
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 2367–2376
November 4-9, 2025 ©2025 Association for Computational Linguistics

Structuring the Unstructured: A Multi-Agent LLM Framework for
Transforming Ambiguous SOPs into Code

Sachin Kumar Giroh*, Pushpendu Ghosh, Aryan Jain, Harshal Paunikar,
Anish Nediyanchath, Aditi Rastogi, Promod Yenigalla

RBS Tech Sciences, Amazon

Abstract

This paper introduces, a three-stage multi agent
LLM framework designed to transform un-
structured and ambiguous Standard Operating
Procedure (SOP) into a structured plan and
an executable code template. Unstructured
SOPs—common across industries such as fi-
nance, retail, and logistics—frequently suffer
from ambiguity, missing information, and in-
consistency, all of which hinder automation.
We address this through: (1) a Clarifier mod-
ule that disambiguate the SOP using large lan-
guage models, internal knowledge base (RAG)
and human-in-the-loop , (2) a Planner that con-
verts refined natural language instructions into
a structured plan of hierarchical task flows
through function (API) tagging, conditional
branches and human-in-the-loop checkpoints,
and (3) an Implementor that generates exe-
cutable code fragments or pseudocode tem-
plates. We evaluate our solution on real-world
SOPs and synthetic variants, demonstrating an
88.4% end-to-end accuracy and a significant
reduction in inconsistency compared to leading
LLM baselines. Ablation studies highlight the
necessity of each component, with performance
dropping notably when modules are removed.
Our findings show that structured multi-agent
pipelines like ours can meaningfully improve
consistency, reduce manual effort, and acceler-
ate automation at scale.

1 Introduction

Standard Operating Procedures (SOPs) play an im-
portant role in helping organizations maintain con-
sistency and reliability in their day-to-day opera-
tions. These documents describe how tasks should
be carried out and are often used to guide employ-
ees across departments. However, in many cases,
SOPs are written as free-form text without follow-
ing a consistent structure. We denote such type of
SOPs as Unstructured SOPs (uSOPs), they typi-
cally include vague language, missing information,

and informal decision points. For example, ref-
erences like “the system” or phrases such as “if
needed” can be unclear. Some steps may not list
the required inputs or expected outcomes. In other
cases, human judgment is expected at key points,
which is hard to replicate consistently. These is-
sues make it difficult to understand the exact steps
involved in a procedure, and they also hinder ef-
forts to automate routine tasks based on these doc-
uments. In large organizations, the impact of such
inefficiencies becomes more noticeable. Many em-
ployees spend a significant amount of time each
week carrying out tasks defined in SOPs.

To address this, we introduce <SYNTACT>: Sys-
tem for Natural-language Task Abstraction and
Code Translation, a three-stage AI framework:
Clarifier, Planner, and Implementor. First, the
Clarifier module resolves ambiguous references,
missing details, and informal logic. Next, Planner
converts the clarified SOP into a structured plan
consisting of hierarchical task flows with typed in-
puts, conditional branches, and human-in-the-loop
checks. Finally, the Implementor module gener-
ates executable Python, API calls, and reasoning
prompts.

2 Related Works

Early efforts to extract process knowledge from
SOPs used handcrafted linguistic rules like T-regex
over dependency parses. These delivered precise
matches for familiar patterns but required heavy
rule engineering and struggled with syntactic varia-
tion (e.g., Quishpi et al., 2020; Bellan et al., 2023).
Supervised learning later reframed the task as sen-
tence or token labeling, using hierarchical neural
networks to identify actions, actors, and control-
flow cues (Qian et al., 2020). With large language
models, the focus shifted from labeling to directly
generating structured outputs. Prompted GPT-style
models, when guided by exemplar demonstrations

2367

and strict schemas, have outperformed traditional
classifiers in extracting procedural structure (Neu-
berger et al., 2024). Hybrid pipelines combine clas-
sical NLP segmentation with GPT-4 to generate
BPMN-style JSON outputs (Licardo et al., 2024),
and multi-agent systems like NL2ProcessOps or-
chestrate LLM stages to emit executable work-
flow code (Monti et al., 2024). These LLM-based
methods leverage broad contextual knowledge but
must address hallucination via schema-constrained
prompting and post-generation checks. More re-
cent frameworks enhance reliability by integrat-
ing LLMs with explicit planning and agentic con-
trol. SOPSTRUCT constructs a DAG representa-
tion of the SOP and validates logical soundness
via a PDDL planner and GPT-4-based semantic
checks (Garg et al., 2025). FLOW-OF-ACTION

embeds SOPs into a multi-agent debugging work-
flow to mitigate hallucination (Pei et al., 2025),
while AGENT-S demonstrates that specialized GPT-
4-o-mini agents can execute end-to-end customer-
service SOPs with high reliability (Kulkarni, 2025).

3 Methodology

We formulate SOP-to-workflow conversion as a
three-stage pipeline that, given an unstructured
SOP description Sraw and an available tool set
T , deterministically produces a Program-Design-
Language (PDL) workflow W . Let H denote
human-in-the-loop inputs and A denote auxiliary
agents (e.g., LLMs, retrieval modules). We instan-
tiate three modules Mc, Ms, Mi:

(1) Clarifier Mc: Produces a context C of criti-
cal question–answer pairs to resolve ambigui-
ties (e.g., missing inputs/outputs, tool usage,
step granularity):

C = Mc

(
Sraw, T | H,A

)
(1)

(2) Planner Ms: Uses C to converts Sraw to a
semi-structured pseudocode Sstruc conform-
ing to grammar G [see Appendix A], ensuring
parseability by parser P :

Sstruc = Ms

(
Sraw, T , C

)
∈ G (2)

(3) Implementor Mi: Parses Sstruc via P and
emits an executable PDL workflow W , where
each node corresponds to a runnable tool in-
vocation or code fragment:

W = Mi

(
Sstruc, T | P

)
(3)

The end-to-end pipeline (Figure 1) is thus:

Sraw
Mc−−−→ C

Ms−−−→ Sstruc
Mi−−−→ W (4)

Finally, the generated workflow W is indexed in
the tool repository as a heterogeneous, non-atomic
component, enabling search and reuse via down-
stream orchestrators or chat interfaces.

3.1 Clarifier Module (Mc)

Unstructured SOPs (Sraw) often omit key de-
tails—inputs, outputs, or tool-specific con-
straints—either due to author oversight or assump-
tions of user intuition. Their free-form style, im-
plicit steps, and reliance on human interpretation
make them ambiguous and non-executable as-is.
Without first resolving these gaps, automated con-
version into structured workflows is infeasible.

The Clarifier Module Mc (Eq. 1) addresses this
challenge by producing a context C of critical ques-
tion–answer (QA) pairs that resolve underspecifi-
cation in the original SOP. It comprises three sub-
agents working in sequence:

(i) Question Generation Agent (M(gen)
c): We

execute the language model k times with a
fixed configuration π, generating multiple can-
didate clarification questions independently.
This sampling strategy increases coverage and
robustness, accounting for the stochasticity of
generative models and improves consistency
in the generated questions.

(ii) Question Filtering Agent (M(fil)
c): The ag-

gregated question set is deduplicated and clus-
tered. First, cosine similarity over sentence
embeddings is used to identify near-duplicates
(above a predefined threshold(γ)). Clustering
is performed using the union-find algorithm.
For each cluster of n questions with embed-
dings e1, . . . , en, a representative question qi
is selected based on one of two heuristics:
CentroidScore(qi) = 1

n−1

∑
j ̸=i cos(ei, ej)

or by selecting the longest-form question.
Each remaining question is then assigned a
relevance score with respect to the SOP-to-
workflow conversion task. Only questions ex-
ceeding a threshold(κ) are retained and passed
to the answering agent.

(iii) Answering Agent (M(ans)
c): The fil-

tered questions are passed to a Retrieval-
Augmented Generation (RAG) system that

2368

Structured SOP (Sstruc)

Mi

Generates the backend
executable script for each
step in Sstruc to output a
PDL workflow.

Ms

Plans the tools needed,
designs input schema and
generates an intermediate
python code to generate
Sstruc

Implementation (W)

Mc

Generates a set of relevant
questions and gathers
answers using RAG/Human-
in-the-loop or takes realistic
assumptions.

Unstructured SOP (Sraw)

Context (C)

T T

Human

T
LLM LLM LLMRAG

Tools/API repository (AWS
Kendra)

T

New Tools
Requirement

Figure 1: The end-to-end pipeline consists of three major modules: the Clarifier (Mc), the Planner (Ms), and the
Implementor (Mi). Each of them has access to tools repository T .

queries internal tool descriptions and docu-
mentation. If an answer cannot be retrieved,
answering agent is used to either (a) make a
justifiable assumption, or (b) flag the question
for human input H, ensuring coverage of all
critical gaps.

The output context, C =

M(ans)
c

(
M(fil)

c

(
M(gen)

c (Sraw, T)
)
, T ,H,A

)
,

produced by the Mc is crucial for the next stage:
it provides the necessary disambiguation and
semantic grounding required by the Ms, which
uses it to convert the raw SOP into a structured
intermediate representation Sstruc.

3.2 Planner Module (Ms)

The Planner takes an unstructured SOP Sraw and
produces a structured pseudocode using 4 phases:
(1) API Planning, (2) Input Schema Planning, (3)
Code Skeleton Planning and (4) Code Conversion
Agent

1. API Planning We first identify a candidate
list of LLM-invoked tasks Λ = {a1, . . . , an} from
Sraw. For each task ai, the module queries the tool
repository T = {τ1, . . . , τm} to find any existing
implementation:

M(Λ) ≡ {ai match−−−−→ (τj |∆i) or ⊥ (no match)}

If τj partially covers ai, we extract the missing
subtasks ∆i and re-prompt the LLM to check if
any other tool completes the pending task. Tasks
with no match (⊥) are tested for direct LLM exe-
cution; those that fail are flagged for manual API
development.

2. Input Schema Planning This phase follows
a two-step process. First, the LLM—using a task-
and-critic agentic system—is prompted to extract
all base-level variables {pi} that are not derived
from any tool or transformation. These represent
the core inputs needed to execute the SOP. Second,
each variable is classified as either mandatory or
optional, recognizing that such classifications may
vary across SOP instances. For optional parameters,
the LLM proposes realistic default values to ensure
completeness.

The outcome is a minimal and well-typed param-
eter set: P = { pk} required to invoke the SOP.

3. Code Skeleton Planning We select Python for
skeleton generation, exploiting its ubiquity in LLM
pretraining and strong model proficiency (Chen
et al., 2021). The Code Planning agent ingests(
Sraw, C, M(Λ),P

)
and prompts an LLM to pro-

duce a Python script that invokes each tool t ∈ T
according to its API signature. If a required capa-
bility—such as ad hoc reasoning or image-based
inference—is not expressible via static code, the
agent instead emits calls to two fallback primitives,
ask_llm(task, context) and ask_vqa(task,
image_url).

A verification sub-agent then iteratively reviews
the generated code to ensure that every step in Sraw
is represented, that all tool calls conform to their
documented APIs, and that no tool τj is incorrectly
assumed to perform subtasks ∆i outside its specifi-
cation.

Despite this review and use of best LLM mod-
els, many tools return nested, heterogeneous ob-
jects (e.g. a Ticket with List[Attachment] items
embedding Mail or Image objects), which induce

2369

hallucinations and type mismatches. This limita-
tion motivates our subsequent decomposition into
a type-annotated PDL grammar, providing strict
enforcement of data structures and call semantics.

4. Code Conversion Agent We utilise the Code
Conversion Agent to transform the Python code
into structured pseudocode Sstruc that strictly ad-
heres to grammar G. This conversion removes
the need for strict type consistency (e.g., explicit
casts, null checks, as these can be correctly han-
dled in a later stage) and isolates each action into
atomic steps—either a single API call or a one-line
statement (Python execution step, Miscellaneous
step or LLM block step). By construction, Sstruc
is fully parseable, and each line in the structured
pseudocode is free of complex control flow, greatly
simplifying subsequent workflow generation.

3.3 Implementor Module (Mi)

Execution Context: While translating the
structured SOP Sstruc into a PDL, we maintain an
execution context ϵi that accumulates all variables
(with their types) defined up to line i. Mathemati-
cally:

ϵi =

i⋃

k=1

{vk}, vk = (ϕ(sk, nk), δk), ϵ0 = ∅,

where each entry vk, comprises of a unique iden-
tifier ϕ(sk, nk) (built using JSON-Path style from
the PDL statement index sk and the local variable
name nk), its corresponding data class type δk.

Equivalently, one can define ϵi recursively: ϵi =
ϵi−1 ∪ {vi}, ϵ0 = ∅, so that the execution con-
text grows monotonically as the line number i in-
creases. This enriched context ϵi enables precise
type-aware reference resolution in the generated
PDL.

3.3.1 Implementation Pipeline Overview
Building on the execution context {ϵi}, the Imple-
mentor takes the structured SOP Sstruc and parses
it using the grammar and does line-by-line process-
ing of each line in Sstruc.

Parsing and Block Extraction A deter-
ministic parser P scans Sstruc to recognize
looping constructs (FOR), conditional branches
(IF-TRUE/IF-FALSE), flat execution lines, and
wildcard commands (e.g. CONTINUE, BREAK,
RETURN).

Execution statement Translation Each line
Li tagged as execution line is classified into one
of three types and translated using only the prior
context ϵi−1:

(1) API Call: Since Ms specifies the tool, iden-
tifying the API τj ∈ T for line Li is straight-
forward. The main challenge lies in generat-
ing the correct arguments to invoke τj . Let
τj take nj arguments with expected input
types ∆j = (δj,1, δj,2, . . . , δj,nj). The LLM
must construct the argument vector Λi =
(argi,1, . . . , argi,nj

), where each argi,k =
fi,k(ϵi−1 | τj) ∈ δj,k for 1 ≤ k ≤ nj , en-
suring that Λi ∈ ∆j .

(2) Inline Code: A Python snippet ρi(ϵi−1) is
generated to perform the described transfor-
mation, and its output type τi is inferred from
the expression.

(3) LLM Step: The Auto-Prompting submodule,
Auto Prompt, composes a dynamic prompt
with guardrails and an output schema based on
the step description. A relevant variable from
ϵi−1 is selected as the action object, serving
as the input argument during inference.

In all cases, the step’s resulting output vi is saved
in ϵi.

Control Structures In FOR blocks, the loop’s
iterable object (either a List or Set) is detected,
and the loop variable is added to ϵi with a special
tag <iterator_d> where d is an integer represent-
ing the depth of the loop, alongside the identifier
of the iterable variable.

For an IF block, the module checks ϵi−1 for
an existing Boolean variable to serve as the
branch condition; if none is found, it synthesizes
a predicate ψ = gi

(
ϵi−1

)
and records it in ϵi.

This Boolean—whether reused or newly gener-
ated—then drives the true/false branch selection.

3.3.2 Deterministic PDL Generation
Once all lines and blocks are processed, the Im-
plementor uses a deterministic logic to generate
a PDL workflow. This PDL forms the executable
backbone for downstream code interpretation.

4 Experiments

4.1 Dataset
We use the SOP bench dataset (Nandi et al., 2025)
which contains SOPs for over 1,800 tasks across 10

2370

industrial domains, each with APIs, tool interfaces,
and human-validated test cases. The framework
used for the generation of these SOPs is designed
to replicate real-world scenarios with an average
of 181 tasks, 11 tools and 132 tokens per SOP, and
therefore serves as a robust dataset for evaluating
our SYNTACT solution.

To further enrich the data, we include synthetic
variations of some of the real-world SOPs through
random sentence removal and shortening via LLMs.
We limit the number of lines removed to a maxi-
mum of 5% of the original length, ensuring that the
new SOP remains meaningful.

To quantify the ambiguity introduced in a SOP,
we come up with a noise factor which refers to the
proportion of SOP steps that are rendered ambigu-
ous, incomplete, or entirely removed by an LLM.
In this paper, Claude Sonnet 3.5 was tasked to add
noise, i.e. eliminate steps or shorten them based
on criticality, to a randomly selected subset of SOP
steps. The noise factor (n) is then defined as k/|S|
where |S| denotes the total number of steps in the
SOP.

Example of corruption transformation:

• Original Step: Create a SIM Ticket describ-
ing the issue for the ATP code “Retail”, as-
signee from the mail, set the severity to
“High”.

• Modified Step: Create a SIM Ticket describ-
ing the issue.

4.2 Benchmarking and Ablation
We evaluate the full three-stage pipeline against
five alternative configurations:

1. Vanilla LLM: This configuration involves
one-shot prompting of state-of-the-art LLMs
(Claude Haiku 3.5, Sonnet 3.5 and Sonnet
3.7) to directly translate the raw SOP Sraw
into: (a) executable Python code, which is
then evaluated; (b) an intermediate repre-
sentation W , which is deterministically con-
verted into PDL; and (c) PDL, generated in
a single step using the PDL grammar. In
this setup, we adopt a task-critic-improver
approach, requiring three calls to complete
the task.

2. Reasoning-LLM: In this configuration,
Claude Sonnet 3.7 is prompted using a
dynamic chain-of-thought strategy that in-
terleaves planning and execution. The

reasoning-token budget is set to k × |I|, en-
abling more extensive multi-step reasoning.

3. <SYNTACT>\Mc: Ablation of the Clarifier
stage; the Planner directly processes Sraw,
bypassing the context creation step.

4. <SYNTACT>\Ms: Ablation of the Planner
module; Clarifier outputs, along with Sraw,
are fed into a one-shot prompt, which con-
verts them into pseudocode following the
grammar G.

5. <SYNTACT>\Mi: Ablation of the Implemen-
tor module; the pipeline is truncated after
the structured pseudocode step, and an LLM
is prompted to convert the structured pseu-
docode into PDL without invoking the Im-
plementor.

4.3 Ground-Truth Creation Methodology

For any task T and input I , we run the state-of-the-
art model, Sonnet 3.7, k times, using a reasoning
token limit of 4 × |It|, with temperature 1.0. We
found that any agent can emit either of these 2 types
of output:

(1) Single unique answer: We embed each of
the k outputs using Cohere embeddings and per-
form clustering. Clusters with frequency ≥ αk, for
some 0 < α < 1, are retained. From each selected
cluster, we choose the answer closest to the cluster
centroid as the ground-truth.

(2) Multi-answer selection: Let each model
run produce a set oi = {ai,1, ai,2, . . . , ai,|oi|} for
1 ≤ i ≤ k. We define the candidate universe
A =

⋃k
i=1 oi, and for each element a ∈ A, com-

pute its support f(a) = |{i : a ∈ oi}|. The
ground-truth set G is then defined as G = {a ∈
A : f(a) ≥ αk}, i.e., all options that appear in
at least α fraction of the runs. If a fixed-size out-
put of m elements is required, we rank candidates
in G by support f(a) (breaking ties using average
embedding-distance to the runs where a appears)
and select the top m candidates.

End-to-End PDL ground truth: For the end-
to-end PDL ground truth creation, we manually
verified the 4 PDL and corrected them if needed
to get the perfect PDL considered as ground truths.
Additionally we created T testcases designed to
cover every line and execution path of the work-
flow.

2371

Table 1: End-to-End Performance comparison

Method Accuracy Time (s)

Haiku 3.51 0.065 ± 0.051 33.1 ± 7.3
Sonnet 3.51 0.178 ± 0.088 54.6 ± 9.8
Sonnet 3.71 0.161 ± 0.090 78.5 ± 13
Sonnet 3.7 (Reasoning)1 0.208 ± 0.102 212 ± 46
<SYNTACT> \Mc 0.801 ± 0.092 715 ± 120
<SYNTACT> \Ms 0.774 ± 0.117 601 ± 98
<SYNTACT> \Mi 0.481 ± 0.136 530 ± 96

<SYNTACT> [Proposed] 0.884 ± 0.096 929 ± 148
1Experimental setup for the vanilla LLM tests follows the
task-critic-improver approach, involving 3 LLM calls.

Figure 2: Impact of noise on accuracy and the role of
the clarifier module, in enhancing performance under
higher noise SOPs.

5 Results and Discussions

Our experiments demonstrate that the proposed
SYNTACT pipeline substantially outperforms all
baseline and ablation configurations in end-to-end
workflow synthesis. As shown in Table 1, SYN-
TACT achieves the highest test accuracy (0.884)
with an inconsistency score of 0.096, clearly outper-
forming vanilla prompting strategies that directly
invoke LLMs like Haiku 3.5, or Sonnet 3.5/3.7
(with or without reasoning). While Sonnet 3.7 with
reasoning (dynamic chain-of-thought) improves
over its non-reasoning variant (0.208 vs. 0.161),
it remains far below SYNTACT in both accuracy
and robustness. This shows that the conversion
of real SOPs is a complex task and cannot be re-
liably accomplished using a single prompt or the
task-critic-improver setup.

Among the ablations, removing the Implementor
module (SYNTACT \Mi) leads to the most severe
performance drop (0.884 → 0.481), confirming that
direct LLM-based PDL synthesis from structured
pseudocode is error-prone without programmatic
grounding like type casting, execution context man-
agement, etc. This highlights the critical role of

planning and building the code incrementally in
a complex and ambiguous problem space. Re-
moving the Clarifier (SYNTACT \Mc) or Planner
(SYNTACT \Ms) also leads to substantial accuracy
degradation, underscoring the necessity of both in-
teractive disambiguation and intermediate planning
steps. The robustness of the Clarifier module is
further validated through controlled noise experi-
ments (Figure 2). When injected noise corrupts a
perfect SOP, systems without clarification degrade
significantly—62% accuracy at a noise rate of 0.25.
In contrast, our full pipeline with the Clarifier mod-
ule maintains much higher robustness, reaching
76% at the same error level. Task-level evalua-
tions (Table 2) reinforce the rationale behind se-
lective model usage. Although Sonnet 3.7 with
reasoning consistently achieves the highest preci-
sion and recall across nearly all subtasks, it is com-
putationally prohibitive for routine use. Instead,
we find that Sonnet 3.5 without reasoning offers a
favorable trade-off—achieving near-optimal perfor-
mance (e.g., API Planning: 0.95/0.92) on complex
steps while being significantly faster. For simpler
or high-accuracy deterministic tasks—such as For
loop implementation, If-condition filling, or Exe-
cution LLM filling—Haiku suffice with accuracies
nearing 0.93–0.99. Notably, Clarifier tasks (which
are highly ambiguous and open-ended), like ques-
tion generation and filtering, benefit most from
reasoning-based models, with Sonnet 3.7 with rea-
soning boosting precision and recall. We thereby
choose different LLM models for each subcom-
ponent based on the results, balancing time and
performance. Overall, these findings validate our
modular approach and adaptive model selection
strategy, which balances accuracy and cost to maxi-
mize effectiveness across both clean and noisy SOP
scenarios.

Conclusion

This paper introduced <SYNTACT>, a novel three-
stage framework that transforms ambiguous
SOP narratives into executable code templates.
Through our evaluation on real-world and syn-
thetic SOPs, we demonstrated that our modular ap-
proach—comprising the Clarifier for disambigua-
tion, the Planner for organizing instructions, and
the Implementor for generating code. Beyond im-
mediate technical achievements, <SYNTACT> ad-
dresses a crucial organizational challenge by en-
abling more consistent execution across teams, re-

2372

Table 2: Performance scores (Precision/Accuracy and Recall/Consistency) of various LLMs- Haiku, and different
versions of Sonnet—on key subtasks grouped under the Clarifier (Mc), Planner (Ms), and Implementor (Mi)
modules. Sonnet 3.7# indicates Sonnet 3.7 with reasoning tokens of up to 4× input tokens.

Task Type Haiku Sonnet 3.5 Sonnet 3.7 Sonnet 3.7#

M1 M2 M1 M2 M1 M2 M1 M2

Clarifier Module (Mc)

Question Generation Multi 0.53 0.4 0.85 0.77 0.81 0.78 0.89 0.85
Question Filtering Multi 0.60 0.56 0.70 0.51 0.69 0.63 0.70 0.73
Answer Generation-RAG Single - - - - - - - -
Answer Generation Single 0.82 0.07 0.91 0.09 0.90 0.09 0.92 0.10

Planner Module (Ms)

API Planning Multi 0.88 0.90 0.95 0.92 0.95 0.93 0.94 0.98
Input Schema Planning Single 0.80 0.12 0.85 0.10 0.86 0.12 0.81 0.13
Code Skeleton Planning Single 0.72 0.10 0.85 0.10 0.85 0.10 0.87 0.11
Code Conversion Single 0.89 0.05 0.94 0.05 0.93 0.04 0.93 0.05

Implementor Module (Mi)

Execution API Single 0.84 0.08 0.91 0.07 0.92 0.08 0.89 0.11
Execution Code Single 0.74 0.12 0.85 0.15 0.86 0.14 0.87 0.16
Execution LLM2 Single 0.93 0.05 0.96 0.05 0.96 0.06 0.96 0.08
For Loop Single 0.97 0.04 0.98 0.04 0.99 0.04 0.99 0.05
If Condition Generation Single 0.94 0.04 0.97 0.04 0.97 0.04 0.96 0.05

Note: For Multi-answer tasks, M1 is Precision and M2 is Recall, while for single-answer tasks, M1 is Accuracy and M2 is
Inconsistency.
2For Execution LLM, the metrics is only for generating the right task description and choosing the correct JSON path for the
inference input variable. It does not include the metrics for auto prompting.

ducing barriers to automation, and providing a
foundation for scaling process automation initia-
tives across diverse domains.

Limitations

While <SYNTACT> demonstrates strong perfor-
mance in SOP-to-code translation, several limita-
tions remain. First, we observe a decline in perfor-
mance as the length of input SOPs increases, par-
ticularly beyond 100 lines. This is primarily due to
context compression and increased ambiguity prop-
agation. Moreover, LLMs are typically trained on
code generation datasets that contain a majority of
examples with fewer than 50 lines of code (LOC),
limiting their generalization to long-form genera-
tion. As a potential solution, future work will ex-
plore hierarchical SOP decomposition, where long
procedures are first segmented into modular, inde-
pendently processable sub-SOPs that are later re-
assembled into a coherent plan. Second, the current
system is limited to purely textual SOPs and can-
not yet handle multimodal instructions that include
images, weblinks, tables, audio, or video—despite
their prevalence in real-world industrial SOPs. Fi-
nally, although <SYNTACT> achieves high accuracy,
it requires multiple LLM invocations across its
multi-agent pipeline, resulting in high computa-

tional cost and latency. Reducing this overhead
through model distillation, caching, or speculative
execution is a promising direction for future work.

Acknowledgements

We thank the authors of SOP-Bench: Complex In-
dustrial SOPs for Evaluating LLM Agents (Nandi
et al., 2025) for their benchmark and valuable in-
sights, which supported the evaluation and improve-
ment of our proposed methodology.

References
Patrizio Bellan, Mauro Dragoni, Chiara Ghidini, Han

van der Aa, and Simone Paolo Ponzetto. 2023. Pro-
cess extraction from text: Benchmarking the state
of the art and paving the way for future challenges.
Preprint, arXiv:2110.03754.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

Deepeka Garg, Sihan Zeng, Sumitra Ganesh, and
Leo Ardon. 2025. Generating structured plan rep-

2373

https://arxiv.org/abs/2110.03754
https://arxiv.org/abs/2110.03754
https://arxiv.org/abs/2110.03754
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2504.00029

resentation of procedures with llms. Preprint,
arXiv:2504.00029.

Mandar Kulkarni. 2025. Agent-s: Llm agentic workflow
to automate standard operating procedures. Preprint,
arXiv:2503.15520.

Josip Tomo Licardo, Nikola Tanković, and Darko
Etinger. 2024. A method for extracting bpmn models
from textual descriptions using natural language pro-
cessing. Procedia Computer Science, 239:483–490.
CENTERIS – International Conference on ENTER-
prise Information Systems / ProjMAN - International
Conference on Project MANagement / HCist - In-
ternational Conference on Health and Social Care
Information Systems and Technologies 2023.

Flavia Monti, Francesco Leotta, Juergen Mangler,
Massimo Mecella, and Stefanie Rinderle-Ma. 2024.
NL2ProcessOps: Towards LLM-guided Code Gen-
eration for Process Execution. In Business Process
Management Forum - BPM 2024 Forum, Proceed-
ings, volume 526 of Lecture Notes in Business Infor-
mation Processing, pages 127–143. Springer.

Subhrangshu Nandi, Arghya Datta, Nikhil Vichare, In-
dranil Bhattacharya, Huzefa Raja, Jing Xu, Shayan
Ray, Giuseppe Carenini, Abhi Srivastava, Aaron
Chan, Man Ho Woo, Amar Kandola, Brandon
Theresa, and Francesco Carbone. 2025. Sop-bench:
Complex industrial sops for evaluating llm agents.
Preprint, arXiv:2506.08119.

Julian Neuberger, Lars Ackermann, Han van der Aa, and
Stefan Jablonski. 2024. A universal prompting strat-
egy for extracting process model information from
natural language text using large language models.
Preprint, arXiv:2407.18540.

Changhua Pei, Zexin Wang, Fengrui Liu, Zeyan Li,
Yang Liu, Xiao He, Rong Kang, Tieying Zhang,
Jianjun Chen, Jianhui Li, Gaogang Xie, and Dan
Pei. 2025. Flow-of-action: Sop enhanced llm-based
multi-agent system for root cause analysis. Preprint,
arXiv:2502.08224.

Chen Qian, Lijie Wen, Akhil Kumar, Leilei Lin,
Li Lin, Zan Zong, Shuang Li, and Jianmin Wang.
2020. An approach for process model extrac-
tion by multi-grained text classification. Preprint,
arXiv:1906.02127.

Luis Quishpi, Josep Carmona, and Lluís Padró. 2020.
Extracting annotations from textual descriptions of
processes. In Dirk Fahland, Chiara Ghidini, Jörg
Becker, and Marlon Dumas, editors, Business Pro-
cess Management. BPM 2020, volume 12168 of
Lecture Notes in Computer Science, pages 184–201.
Springer, Cham.

A Grammar Definition (G)
The following grammar (G) is defined using
Backus–Naur Form (BNF) and specifies the syn-
tax of our structured pseudocode language. This

formal grammar captures common procedural con-
structs such as execution steps, conditionals, loops,
list operations, input gathering, and return state-
ments. Each script is composed of a sequence of
steps, and indentation is used to express nested
control structures. The grammar ensures that the
pseudocode remains both human-readable and pro-
grammatically parsable, supporting reliable down-
stream interpretation and translation.

<pseudocode > : : = < s t e p > (" \ n " < s t e p >) *

< s t e p > : : = < e x e c u t i o n _ s t e p >
| < i f _ s t e p >
| < f o r _ s t e p >
| < l i s t _ c r e a t i o n >
| < l i s t _ a d d i t i o n >
| < i n p u t _ s t e p >
| < r e t u r n _ s t e p >

< e x e c u t i o n _ s t e p > : : = "EXECUTION : " < d e s c r i p t i o n >

< i f _ s t e p > : : = " IF : "< c o n d i t i o n > " \ n "
< i n d e n t > "TRUE : \ n " <

i n d e n t e d _ s t e p s > " \ n "
< i n d e n t > "FALSE : \ n " <

i n d e n t e d _ s t e p s >

< f o r _ s t e p > : : = "FOR: " < i t e r a t o r > " \ n " <
i n d e n t e d _ s t e p s >

< l i s t _ c r e a t i o n > : : = "CREATE_EMPTY_LIST : " < l i s t > =
L i s t

< l i s t _ a d d i t i o n > : : = "ADD_TO_LIST : " < l i s t > . add (<
o b j e c t >)

< i n p u t _ s t e p > : : = "INPUT : " <var > = < i n p u t _ d e s c >

< r e t u r n _ s t e p > : : = "RETURN: " (< d e s c r i p t i o n > | " ")

< i n d e n t e d _ s t e p s > : : = < i n d e n t > (< s t e p > | " p a s s ") (" \ n"<
i n d e n t >< s t e p >) *

< i n d e n t > : : = " \ t " | " "

< d e s c r i p t i o n > : : = < t e x t >
< c o n d i t i o n > : : = < t e x t >
< i t e r a t o r > : : = < t e x t >
< i n p u t _ d e s c > : : = < t e x t >
< l i s t > : : = < i d e n t i f i e r >
< o b j e c t > : : = < t e x t >
<var > : : = < i d e n t i f i e r >

< i d e n t i f i e r > : : = < l e t t e r > (< l e t t e r >| < d i g i t > | " _ ") *
< t e x t > : : = < p r i n t a b l e >+

Table 3: Pseudocode Grammar for Structured SOP For-
mat

B Evaluation Protocol

We evaluate generated workflows at two levels:

1. PDL-Level Metrics. Let T be the number
of curated testcases, and let a(r)i ∈ {0, 1}
denote the outcome of testcase i in run r,
where k is the total number of runs. The Test

2374

https://arxiv.org/abs/2504.00029
https://arxiv.org/abs/2503.15520
https://arxiv.org/abs/2503.15520
https://doi.org/10.1016/j.procs.2024.06.196
https://doi.org/10.1016/j.procs.2024.06.196
https://doi.org/10.1016/j.procs.2024.06.196
https://doi.org/10.1007/978-3-031-70418-5_8
https://doi.org/10.1007/978-3-031-70418-5_8
https://arxiv.org/abs/2506.08119
https://arxiv.org/abs/2506.08119
https://arxiv.org/abs/2407.18540
https://arxiv.org/abs/2407.18540
https://arxiv.org/abs/2407.18540
https://arxiv.org/abs/2502.08224
https://arxiv.org/abs/2502.08224
https://arxiv.org/abs/1906.02127
https://arxiv.org/abs/1906.02127
https://doi.org/10.1007/978-3-030-58666-9_11
https://doi.org/10.1007/978-3-030-58666-9_11

Run Accuracy for run r is defined as:

α(r) =
1

T

T∑

i=1

a
(r)
i .

Across the k runs, we calculate the Average
Accuracy and its standard deviation as:

ᾱ =
1

k

k∑

r=1

α(r),

std(α(1), . . . , α(k)) =

√√√√ 1

k

k∑

r=1

(α(r) − ᾱ)
2
.

(5)

2. Task-Level Metrics. We distinguish
between single-answer (binary) and
multi-answer tasks. For single-answer tasks,
we report accuracy (mean and standard
deviation); for multi-answer tasks, we
report precision and recall. Let G and
Ĝ denote the reference and predicted
answer sets. All metrics are computed via
a matching operator Θ(G, Ĝ), which may
involve fuzzy matching, LLM-based scoring,
CODEBLEU, or other task-specific methods.
[See Appendix C].

To assess the Clarifier module, we follow a struc-
tured evaluation using both synthetic SOPs and
the SOP-Bench dataset (Nandi et al., 2025). A set
of gold-standard SOPs—complete and unambigu-
ous—are created via manual curation and LLM
assistance, and augmented with SOP-Bench exam-
ples. Controlled ambiguities are then injected into
specific steps, and for each, corresponding ground-
truth clarification questions are crafted. These ques-
tions represent the minimal and necessary informa-
tion needed to resolve the ambiguity.

We define Noise as the fraction of SOP steps
made ambiguous. The Clarifier’s output is com-
pared against the ground-truth using precision and
recall. We assume gold SOPs are ambiguity-free
(Clarifier should generate no questions), and that
inserted ambiguities are isolated and resolvable.
This setup ensures that the evaluation reflects the
Clarifier’s true ability to detect and resolve missing
or unclear information in procedural instructions.

C Θ: Ground Truth Matching Operator

The Θ operator defines how predicted outputs are
evaluated against ground truth across different task
types. Its instantiation varies according to the na-
ture of the task:

• Code-Level Tasks: For tasks such as Exe-
cution Code Implementation, Code Writing,
and Code Conversion, Θ is instantiated as
CODEBLEU, a metric that captures syntactic
correctness, token-level overlap, and seman-
tic equivalence between the predicted and
reference code.

• Variable Identification Tasks: In tasks
like Execution API Implementation, Execu-
tion LLM Implementation, For Loop Imple-
mentation, and If Condition Implementation,
where the objective is to identify the cor-
rect jsonPath reference from the execution
context, Θ is implemented as a strict exact-
match function.

• High-Level Planning Tasks: For more ab-
stract planning tasks—including Question
Generation, API Planning, Input Schema
Planning, and Code Skeleton Planning—Θ
is defined using LLM-based relevance scor-
ing. This may be optionally augmented with
sentence embeddings and cosine similarity
to assess semantic alignment and coverage.

D Hyperparameters

Table 4: Hyperparameters for each sub-module

Task Model Hyperparameters

Clarifier Module (Mc)
Question Generation Sonnet 3.5 T = 0.5, π, k = 10,
Question Filtering* Sonnet 3.5 T = 0.5, π, γ = 0.75, κ = 0.7
Answer Generation† Sonnet 3.5 T = 0.5, π

Planner Module (Ms)
API Planning Sonnet 3.5 T = 0.7, π
Input Schema Planning Sonnet 3.5 T = 0.7, π
Code Skeleton Planning Sonnet 3.5 T = 0.7, π
Code Conversion Sonnet 3.5 T = 0.5, π

Implementor Module (Mi)
Execution API Sonnet 3.5 T = 0.5, π
Execution Code Sonnet 3.5 T = 0.7, π
Execution LLM Haiku T = 0.5, π
For Loop Haiku T = 0.5, π
If Condition Generation Haiku T = 0.5, π

Note: Let the defaults be denoted by π = (Topp = 0.999, Topk = 200).
* Cohere.embed-english-v3
†Internal Knowledge Database (RAG) is used)

E Clarification Questions for Movie
Classification SOP

Movie Classification SOP Extract the movie
name from ticket description. Search the movie
in IMDb and get the movie plot. Also get the
IMDb rating. Similarly, search the movie on Rot-
ten Tomatoes and get the plot and rating. Analyse

2375

Structured SOP (sSOP)

Implementer Agent
Converts/generates the backend
executable script for each step in the
Recipe sSOP.

sSOP with implementation

1. Identify the correct API
2. Generate the script for each

argument parameters using the
execution context

API/ML step

function_xyz (
 param_1 = ,
 param_2 = ,
 …
)

Uses variables in execution context
to generate a python script
implement the step.

Python Script Step

def step(execution_context):

Generate a prompt to perform the
following task. This prompt will be
passed on to an LLM during inference

LLM block step

Steps can be either:
1. IF block: Then the generated

script is expected to return a
boolean

2. FOR block: Then the generated
script is expected to return a
iterator object

3. General block: Performs few
operations to return a complex
object like Mail, PODetails, etc

Misc. special steps

Wait till Trigger

Return/Terminate

Timer with Alarm

Approval Halt

…

Task:
Input:

Output:

Examples:

Guidelines:

Artificial
dataset
creation

Execution
Context

Execution
Context

Execution
Context

Auto Prompt
Automatic prompt generation and
improvement module

Step Classification
Classifies the step into one of the
categories based on which the
corresponding agent work.

Figure 3: The working of the Implementor module.

the movie plot from both websites and classify the
movie as kid friendly or not kid friendly. If the
view count of the movie’s trailer on YouTube is
greater than 10 million, then the case needs human
review. If IMDb rating is greater than 8.5 and Rot-
ten Tomatoes rating is greater than 60%, then the
case needs human review. If either the IMDb or
Rotten Tomatoes rating is not found, then also con-
sider the case for human review. Else, consider the
movie does not need human review. If the movie is
classified as human review needed, then assign a hu-
man to validate the classification. Else if the movie
is classified as human review not needed, proceed
as follows: If both IMDb and Rotten Tomatoes in-
dicate the movie is kid friendly, update the ticket
with a comment stating it is kid friendly. If both
indicate the movie is not kid friendly, update the
ticket with a comment stating it is not kid friendly.
Else, ask a human to classify the movie plot and
update the ticket with the classification.

Movie Classification SOP (Ambiguous) Get
movie plot and rating. From Rotten Tomatoes,
get plot and rating. Classify as kid friendly or
not. Check the view count of the movie’s trailer in
Youtube and Decide if case needs human review. If
IMDb and RT movie ratings are high, then send for
human review. If either of IMDb or RT rating is not
found, then also consider the case. Else consider
movie does not need human review. If the movie is
classified as human review needed, then ask a hu-

man to validate the classification. Else if the movie
is classified as human review not needed and. If
both (IMDb and RT) suggest it to be kid friendly,
update the ticket with a comment mentioning it is
kid friendly. If both suggest it is not kid friendly,
update the ticket with a comment. Else ask human
to classify and update ticket.

Clarification Questions

• From which field in the ticket details should
the movie name be extracted?

• What would be considered a significant view
count threshold that would trigger human re-
view for a movie trailer?

• What rating threshold should be considered as
’high’ for IMDb and Rotten Tomatoes ratings
to trigger human review?

• When a human reviews the movie classifica-
tion, what are the possible values they can
provide in response? (For example: ’Kid
Friendly’/’Not Kid Friendly’ or some other
format

2376

