et al., 2025). This
indicates that both synthetic query generation via
LLM knowledge distillation and ranking score
generation via VLM knowledge distillation sig-
nificantly contribute to improving retriever perfor-
mance.

5 Analysis

To better understand the behavior and limitations
of our framework, we show an analysis of models’
performance by query type and an error analysis.

Table 4: Ablation study of each model component: query
generation, and ranking score generation.

Backbone Query Ranking Score MRR@10 HIT@10

BGE-M3 - - 77.1 90.7
BGE-M3 LLM - 85.6 96.4
BGE-M3 LLM LLM 86.0 96.5

BGE-M3 LLM VLM 88.2 97.6

5.1 Query type analysis

We analyzed results by query type using the
dataset in Table 3. Figure 2 compares the teacher
model (ColQwen2.5-3B), baselines (BGE-M3 and
Qwen3-Embedding-0.6B), and our models (Ours
(BGE-M3) and Ours (Qwen3-Embedding-0.6B)).
Our models consistently outperform the baselines
across all query types. The improvement in text
queries highlights better domain understanding,
while strong results on image, formula, and chart
queries indicate effective distillation of teacher’s
visual and structural knowledge. Slightly low per-
formance on table queries can stem from reduced
structural understanding due to markdown-based
preprocessing (Sui et al., 2024). Nonetheless, we
adopt markdown to align with prior RAG and QA
research (Min et al., 2024).

5.2 Error analysis

We conducted an error analysis of our models and
figured out a prominent class of errors that involves
handling conditional queries. The analysis revealed
several prominent error categories: “query ambi-
guity” (38%), “insufficient understanding of im-
ages/equations/text” (23%), “conditional query er-
rors” (15%), and others (23%). Among them, condi-
tional query errors were particularly notable, where
the model often retrieved passages that matched
incorrect conditions—for example, returning in-
formation for B fixed, A varying” when the query
asked for A fixed, B varying”. This is presumed to
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be due to the limitations of small models in captur-
ing complex, structured dependencies across vari-
ables (Huang et al., 2024b). Our findings suggest
the need for further improving the ability to handle
conditional and multi-hop queries either during or
after knowledge distillation.

6 Conclusion

We propose a knowledge distillation framework for
training domain-specific retrievers tailored to in-
dustrial RAG applications. Our approach leverages
LLMs to generate synthetic queries and VLMs to
assign fine-grained relevance scores, enabling com-
pact retrievers to acquire both semantic and DSE.
This design addresses the challenges of industrial
domains, where documents often contain complex
layouts, figures, tables, and specialized terminol-
ogy that conventional retrievers struggle to interpret
effectively. Extensive experiments across two in-
dustrial domains demonstrate that our framework
consistently outperforms competitive baselines in
both accuracy and efficiency, validating its effec-
tiveness for real-world deployment.

Limitations

As discussed in Section 5, our framework has room
for improvement in two key areas: table-based
query retrieval and conditional query retrieval. To
address these limitations, we plan to explore tar-
geted supervision strategies during knowledge dis-
tillation to improve reasoning over markdown-
formatted tables and conditional contexts involving
multi-hop queries in future work.
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A Implementation Details for VLM-based
Multimodal Element Processing

To enhance text-based retrieval, our parsing process
leverages a Qwen2.5-VL-7B(Yang et al., 2024b)
to generate descriptive textual representations of
multimodal elements such as charts, graphs, and
figures. The parsing process begins with the extrac-
tion of textual content from the page-level image.
Based on the parsed text and associated structural

Table 5: Comparison of Document Statistics between
Shipbuilding and Electrical Domains

Domain Shipbuilding Electrical

Dataset Train Test Train Test

Quries 6625 2932 4109 3312
Documents 10 9 32 36
Pages 7124 3184 6952 5517

Avg. Query Length. 21.3 22.2 19.4 17.9
Avg. Page Length. 564.3 584.8 651.2 638.4

Pages with Images 1849 477 1224 3953
Pages with Tables 2928 923 1538 1418
Pages with Formulas 668 293 667 272
Pages with Charts 29 21 469 818
Text-only Pages 2313 1643 3589 745

tags, multimodal elements such as tables and charts
are identified within the page. These elements are
then cropped from the image and processed using
a Vision-Language Model (VLM) to generate de-
tailed descriptive captions. The generated descrip-
tions are integrated back into the parsed text at the
corresponding positions, enriching the document
representation. This preprocessing step culminates
in indexing the combined textual and visual infor-
mation into the document database for subsequent
retrieval and analysis. An example of preprocess-
ing with these descriptions is provided in Figure
3. The specific prompts used for generating these
descriptions are detailed in Table 6.

B LLM Prompt Template for Knowledge
Distillation

This section presents the prompt used to generate
synthetic queries using LLMs. In this setting, the
LLM is given a positive document along with a
set of hard negative documents and is instructed to
generate a query that is specific to the positive doc-
ument while clearly distinguishing it from the neg-
atives. The resulting synthetic query is then used as
training data for the retriever. Table 7 illustrates the
detailed prompt design, which corresponds to the
query generation process described in Section 3.1.

C Experiments settings

The proposed framework is trained using mixed-
precision (fp16) with gradient accumulation and
DeepSpeed(Rasley et al., 2020) optimization.
We fine-tune both the BGE-M3 and Qwen3-
embedding-0.6b backbones using a unified con-
trastive and knowledge distillation loss, with a
batch size of 48. Training is conducted using a
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linear learning rate scheduler with a base learning
rate of 1e-5, optimized by the AdamW(Loshchilov
and Hutter, 2019) optimizer. We set the number
of sampled hard negative documents n to 10, us-
ing the BGE-M3 model to select negatives that are
semantically similar to the positive document. A
contrastive temperature of 0.02 is used, and embed-
dings are pooled using the cls token and normal-
ized prior to similarity computation. We use the
KLDivergence loss for knowledge distillation. All
experiments were conducted on a single NVIDIA
H100 GPU (96GB).
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## Task
The following image is a visual element extracted from a PDF document.
Please describe the content of this image in a way that restores the intended message it conveys.

## Instructions
1. Summarize what the image is communicating — such as a chart’s core idea, a scene’s purpose, or
the context of a visual.
2. If there are any visible texts, captions, handwritten notes, labels, or annotations, include them
verbatim as much as possible in your description.
3. Focus on expressing the actual information being conveyed, not the visual structure (e.g., no need
to describe axes or layout).
4. The goal is to help the image be retrievable in a semantic search, so include meaningful keywords
and content-level detail.

## Input
Image: { PDF-extracted image }

## Output
An informative description that captures the image’s intended message and informational content.

Description:

Table 6: Prompt template for generating semantic descriptions of images cropped from PDF documents.

## Task
You are given a positive document and a set of hard negative documents. Your task is to generate a
query that effectively retrieves the positive document while excluding the negative ones. Although the
negative documents are semantically similar to the positive document, they are contextually irrelevant.

## Instructions
Focus on the unique aspects of the positive document to create a query that is highly specific and
clearly distinguishes it from the negatives.

## Input
Positive document: { positive doc 1 }
Negative document 1: { negative doc 2 }
Negative document 2: { negative doc 3 }
. . .
Negative document n: { negative doc n }

## Output
Write a single, well-formed query that best captures the content and intent of the positive document,
while clearly separating it from the negatives.

Query:

Table 7: Prompt template for synthetic query generation.
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Figure 3: A comparative illustration of baseline text extraction versus the proposed post-processing strategy. While
the baseline approach captures nearby textual content without considering document structure or visual context, our
method leverages both semantic and visual cues to produce coherent and context-aware descriptions.
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