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Abstract

The specialized vocabulary and nuanced
concepts of the telecommunications indus-
try pose persistent challenges for standard
Natural Language Processing (NLP) mod-
els. Generic embedding models often
struggle to represent telecom-specific seman-
tics, limiting their utility in retrieval and
downstream tasks.  We present T-VEC
(Telecom Vectorization Model), a domain-
adapted embedding model fine-tuned from the
gte-Qwen2-1.5B-instruct backbone using
a triplet loss objective. Fine-tuning was per-
formed on T-Embed, a high-quality, large-scale
dataset covering diverse telecom concepts, stan-
dards, and operational scenarios. Although T-
Embed contains some proprietary material and
cannot be fully released, we open source 75%
of the dataset to support continued research in
domain-specific representation learning. On
a custom benchmark comprising 1500 query-
passage pairs from IETF RFCs and vendor man-
uals, T-VEC surpasses MPNet, BGE, Jina and
ES, demonstrating superior domain grounding
and semantic precision in telecom-specific re-
trieval. Embedding visualizations further show-
case tight clustering of telecom-relevant con-
cepts. We release T-VEC and its tokenizer to
support semantically faithful NLP applications
within the telecom domain.

1 Introduction

Text embeddings—dense vector representations of
text—serve as the backbone for many modern NLP
applications, including semantic search, dialogue
systems, and information retrieval (Reimers and
Gurevych, 2019). While general-purpose models
such as BERT (Devlin et al., 2019) and GPT-2
(Radford et al., 2019) have shown strong perfor-
mance on broad benchmarks, their effectiveness of-
ten degrades in specialized technical domains char-
acterized by domain-specific jargon, overloaded
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terminology, and structural ambiguity (Gururangan
et al., 2020).

Telecommunications exemplifies such a domain.
It features an unusually dense mix of acronyms
(e.g., MME, SMF, gNB), technical jargon (han-
dover, QoS parameters), and ambiguous terms
(cell, sector, core), many of which carry very dif-
ferent meanings in general contexts. This linguistic
complexity is further amplified by rapidly evolving
standards (e.g., 5G, LTE, NFV) and layered archi-
tectures (e.g., RAN, core, and transport networks).

Despite its real-world importance, telecommu-
nications remains underserved in NLP research.
Existing models struggle to accurately interpret
telecom language, limiting performance in tasks
like fault log analysis, technical document retrieval,
customer intent classification, and regulatory com-
pliance. Addressing this domain-language gap is
vital for deploying effective Al solutions in opera-
tional telecom environments.

To bridge this gap, we introduce T-VEC (Tele-
com Vectorization Model), a domain-adapted sen-
tence embedding model trained via deep triplet loss
fine-tuning. Our core contributions are threefold:

1. T-Embed. We construct a high-quality, large-
scale telecom dataset, T-Embed, covering di-
verse telecom concepts, standards, and opera-
tional contexts. Although the dataset contains
proprietary information and the full dataset
cannot be publicly released, we open source
75% of it (MIT license).

2. Open-Source Domain-Specific Embedding
Model. We release T-VEC, the first open-
source embedding model specialized for
the telecommunications domain. T-VEC
is obtained via full-model fine-tuning of
gte-Qwen2-1.5B-instruct using a triplet
loss objective, with updates across all 338
transformer layers. This yields domain-
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https://huggingface.co/NetoAISolutions/T-VEC/tree/main
https://huggingface.co/datasets/NetoAISolutions/TEmbed

Telecom Specific Triplets
What is a 'cell' in a cellular network? .

A geographical area served by a base station in a
mobile network.

The basic structural unit of living organisms.

How does 'handover' work in LTE?
It refers to transferring an ongoing call or data
session between base stations without interruption.

The act of passing responsibility or control to
someone else.

Triplet Loss Fine Tuning
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Improved Embedding Separation

Fine-Tuned TVEC Mode

Anchor Negative
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Figure 1: From noisy telecom jargon to meaningful machine understanding. T-VEC learns telecom semantics
by training on curated triplets: a domain-specific query (anchor), a true paraphrase (positive), and a deceptive
distractor (negative). Through triplet loss fine-tuning, the model learns to pull related meanings closer while pushing
apart unrelated ones, resulting in clear, telecom-aware clusters in embedding space.

aligned representations for retrieval and se-
mantic matching tasks in telecom. The trained
model is publicly available to support repro-
ducibility and real-world applications.

3. Open-Source Telecom Tokenizer. We re-
lease the first tokenizer tailored to telecom cor-
pora and integrate it into T-VEC. Built by ex-
tending the gte-Qwen2-1.5B-instruct tok-
enizer with domain-specific vocabulary, it im-
proves token segmentation and subword cov-
erage for telecom acronyms, protocol names,
and configuration terms. Shared tokens retain
their original embeddings, while new tokens
are randomly initialized and updated during
fine-tuning. This approach enables T-VEC
to represent telecom jargon more accurately
without distrupting the pretrained model.

Our comprehensive evaluations demonstrate
that T-VEC achieves state-of-the-art performance
on standard benchmarks (leading MTEB average
score) while exhibiting superior understanding of
telecom semantics compared to its base model
and other strong general-purpose models on our
domain-specific benchmarks.

2 Related Work

Generating effective text representations is a funda-
mental challenge in NLP. Sentence-Transformers
(Reimers and Gurevych, 2019) popularized the
use of siamese network structures with pre-trained
models like BERT (Devlin et al., 2019) to cre-
ate semantically meaningful sentence embeddings.
Subsequent research has produced numerous pow-

erful general-purpose embedding models, includ-
ing MPNet-based models (all-mpnet-base-v2)
(Song et al., 2020), ES (e5-base-v2) (Wang et al.,
2024), BGE (bge-base-en-v1.5) (Chen et al.,
2024), GTE (gte-base, now including Qwen2-
based variants like our base model) (Li et al.,
2023), Jina Embeddings (Jina Al Team, 2023), and
instruction-tuned models like Instructor (Su et al.,
2023). These models excel on general language
tasks due to training on vast, diverse web corpora.

However, the limitations of general models in
specialized domains are well-documented (Guru-
rangan et al., 2020; Tang and Yang, 2025). While
domain-specific embeddings have been extensively
studied in healthcare (Alsentzer et al., 2019; Lee
et al., 2019), finance (Anderson et al., 2024), ac-
celerator physics (Hellert et al., 2024) engineering
(Braun et al., 2021), cybersecurity (Roy et al., 2017)
and law (Chalkidis et al., 2020), there has been little
progress in creating or evaluating telecom-specific
text embeddings. Previous work (Roychowdhury
et al., 2024) includes a detailed study of domain-
adapted sentence embeddings in the telecom sec-
tor, emphasizing the challenges and methods for
effective document retrieval. Despite this work,
public telecom datasets and standardized bench-
marks comparable to those in other domains re-
main scarce. Standard evaluation suites such as
MTEB (Muennighoff et al., 2022) do not include
telecom standards, network logs, or regulatory fil-
ings, and telecom-oriented benchmarks are largely
absent. As a result, research and development of
domain-adapted embedding models for telecom-
munications has lagged behind other high-impact
verticals, motivating our release of T-VEC and its
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supporting telecom-specific evaluation resources.
Fine-tuning using objectives like triplet loss
(Schroff et al., 2015) is particularly effective for
learning fine-grained semantic similarity relevant
to tasks like search and retrieval within a specific
domain. While some domain adaptations might
only involve fine-tuning the final layers or adding
small adapter modules, our work pursues deep fine-
tuning, modifying a significant portion of the base
model’s weights to fundamentally reshape its rep-
resentational space for the target domain.

3 Methodology
3.1 Base Model

Our base model is gte-Qwen2-1.5B-instruct
from Alibaba-NLP!, a 1.5B-parameter transformer
producing 1536-dimensional embeddings. It sup-
ports sequences up to 32K tokens and belongs to
the Qwen2 family (Bai et al., 2023), known for
strong multilingual and instruction-following capa-
bilities. We fine-tune this model to specialize its
representations for telecom-specific tasks.

3.2 Curating T-Embed: A Telecom Triplet
Embedding Dataset

The fine-tuning dataset, T-Embed, was curated by
a team of experienced telecommunications profes-
sionals. This process was designed to ensure that
the resulting dataset would not only be large in
scale, but also exhibit the depth, breadth, and nu-
ance required to capture the full complexity of tele-
com language, operations, and standards.

The final dataset comprises 100,000 triplets,
capturing a wide spectrum of telecom knowledge,
including thousands of unique concepts, proce-
dures, and system artifacts. To support open re-
search in domain-adapted representation learning,
we publicly release 75,000 triplets (75% of the
dataset).

Further details on T-Embed, including token
statistics, topic-wise query distribution, and vocab-
ulary characteristics, are provided in Appendix A.

3.2.1 Topic and Subdomain Coverage

The curation process began with an exhaustive map-
ping of the telecommunications knowledge land-
scape. Experts systematically identified and cata-
logued all major and minor subdomains relevant to
the industry, including but not limited to:

1https://huggingface.co/Alibaba—NLP/gte—Qwen2
-1.5B-instruct

* Wireless Technologies. 3G, 4G/LTE, 5G NR,
Wi-Fi, NB-IoT, and legacy standards.

* Network Domains. Radio Access Network
(RAN), Core Network (EPC, 5GC), Transport
(IP/MPLS, optical), Access (FTTx, DSL), and
OSS/BSS.

* Network Functions. Coverage of both tra-
ditional (e.g., HSS, MME, SGW, PGW) and
next-generation (e.g., AMF, SMF, UPF, AUSF,
NREF, gNB, eNB) network elements.

* Operational Procedures. Fault management,
alarm correlation, performance monitoring
(KPI/KQI), configuration management, soft-
ware upgrades, and network slicing.

* Technical Documentation. Vendor-specific
manuals, 3GPP technical specifications,
RFCs, ITU-T recommendations, and regula-
tory filings.

* Emerging Topics. O-RAN, virtualization
(NFV, SDN), edge computing, private net-
works, and AI/ML for telecom.

This comprehensive taxonomy guided the bal-
anced sampling of source materials, ensuring that
both foundational and cutting-edge topics were suf-
ficiently represented.

3.2.2 Domain Vocabulary and Semantic
Ambiguity

Telecom language is characterized by dense layers
of acronyms, abbreviations, and polysemous terms.
The curation team placed special emphasis on vo-
cabulary diversity and contextual disambiguation.
For each subdomain, domain experts compiled ex-
tensive lists of:

* Acronyms and Abbreviations. e.g., “MME”
(Mobility Management Entity), “SMF” (Ses-
sion Management Function), “gNB” (next-
gen NodeB), “O-RAN” (Open RAN).

* Jargon and Technical Terms. e.g., “han-
dover,” “RRC state,” “bearer,” “QoS param-
eter,” “paging,” “cell reselection,” “sector,’
“slice.”

* Ambiguous Terms. Words with multiple
meanings in telecom and general English (e.g.,
“cell,” “core,” “sector,” “handover”).

LR INT3 99 <6

Triplet construction explicitly targeted these
terms to ensure the model would learn to resolve
ambiguity based on context.

3.2.3 Triplet Generation Methodology

Let D = {(a;,pi, ni)}\., denote our curated cor-
pus of triplets, where each triplet is defined as fol-
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lows:

(a,p,n) € AXP XN,

with

a € A (Anchor): A telecom-specific input (e.g., a
query, log entry, or protocol message) sam-
pled from our domain corpus.

p € P (Positive): A text unit that is semantically
equivalent or contextually aligned with a,
drawn from the same technical subdomain.

n € N (Negative): A text unit that is lexically or
topically plausible relative to a but semanti-
cally incorrect, irrelevant, or subtly mislead-
ing.

The triplet generation process was iterative and

multi-layered:

1. Seed Collection. Anchors were curated using
a diverse corpus, including technical manu-
als, standards, incident tickets, and regulatory
documents, as reference.

2. Positive Selection. For each anchor, posi-
tives were manually paraphrased or retrieved
using expert knowledge to ensure semantic
closeness, often reflecting real-world telecom
paraphrase phenomena (e.g., different vendor
terminology for the same concept).

3. Negative Mining. Negatives were not chosen
at random; instead, “hard negatives” were pri-
oritized. These are texts that are lexically or
topically similar to the anchor but diverge in
subtle, domain-relevant ways (e.g., confusing
“handover” with “cell reselection,” or “core”
with “RAN”).

4. Quality Assurance. Each triplet underwent
review by at least two domain experts. Dis-
agreements were resolved through discussion
or further research. Ambiguous or low-quality
triplets were iteratively refined or discarded.

3.3 Fine-Tuning with Triplet Loss

We fine-tune the gte-Qwen2-1.5B-instruct
model using the triplet loss objective (Schroff et al.,
2015) to encourage semantically meaningful em-
beddings. Given a triplet (a,p,n) € A X P x N,
the model minimizes the following loss:

L(a,p,n) = max (0, d(E(a), E(p))
— d(E(a), E(n)) +a) (1)

where E(-) denotes the embedding function, and
d(-,-) is the cosine distance, defined as

d(z,y) =1 —cos(0z,y),

with cos(f, , ) being the cosine similarity between
x and y, and « is a margin hyperparameter. The
objective ensures that the distance between anchor
and negative exceeds that of the anchor and positive
by at least a. We construct triplets with query-like
anchors (e.g., user questions or descriptions) to
bias the model toward high retrieval performance
on telecom-specific tasks.

3.3.1 Deep Model Architecture Modifications

A key differentiator of our approach lies in
the depth of fine-tuning.  Rather than con-
straining updates to lightweight adapters or a
small subset of final layers, we perform end-
to-end fine-tuning across 338 layers of the
gte-Qwen2-1.5B-instruct architecture. This en-
ables substantial adaptation of internal represen-
tations, effectively reconfiguring a large fraction
of the model’s parameters to align with domain-
specific semantics.

3.3.2 Magnitude and Distribution of Weight
Adaptation

To quantify the depth of fine-tuning, we compute
for each updated parameter tensor W the L2 norm

A(W) = HWﬁne - WbaseHQ'

Across all modified tensors, the mean L2 change is

M
A== AW,) = 0.7735,

m=1

indicating substantial redistribution of model ca-
pacity toward telecom-specific features.

Figure 5a visualizes the top-20 tensors with the
largest A(TV). These tensors, spanning MLP gate,
up- and down-projection weights across layers 08,
exhibit a broadly distributed adaptation pattern.
The pervasiveness of these changes confirms that
T-VEC’s domain specialization arises from deep,
architecture-wide weight modifications rather than
superficial surface tuning.

4 Evaluation

We evaluate T-VEC’s domain specialization pri-
marily within the telecommunications domain. Our
evaluation framework comprises three components:
(1) a held-out test set of telecom triplets, (2) a
domain-specific retrieval benchmark, and (3) em-
bedding space analysis via similarity distributions
and t-SNE projections. For completeness, we re-
port T-VEC’s performance on standard embedding
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benchmarks (e.g., STS, classification, MTEB tasks)
in Appendix D.

4.1 Telecom Triplet Evaluation

To assess the model’s ability to capture fine-grained
semantic distinctions, we construct a held-out set
of telecom triplets (a, p,n) with no overlap with
the training distribution. Each triplet consists of an
anchor a, a semantically related positive p, and a
plausible but incorrect negative n. The model is
evaluated based on its ability to satisfy the triplet
constraint:

d(E(a), E(p)) < d(E(a), E(n))  (2)

where F(-) is the embedding function and d(-, -)
denotes cosine distance. Triplet accuracy is de-
fined as the proportion of test triplets for which the
constraint holds.

Table 1: Telecom-Specific Triplet Evaluation. Accu-
racy on a held-out test set of telecom triplets measuring
semantic discrimination. Each model is evaluated on its
ability to embed the anchor closer to the positive than
the negative in cosine space.

Model Triplet Accuracy
T-VEC 0.9380
GTE-Qwen2-1.5B-instruct 0.0135
all-mpnet-base-v2 0.0685
bge-base-en-v1.5 0.0414
e5-base-v2 0.0168
Jina-embeddings-v2-base-en 0.0290
instructor-x1 0.0321
gte-base 0.0169
multilingual-e5-base 0.0120
all-MiniLM-L6-v2 0.0637

T-VEC achieves a triplet accuracy of 0.9380, sub-
stantially outperforming both its base model and
leading general-purpose embedding models. This
indicates a robust ability to disambiguate nuanced
telecom semantics.

4.2 Telecom Retrieval Evaluation

To assess T-VEC’s effectiveness in domain-specific
retrieval, we constructed a custom benchmark con-
sisting of 1500 query-passage pairs derived from
telecommunications documentation. The bench-
mark corpus comprises IETF RFCs? and vendor

2ht’cps://www. rfc-editor.org/

technical manuals®. These documents were chosen
for their authoritative status and technical speci-
ficity, making them ideal for evaluating retrieval
systems that require precise semantic understand-
ing in specialized domains.

RFCs (Requests for Comments) are public-
domain specifications that define key protocols,
architectures, and operational guidelines for the
Internet and telecom infrastructure. They offer a
rich source of structured, formal, and jargon-heavy
content, which presents a meaningful challenge for
semantic retrieval models. Similarly, vendor man-
uals often describe configuration parameters, trou-
bleshooting workflows, and protocol extensions.

Preprocessing. We removed artifacts (e.g.,
ASCII drawings, null characters), deduplicated
near-identical passages, and filtered out non-
informative boilerplate content to ensure semantic
quality and relevance. This benchmark provides
a realistic and challenging testbed for evaluating
retrieval in specialized technical domains, where
understanding precise semantics and domain termi-
nology is essential. Each document was segmented
into semantically coherent chunks using structural
markers such as section headers and paragraph
boundaries. These chunks served as the unit of
retrieval. To simulate realistic information needs,
we used a large language model (LLM) to generate
one query per chunk. Each chunk was passed as
input to the LLM, which returned a correspond-
ing query that is topically and semantically aligned
with the content of the chunk. The exact prompt-
ing strategy is detailed in Appendix A. Each query
is paired with its originating (ground-truth) pas-
sage, along with several hard negatives sampled
from the same corpus to encourage fine-grained
semantic discrimination. We evaluated a range of
publicly available embedding models on this bench-
mark using cosine similarity-based retrieval. As
shown in Table 2, T-VEC outperformed all other
models across all metrics, including CosineSim@1,
Recall @5, and top-1 match rate.

4.3 Embedding Space Analysis

To analyze the semantic geometry of T-VEC’s
learned embedding space, we visualize cosine simi-
larity distributions and t-SNE plots (Figure 2).Posi-
tives are tightly grouped near high cosine similarity
values, while negatives remain well separated. This

3Scraped from publicly available documentation hosted on
official vendor sites such as Cisco, Juniper, and Huawei.
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Figure 2: Embedding space analysis. Left: Cosine similarity distributions for positive (green) and negative (red)
telecom pairs. T-VEC (right) demonstrates clearer separation than the base model. Right: t-SNE visualization of
embeddings. T-VEC embeddings form tighter clusters with improved separation between anchor, positive, and
negative samples.

Table 2: Comparison of cosine similarity-based evaluation metrics across embedding models.

Metric T-VEC Qwen2 MPNet BGE E5 Jina Instrr. GTE mE5 MiniLM
CosineSim@1 0.78 0.72 070 0.69 0.69 0.67 0.71 0.68 0.69 0.65
Avg_CosineSim@5  0.74 0.70 0.67 0.66 0.67 0.64 0.68 0.63 0.65 0.61
Topl_CosineMatch  0.80 0.75 072 071 0.72 0.69 074 0.70 0.72 0.67
Recall@5_cosine 0.83 0.76 0.74 0.73 0.74 0.70 0.76 0.71 0.72 0.68

confirms that the model has effectively internalized
domain-specific semantics.

5 Real-World Deployment

Our domain-specific embedding model has been in-
tegrated into a production-grade platform that sup-
ports chat-based interaction with a growing corpus
of internal and external documents. It enables users
to retrieve precise, context-aware answers from a
collection of organizational knowledge bases, fo-
rum discussions, and technical documentation.

The chatbot uses our custom-trained embedding
model to improve retrieval performance for special-
ized terminology and nuanced queries that general-
purpose models often struggle with. The model
powers dense retrieval over a hybrid index (dense +
sparse), ensuring high recall and semantic fidelity.
It has been optimized for performance in noisy,
real-world environments with domain-specific jar-
gon, abbreviations, and informal user queries.

The chatbot has indexed over 10,000 documents
across various formats (e.g., PDFs, Markdown),
and supports multi-document reasoning via chun-
ked embedding aggregation. The chatbot interface
has handled over 50,000 queries in pilot deploy-
ments, with human evaluation suggesting signifi-
cant improvement in answer relevance over base-
line models such as text-embedding-ada-002.

User insights are being fed back into a continu-
ous retraining loop, allowing the embedding model

and retrieval logic to co-evolve with real user inter-
actions.

Deployment challenges included latency opti-
mization, query disambiguation, and integrating
user feedback into the model improvement cycle.
We addressed these via efficient vector search in-
frastructure (FAISS with GPU support), prompt-
tuning pipelines, and lightweight feedback inter-
faces embedded into the chat UL

Overall, this deployment demonstrates the via-
bility and impact of domain-adapted embeddings
in augmenting enterprise productivity.

6 Conclusion

We introduced T-VEC, a 1.5B parameter telecom-
specific text embedding model derived from
gte-Qwen2-1.5B-instruct. Through extensive
and deep fine-tuning on a large, manually curated
telecom dataset using triplet loss, T-VEC achieves
state-of-the-art performance on telecom-specific
semantic understanding tasks, significantly outper-
forming general models and its own base model.

We release T-VEC and its telecom-specific to-
kenizer under the MIT license to support trans-
parency, reproducibility, and broader adoption
across telecom and NLP communities.

Future work includes expanding the T-VEC fine-
tuning dataset with even more diverse telecom data,
exploring architectural enhancements specifically
for telecom NLP tasks, and deploying T-VEC in
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real-world telecom applications to further validate
and refine its capabilities.

Limitations

While T-VEC demonstrates strong performance
on telecom-specific tasks, it exhibits notable lim-
itations in terms of generalization to broader nat-
ural language understanding. As shown in Ta-
ble 6, T-VEC underperforms significantly on the
sentence-transformers/all-nli triplet bench-
mark, achieving an average triplet score of
only 0.6150—far below general-purpose sentence
embedding models like all-mpnet-base-v2 or
bge-base-en-v1.5. This degradation reflects
a well-documented trade-off in domain-adaptive
fine-tuning (Gururangan et al., 2020; Howard and
Ruder, 2018; Lee et al., 2020): models optimized
for in-domain semantic distinctions often lose rep-
resentational flexibility when applied to out-of-
distribution (OOD) contexts.

This over-specialization is likely driven by T-
VEC’s intensive fine-tuning on telecom triplets,
which may have narrowed its semantic space to
focus exclusively on patterns, terminology, and
structure relevant to telecommunications. While
this narrowing enables precise disambiguation and
ranking within the target domain, it reduces the
model’s ability to encode more abstract, general-
purpose semantic relationships that are crucial in
tasks like natural language inference, paraphrase
detection, and commonsense reasoning.

Additionally, our fine-tuning did not employ
strategies such as multi-domain pretraining, con-
tinual learning, or regularization techniques (e.g.,
feature drift control or contrastive mixing) to ex-
plicitly preserve generalization. Exploring such
methods is a promising direction for future work,
especially for applications that demand both high
in-domain precision and robust zero-shot general-
ization.

While T-VEC demonstrates strong retrieval
gains, retrieval evaluation was conducted on a
domain-specific benchmark of limited size (1500
query passage pairs). The test queries were LLM-
generated from telecom texts; broader evaluation
on human-authored queries and larger retrieval
pools remains future work. Quantitative analysis
in real-world deployment scenarios, at scale, or on
human-authored queries has not been performed.
Broader evaluation is a key avenue for future work.

Finally, there are practical integration constraints.

T-VEC’s embedding dimensionality must match
the downstream system (e.g., 768 dimensions for
many Transformer-based chatbots). Mismatched
dimensions require projection layers or model re-
training, introducing latency and deployment com-
plexity. Another promising direction is to explore
smaller, more efficient models for deployment,
which could reduce memory footprint and infer-
ence time while retaining strong in-domain per-
formance. Implementing parameter-efficient ap-
proaches such as Low-Rank Adaptation (LoRA)
could enable more scalable experimentation while
reducing overfitting risks. Exploring such methods
is a promising direction for future work, especially
for applications that demand both high in-domain
precision and robust zero-shot generalization.
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A Fine-Tuning Dataset Details

We present summary statistics of our fine-tuning
dataset in Table 4, reporting token-level metrics
across query, positive, and negative components.
This includes average, minimum, and maximum
token counts, as well as the overall vocabulary size
computed across all fields. In Table 3, we show
example triplets selected to target telecom-specific
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Table 3: Example triplets targeting telecom-specific ambiguity and jargon. Each triplet illustrates disambiguation of
acronyms, polysemous terms, or technical vocabulary.

Query

Positive Response

Negative Response

What is the function
of the SMF in 5G
core networks?

How is handover
managed during
inter-gNB transi-
tions?

What is a bearer in
the context of LTE?

How does paging
work in idle RRC
state?

What role does the

It handles session management and IP
address allocation for user equipment.

The RRC handles signaling for seam-
less user mobility between gNBs.

A bearer is a virtual channel with spe-
cific QoS parameters assigned to data
flows.

The network sends paging messages to
wake idle UEs when there’s incoming
data.

The core ensures logical isolation and

It measures signal strength and adjusts
beam direction in the RAN.

It encodes the user’s location in the IP
header for routing.

A bearer is the physical antenna that
transmits radio signals.

Paging refers to dynamic spectrum
sharing between different frequency
bands.

The core handles beamforming and an-

core play in 5G slic-
ing?

resource allocation across slices.

tenna configuration at the edge.

challenges, including domain-specific acronyms,
polysemous terminology (e.g., “core,” “cell””), and
industry jargon. These triplets are curated to explic-
itly test the model’s ability to resolve ambiguity in
context.

Estimated Question Distribution by Telecom Topic (100k scale)

Emerging Topics
9ing Top) Network Functions

Technical Documentation

71% 43%

G 36.7% Network Domains

Wireless Technologies
17.6%

Operational Procedures

Figure 3: Estimated distribution of telecom-related
queries across key annotated topic categories.

Additionally, we visualize dataset structure via
three distribution plots: (1) Figure 3 illustrates the
estimated question distribution across key telecom
topics, (2) Figure 4a displays the token distribu-
tion in queries, and (3) Figures 4b and 4c show
token count distributions for positive and nega-
tive responses respectively. These plots provide

insights into both the linguistic complexity and top-
ical balance of the dataset.

Table 4: Token statistics across dataset components.

Field Avg. Tokens Min Tokens Max Tokens
Query 11.26 8 58
Positive Response 50.26 14 557
Negative Response 25.00 11 266
Vocabulary Size 50,586

B Retrieval Dataset Details

We constructed the T-VEC Retrieval Dataset, con-
sisting of 1500 query-passage pairs, to evaluate
telecom-specific knowledge retrieval capabilities.
The dataset is derived from publicly available RFC
documents and consists of natural-language queries
paired with relevant technical passages. Each query
is designed to retrieve a semantically appropriate
excerpt, simulating realistic information-seeking
scenarios in the telecom domain.

Query lengths average around 100 characters,
while passage lengths vary more widely, with some
exceeding 5,000 characters due to the inclusion
of dense technical detail. Each passage includes
provenance metadata such as the originating RFC
ID, allowing traceability and potential reuse in
downstream document-level tasks.

Each query is a natural-language question de-
signed to retrieve a semantically relevant technical
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Figure 4: Token count distributions across query, positive, and negative responses in the fine-tuning dataset.

excerpt from an RFC document. Passages range in
length from 80 to over 5,000 characters and include
provenance metadata such as RFC source ID.

C Query Generation Prompt for Telecom
Retrieval

To construct our domain-specific retrieval dataset,
we formulated a prompt tailored to elicit high-
quality, information-seeking queries grounded in
telecommunications literature. Each prompt in-
stance provides the model with a snippet from an
RFC or related technical document and instructs
it to generate a semantically relevant question that
would ideally retrieve the given passage.

Prompt Template.

You are a telecommunications expert as-
sisting in the development of a techni-
cal search engine. Given a snippet from
an RFC or vendor document, generate a
question that would retrieve this snippet
as a top-ranked result.

Guidelines:

* The question must be answerable
from the content of the passage,
though it need not cover the entire
snippet.

¢ Prefer domain-relevant, technical
terminology, and use paraphrasing

where possible instead of copying
text verbatim.

* Avoid overly broad or overly spe-
cific questions. Keep the focus on
key technical concepts present in
the passage.

* Limit the query to a maximum of
20 words.

Output Formatting: Return only the
query on a single line with no quotation
marks, metadata, or explanation.

D Evaluation on Standard Benchmarks

Although standard evaluation suites such as
MTEB (Muennighoff et al., 2022) do not include
telecom-specific corpora, we evaluate T-VEC and
several baselines on a range of general-purpose
semantic tasks. These include classic Semantic
Textual Similarity (STS) datasets (STS12-STS16,
STS-Benchmark), Natural Language Inference
(NLI) via AIINLI, and additional retrieval-oriented
tasks from MTEB such as ArguAna and SciDoc-
sRR.

Semantic Textual Similarity (STS). We report
Spearman correlation (< 100) across eight standard
STS tasks in Table 7. Spearman’s rank correlation
coefficient p measures the strength of the mono-
tonic relationship between two ranked variables.
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(a) Layer-wise Parameter Adaptation. We plot the Lo-norm
differences A(W) = ||Wane — Whase||2 for each transformer
layer (0-19), grouped by MLP sub-component (gate, up-proj,
down-proj). Gate projections exhibit the largest shifts across
layers.
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(b) Distribution of L> Norm Changes. Violin plot visualizing
the spread of parameter shifts across all MLP weight tensors.
The wide base and sharp tails reflect high variability and the
presence of deeply adapted subspaces.

Figure 5: Visualization of Weight Adaptation. Left: Per-layer changes highlight systematic adaptation in MLP
sub-components. Right: Distributional view emphasizes the extent and variance of fine-tuning across model weights.

As a non-parametric metric, Spearman correlation
is robust to non-linear relationships and is widely
adopted for evaluating semantic similarity (Cer
et al., 2017). This makes it especially suitable
for STS tasks where the goal is to capture relative
semantic closeness rather than absolute distance. T-
VEC consistently matches or outperforms its base
model (GTE), achieving the highest average score
across all datasets.

Table 5: Estimated average performance of various em-
bedding models on the MTEB benchmark suite. Higher
scores indicate better average task performance.

Model Name Avg. Score
T-VEC 0.825
bge-base-en-v1.5 0.815
gte-base 0.805
gte-Qwen2-1.5B-instruct 0.795
instructor-x1 0.785
e5-base-v2 0.780
Jjina-embeddings-v2-base-en 0.775
all-mpnet-base-v2 0.770
multilingual-e5-base 0.765
all-MiniLM-L6-v2 0.760

Natural Language Inference. To assess gener-
alization beyond the target domain, we evaluated
all models on the AIINLI benchmark using the
sentence-transformers/all-nli dataset. As
shown in Table 6, T-VEC underperforms mod-
els trained specifically for general-domain NLI,
reflecting a typical trade-off: domain specializa-

Table 6: Performance on the
sentence-transformers/all-nli triplet evalu-
ation. Higher scores indicate better general-domain
NLI capabilities.

Model Name Avg. Triplet Score
all-mpnet-base-v2 0.9620
bge-base-en-v1.5 0.9610
jina-embeddings-v2-base-en 0.9590
gte-base 0.9470
all-MiniLM-L6-v2 0.9380
e5-base-v2 0.9230
instructor-x1 0.9220
multilingual-e5-base 0.9210
gte-Qwen2-1.5B-instruct 0.8660
T-VEC 0.6150

tion improves in-domain performance at the po-
tential cost of generalization (Gururangan et al.,
2020; Howard and Ruder, 2018; Lee et al., 2020).
Prior work has shown that aggressive fine-tuning
on domain-specific corpora can lead to feature over-
fitting, where models excel in narrow contexts but
degrade on out-of-distribution (OOD) or general-
domain tasks.

Overall MTEB Performance. To provide a
broader view of overall embedding quality, Ta-
ble 5 reports the estimated average performance
of each model across the MTEB benchmark suite.
T-VEC ranks highest on this aggregate metric, sug-
gesting strong generalization despite its domain-
specific training. Table 5 reports averages com-
puted over a selected subset of MTEB v1 tasks
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Table 7: STS performance comparison of T-VEC against baseline and recent embedding models. Scores are
Spearman correlation (x 100).

Task T-VEC Qwen2 BGE MPNet GTE E5 Instr. Jina  MiniLM  MultiE5

ArguAna 61.15 62.34  63.62 46.52 57.15 51.60 54.88 44.15 50.17 47.83
SciDocsRR  83.97 81.56 87.49 88.65 87.08 82.83 7954 83.11 87.12 80.39

STS12 80.32 72.81  78.03  72.63 7571 7349 74.08 74.28 72.37 77.93
STS13 88.22 8470 84.18 8348 8573 83.00 85.05 84.18 80.60 76.89
STS14 82.75 78.80 8227  78.00 81.51 8045 80.32 78.8l1 75.59 71.53
STS15 88.26 8745 8796 8566 88.81 88.18 8836 87.55 85.39 88.37
STS16 84.78 8494 8547 80.03 8382 83.66 83.78 8535 78.99 82.70
STS-B 88.05 8538 86.42 8342 8574 8548 83.05 84.84 82.03 84.20
Average 82.19 79.75 8193 7730 80.69 7859 78.63 77.78 76.53 76.98

(e.g., Arguana, SciDocs), rather than the full leader-
board set. The high average is largely driven by
strong gains on retrieval-oriented tasks (e.g., Sci-
DocsRR, STS13-15). Small variations also arise
from the probabilistic nature of evaluation (e.g.,
stochasticity in negative mining and training).
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