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Abstract

Embedding-based retrieval aims to learn a
shared semantic representation space for both
queries and items, enabling efficient and effec-
tive item retrieval through approximate near-
est neighbor (ANN) algorithms. In current
industrial practice, retrieval systems typically
retrieve a fixed number of items for each
query. However, this fixed-size retrieval often
results in insufficient recall for head queries and
low precision for tail queries. This limitation
largely stems from the dominance of frequen-
tist approaches in loss function design, which
fail to address this challenge in industry. In
this paper, we propose a novel probabilistic
Embedding-Based Retrieval (pEBR) frame-
work. Our method models the item distribu-
tion conditioned on each query, enabling the
use of a dynamic cosine similarity threshold de-
rived from the cumulative distribution function
(CDF) of the probabilistic model. Experimen-
tal results demonstrate that pEBR significantly
improves both retrieval precision and recall.
Furthermore, ablation studies reveal that the
probabilistic formulation effectively captures
the inherent differences between head-to-tail
queries.

1 Introduction

Embedding retrieval is the core technology in
search (Liu et al., 2021; Zhao et al., 2024; Bao
et al., 2024) and recommendation(Covington et al.,
2016; Li et al., 2020; Xing et al., 2025). The classic
approaches are DSSM-like models (Huang et al.,
2013; Zhang et al., 2020; Qiu et al., 2022; Li et al.,
2021; Wang et al., 2023; Bao et al., 2024) etc.,
where the query and item are embedded into dense
vectors in the same semantic space. The relevant
items are then retrieved by calculating the cosine
similarity between the query vectors and the item
vectors.

† Corresponding authors.

However, we notice that existing works on
embedding-based retrieval do not pay enough atten-
tion to the model training algorithm, especially the
loss function, which in practice causes some tricky
problems as follows: 1) Heuristic and subopti-
mal retrieval cutoffs. Existing embedding-based
retrieval systems rely on heuristic retrieval cutoffs,
such as a fixed number of items or a fixed cosine
similarity threshold. This leads to imbalanced re-
trieval performance: head queries suffer from low
recall, while tail queries suffer from low precision.
For instance, "iPhone 16" is a very specific query
with few relevant items, while "gift" is broad, cov-
ering many products across categories. Thus, one
can easily find that retrieving a fixed number of
items would be suboptimal here, since if the num-
ber is small we will miss many relevant products
for "gift" and if the number is large we will intro-
duce many irrelevant items for "iPhone 16". On
the other hand, it is also suboptimal to use a fixed
cosine threshold, since all the existing model train-
ing algorithms have never taken that into account
in their design. 2) Ignoring Query Popularity
Bias. Current two-tower training algorithms treat
all queries equally and lack a probabilistic formu-
lation to model item relevance distributions. As
a result, they fail to account for query popularity
differences (head vs. tail queries) and struggle to
generalize, especially for long-tail queries with lim-
ited training data.

Before we introduce our new approach to ad-
dress the above shortcomings, let us first review pre-
vious related works: probabilistic models, or more
precisely probabilistic graphical models, which
have a long history of success in machine learn-
ing (Murphy, 2012; Koller and Friedman, 2009).
Several models have significantly changed the land-
scape of machine learning in recent decades, such
as the Baum-Welch algorithm for training (McCal-
lum, 2004), LDA (Blei et al., 2003), and probabilis-
tic modeling with neural network (Nguyen et al.,
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2017; Malinin, 2019; Kohl et al., 2018).
Inspired by the previous successes of proba-

bilistic spirits, here we propose a redesign of the
embedding-based retrieval to address the above
challenges by using probabilistic modeling. Our
contributions and the overview of the following
sections can be summarized as follows.

• We first formalize the conventional two-tower
model with a frequentist perspective and sys-
tematically analyze its inherent limitations.

• We then propose two novel probabilistic meth-
ods: one based on maximum likelihood esti-
mation and another based on contrastive esti-
mation; the latter includes two instances, Exp-
NCE and BetaNCE.

• We conduct both offline and online experi-
ments to demonstrate the effectiveness of our
model, and perform ablation studies to help
understand how the model works.

2 Problem and Limitations

In this section, we first formulate the embedding
retrieval problem based on a two-tower architecture.
Next, we review the existing frequentist approaches
and present limitations.

2.1 Problem Definition and Notations

The embedding retrieval model is typically com-
posed of a query (or a user) tower and an item tower.
For a given query q and an item d, the scoring out-
put of the model is:

f(q, d) = s(vq,vd), (1)

where vq ∈ Rn and vd ∈ Rn denotes the embed-
ding of the query and the item, respectively. s(., .)
computes the final score between the query and the
item, such as the cosine similarity function, equiv-
alently inner product between normalized vectors,
i.e., s(vq,vd) = v⊤

q vd, where the superscript ⊤

denotes matrix transpose. The objective is to select
the top k items from a pool of candidate items for
each given query vq.

2.2 Existing Frequentist Approaches

Most existing embedding retrieval adopt a frequen-
tist approach to loss function design, which can
be categorized into two types: point-wise loss and
pair-wise loss. We discuss each category in detail.

2.2.1 Point-Wise Loss
The point-wise based method converts the original
retrieval task into a binary classification, whose
goal is to optimize the embedding space where
the similarity between the query and its relevant
item is maximized, while the similarity between
the query and the irrelevant items is minimized. It
usually adopts the sigmoid cross-entropy to train
the model:

Lpointwise(D) = −
∑

i

log σ(s(vqi ,vd+i
))

+
∑

ij

log σ(s(vqi ,vd−ij
)),

where d+i denotes the relevant items for
query qi and d−ij denotes the irrelevant ones,
σ(x) = 1/(1 + exp(−x)) is the standard sigmoid
function.

2.2.2 Pair-Wise Loss
This kind of method aims to learn the partial order
relationship between positive and negative items
from the perspective of metric learning. The clas-
sical work contains triple loss, margin loss, A-
Softmax loss, and several variants (margin angle
cosine). Without loss of generality, we formulate
the loss as softmax cross-entropy:

Lpairwise(D) = −
∑

i

log

(
exp(s(vqi ,vd+i

)/τ)
∑

j exp(s(vqi ,vdij )/τ)

)
,

where τ is the so-called temperature parame-
ter: a lower temperature is less forgiving of mis-
prediction of positive items by the model. In the
same direction, researchers later proposed more
advanced loss functions, by introducing max mar-
gin in angle space (Liu et al., 2017), in cosine
space (Wang et al., 2018) and so on.

2.2.3 Limitations
Both point-wise and pair-wise loss functions have
their advantages and limitations. Point-wise loss
functions are relatively simpler to optimize, while
they may not capture the partial order relationships
effectively. In contrast, Pair-wise loss functions ex-
plicitly consider the relative ranking between items.
As a result, pair-wise loss functions usually achieve
better performance in embedding retrieval tasks.
While both of them are frequentist approaches, in
the sense that no underlying probabilistic distribu-
tion are learned and consequently there is no cutoff
threshold in principle when retrieving items. Thus,
we propose the following probabilistic approach to
a more theoretically well founded retrieval.
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3 Method

In this section, we explore the probabilistic ap-
proach, which contains the choice of the item dis-
tribution function and our carefully designed loss
function based on the item distribution.

3.1 Retrieval Embeddings as a Maximum
Likelihood Estimator

Given a query q, we propose to model the probabil-
ity of retrieving item d:

p(d|q) ∝ p(rd,q|q),

where rd,q represents the relevance between the
query q and document d. For all relevant items
d+, we assume rd+,q, where d+ ∈ d+, follows a
distribution whose probability density function is
fθ. For all irrelevant items d−, we assume rd−,q,
where d− ∈ d−, follows a distribution of whose
probability density function is hθ. The likelihood
function can be defined as

L(θ) =
∏

q


∏

d+

p(d+|q)
∏

d−
p(d−|q)




∝
∏

q


∏

d+

p(rd+,q|q)
∏

d−
p(rd−,q|q)




=
∏

q


∏

d+

fθ,q(rd+,q)
∏

d−
hθ,q(rd−,q)


 .

Importantly, the density for relevant items
p(rd+,q|q) = fθ,q(rd+,q) and irrelevant items
p(d−|q) = hθ,q(rd−,q) are both query dependent.
This is a useful generalization from fixed den-
sity since different queries have different semantic
scopes. Finally the objective function can be de-
fined as the log-likelihood:

l(θ) =
∑

q

(∑

d+

log fθ,q(rd+,q) +
∑

d−
log hθ,q(rd−,q)

)
.

When we choose different distributions for relevant
and irrelevant items, the loss function can resemble
a point-wise loss, which may lead to suboptimal
performance compared to pair-wise loss functions.
To address the limitation, we propose new prob-
abilistic loss functions based on the principles of
contrastive loss, which is a well-known pair-wise
loss function.

3.2 Retrieval Embeddings as a Noise
Contrastive Estimator

Apart from the above maximum likelihood es-
timator, the most widely used technique for re-
trieval model optimization is based on the InfoNCE
loss (Oord et al., 2018), which is a form of noise
contrastive estimator of the model parameter. In
that setting, we need to choose two distributions:
positive sample distribution p(d+|q), and back-
ground (noise) proposal distribution p(d), where
they are related in theory, if we know the joint
distribution of d and q. But in practice, we can
either treat them as separate or simply hypothe-
size their ratio as the scoring function r(d, q) :=
p(d|q)/p(d), without knowing them individually.
The loss we are minimizing is thus the following
negative log-likelihood of correctly identifying the
positive item within the noise pool

Lr = −
∑

i

log
r(d+i , qi)∑
j r(dij , qi)

. (2)

By minimizing the loss function, the model aims
to maximize p(d+|q) for the query q and one of its
relevant items d+, while pushing away q and its ir-
relevant items d+j , thus assign higher similarities to
relevant items compared to irrelevant items. Based
on the definition, we propose two types of distri-
butions as the basis of the estimator, the truncated
exponential distribution ExpNCE and the Beta dis-
tribution BetaNCE.

3.2.1 Parametric Exponential InfoNCE
(ExpNCE)

Here we propose to use the following truncated ex-
ponential distribution density function as the scor-
ing function r(d, q) ∝ exp(cos(vd,vq)/τq) where
the function cos stands for the cosine similarity be-
tween the two vectors and the temperature τq is
query dependent. This offers an interesting alterna-
tive to the standard InfoNCE loss with log bi-linear
distribution as

LExpNCE =
∑

i

log

(
1 +

∑
j exp(cos(vqi ,vd−

ij
)/τq)

exp(cos(vqi ,vd+
i
)/τq)

)
.

A nice property of the above probabilistic mod-
eling is that we can use a simple cumulative density
function (CDF) to decide the cutoff threshold. The
CDF for the above truncated exponential distribu-
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tion can be derived as follows.

PExpNCE(x < t) =

∫ t
−1 e

x/τqdx
∫ 1
−1 e

x/τqdx

=
et/τq − e−1/τq

e1/τq − e−1/τq
,

which can be easily computed.

3.2.2 Parametric Beta InfoNCE (BetaNCE)
We call a probability distribution compactly sup-
ported if its cumulative distribution function F sat-
isfies F ((−∞,−x]) = 1 − F ([x,∞)) = 0 for
some x > 0. In other words, all the mass is con-
tained in the finite interval [−x, x]. The best-known
family of compact distributions in statistics is prob-
ably the Beta distributions, whose pdf are defined
on [0, 1]. Since the cosine similarity used in two-
tower model has value range of [−1, 1], we expand
the definition range of Beta distributions to [−1, 1]
and define its density as

fα,β(x) =
Γ(α+ β)

2Γ(α)Γ(β)

(
1 + x

2

)α−1(1− x

2

)β−1

.

An interesting special case is when α = β = 1,
F1,1(x) =

x+1
2 , which gives the following uniform

CDF on [−1, 1].
One difficulty working with Beta distributions is

that its CDF has no closed form, but rather is given
by the incomplete Beta function1: B(t;α, β) =∫ t
0 x

α−1(1− x)β−1dx is the incomplete Beta inte-
gral. The CDF for the above Beta distribution can
be derived as follows.

PBetaNCE(x < t) =

∫ t

−1
((1 + x)/2)α−1((1− x)/2)β−1dx

∫ 1

−1
((1 + x)/2)α−1((1− x)/2)β−1dx

=

∫ t+1
2

0
xα−1(1− x)β−1dx

∫ 1

0
xα−1(1− x)β−1dx

=
Γ(α+ β)

Γ(α)Γ(β)
B(

t+ 1

2
;α, β).

Fortunately we only need the PDF during train-
ing; the CDF is needed only once, to determine the
retrieval threshold after training (see Appendix A).
Then we assume p(d|q) and p(d) follow beta dis-
tributions like:

p(d|q) = gq(s) ∝ zαg(q)(1− z))βg(q),

p(d) = kq(s) ∝ zαk(q)(1− z))βk(q),

1https://www.tensorflow.org/api_docs/python/
tf/math/betainc

where z = 1+s
2 , s is the cosine similarity between

the query and item, αg(q) and βg(q) are encoders
based on the query representation to distinguish
the learning of item distribution, and so do αk(q)
and βk(q). According to the definition of r(d, q) in
Section 3.2, we can get

r(d, q) =
gq(s)

kq(s)
∝ zαg(q)−αk(q)(1− z)βg(q)−βk(q),

which is again a Beta density. Note that α, β cor-
respond to the number of successes and failures
that lead to the Beta distribution. We can view
both p(d|q) and p(d) as having the same number
of failures (being a negative document for q), but
p(d|q) has some additional successes. Thus we can
hypothesize that βg = βk, and therefore get the
final BetaNCE loss of log-likelihood in Equation
( 2) as

LBetaNCE = −
∑

i

log




z(vqi ,vd+i
)αg(q)−αk(q)

∑
j z(vqi ,vdij )

αg(q)−αk(q)




= −
∑

i

log


 e

log z(vqi
,v

d
+
i

)/τq

∑
j e

log z(vqi
,vdij

)/τq


 ,

where τq = (αg(q)− αk(q))
−1. Thus compared

with InfoNCE, the main difference is the logarith-
mic transformation applied to the cosine similarity.
Since the cosine similarity s is empirically always
bounded away from −1, the logarithm presents no
numerical difficulty.

After the training, we can get back the Beta dis-
tribution parameters from the learned τq by fixing
the background distribution parameters αk(q) ≡ 1,
βk(q) ≡ 1, that is, the uniform distribution on the
unit interval:

αg(q) = τ−1
q and βg(q) = 1. (3)

4 Experiments

In this section, we first explain the details of the
dataset, experimental setup, baseline methods and
evaluation metrics. Then we show the comparison
of experimental results between the baseline meth-
ods and our proposed method pEBR. Finally we
show the ablation study to intuitively illustrate how
pEBR could perform better.

4.1 Experimental Setup
4.1.1 Dataset and Setup
Our model was trained on a randomly sampled
dataset consisting of 87 million user click logs col-
lected over a period of 60 days. We trained the
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Table 1: Comparison of retrieval quality between our proposed method and baseline methods.

All Queries Head Queries Torso Queries Tail Queries
P@1500 R@1500 P@1500 R@1500 P@1500 R@1500 P@1500 R@1500

DSSM-topk 0.327% 93.29% 0.782% 90.38% 0.211% 94.36% 0.126% 94.36%
DSSM-score 0.435% 93.64% 0.841% 90.77% 0.339% 94.64% 0.275% 94.57%

pEBR 0.583% 94.08% 0.945% 91.42% 0.513% 95.00% 0.450% 94.73%

Table 2: Online A/B testing.

UCVR UCTR
Relative improvement +0.190% +0.093%

P-value 0.0183 0.0213

model on an Nvidia GPU A100 and employed the
AdaGrad optimizer with a learning rate of 0.05,
batch size of 1024, and an embedding size of 128.
The training process converged after approximately
200,000 steps, which took around 12 hours.

4.1.2 Comparative Backbone
Our method is compatible with most two-tower
retrieval models since it primarily modifies the loss
function rather than the model architecture. Thus,
we choose a classic two-tower DSSM (Huang et al.,
2013; Qiu et al., 2022) as the backbone model.
Then, we focus on cutting off items retrieved by
the DSSM model with three methods:

• DSSM-topk refers to the method that cuts off
items using a fixed threshold of number.

• DSSM-score refers to the method that cuts
off items with a fixed threshold of relevance
score. Items with relevance scores below the
threshold are discarded.

• pEBR refers to our proposed probabilistic
method which cuts off items with a threshold
derived by a probabilistic model, specifically
the CDF value of the learned item distribution.
We are using a default CDF value 0.5 if not
further specified. In this experiment, we focus
on using BetaNCE with β = 1 as shown in
Equation (3) to demonstrate the effectiveness
of the methods. But our method is general
enough to accommodate other distributions,
such as ExpNCE.

As our method is model-agnostic and can be
applied to any two-tower architecture, we also con-
duct experiments with a BGE (Xiao et al., 2024)
(transformer-based) backbone to verify this com-
patibility. Details of these additional experiments
are presented in Appendix B.

4.1.3 Experimental Metrics
We use two widely reported metrics, Recall@k
and Precision@k, to evaluate the quality and ef-
fectiveness of retrieval models (Zhang et al., 2021;
Zhu et al., 2018; Yuan et al., 2023). There are
some nuances that need a little more explanation.
In DSSM-topk, a fixed number k of items is re-
trieved for each query to calculate R@k and P@k.
While in DSSM-score and pEBR, a threshold of
relevance score or CDF value is used to cut off re-
trieved items, which results in a variable number of
items for each query. To ensure a fair comparison,
we slightly adjust the threshold so that the average
number of retrieved items across all queries equals
k when computing the evaluation metrics.

Moreover, there is a tradeoff between precision
and recall when varying the k value. In the experi-
ments, we choose k = 1500 to optimize for recall,
since it is the main goal of a retrieval system. Thus,
the precision value is relatively low.

4.2 Experimental Results
Since retrieval performance varies considerably
across head, torso, and tail queries, we adopt a
tripartite dataset partitioning strategy for stratified
evaluation. As shown in Table 1, we can draw the
following conclusions:

• DSSM-score performs better than DSSM-topk
on both R@1500 and P@1500, which is as
expected since the retrieved items of DSSM-
score have better relevance scores than DSSM-
topk, because items with lower relevance
scores are cut off.

• pEBR outperforms both DSSM-topk and
DSSM-score, because pEBR learns varying
item distributions for different queries, allow-
ing for the determination of dynamic and opti-
mal relevance score thresholds, thus leading
to enhanced overall retrieval performance.

• pEBR achieves better performance on sep-
arated evaluation sets, i.e. head queries,
torso queries and tail queries. Moreover,
we observe that the amount of improvement
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(a) “phone” (b) “Huawei phone 5g” (c) “Huawei mate50pro”

Figure 1: Relevant item distributions projected to a sphere for queries in head, torso, and tail categories, respectively.

achieved by pEBR varies systematically with
respect to query popularities. Specifically,
compared to DSSM-topk, pEBR achieves im-
provements on head queries, torso queries and
tail queries respectively. This is because head
queries normally have many more relevant
items than tail queries; thus, a dynamic cut-
off threshold could benefit head queries to re-
trieve more items significantly. What’s more,
tail queries normally do not have many rele-
vant items, typically just tens of items. Thus,
retrieving a fixed number k of items hurts the
precision significantly. pEBR appears to solve
this problem nicely.

4.3 Online A/B Testing

To assess the effectiveness of the proposed method
in a real-world scenario, we performed compre-
hensive online A/B testing within an e-commerce
search engine with hundreds of millions of users
and billions of products.

Through a continuous week-long controlled ex-
periment, table 2 shows that our proposed method
achieved consistant improvements over the previ-
ous baselines, yielding a 0.19% increase in User
Conversion Rate (UCVR) (p-value < 0.02), translat-
ing into substantial revenue gains for the company.

4.4 Ablation Study

4.4.1 Visual Illustration of Distributions
As shown in Figure 1, we visualize the relevant
item distribution for three queries with different
frequencies. We first need to apply a dimension
reduction technique, specifically t-SNE (Van der
Maaten and Hinton, 2008) here to reduce the dimen-
sion to 3-D. Then we normalize the vectors as unit
vectors and plot them on a sphere. The head query,
“phone”, is a quite general one that can retrieve
phones of various brands and models. As a result,

the retrieved items are widely distributed and dis-
persed across the surface of the sphere. The torso
query “Huawei phone 5g” is a more specific one as
it focuses on phones from the brand Huawei and
with 5G capability. Consequently, the item distribu-
tion is more concentrated and has a narrower scope
compared to the query “phone”. The tail query,
“Huawei mate50pro”, is highly specific as it spec-
ifies the brand (Huawei) and model (mate50pro),
thus the number of relevant items is very small and
the distribution becomes even more concentrated.
These differences in item distributions reaffirm the
conclusion that cutting off retrieved items by a
fixed threshold of item numbers or a fixed rele-
vance score is suboptimal for embedding retrieval.

4.4.2 Dynamic Retrieval Effect

To investigate the effect of dynamic retrieval, we
analyze the retrieval results from two perspectives.
First, we examine the distribution of the number
of retrieved items under a fixed probabilistic CDF
threshold. Second, we evaluate how the number of
retrieved items varies across different probabilistic
CDF thresholds. These analyses provide insights
into how dynamic retrieval impacts the overall re-
trieval results.

In Figure 2, we show the histogram of retrieved
item numbers cut off by CDF value 0.985 for
both head, torso, and tail queries. In detail, we
filter out the items with the cosine similarity x
bellowing a threshold t to ensure the equation
P(x >= t) = 0.985. In general, head queries
have a more uniform distribution and the numbers
lie mostly in the range of [500, 1500], while torso
and tail queries share a similar skewed distribution
and the numbers lie in the range of [0, 1000] and [0,
500], respectively. This indicates that head queries
retrieve more items than torso and tail queries,
which confirms the assumption that queries with
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Figure 2: Histogram of the retrieved item numbers for head, torso, and tail queries, with the CDF value set to 0.985.

Table 3: Average numbers of retrieved items for different cutoff CDF values.

Cutoff CDF Value 0.99 0.95 0.9 0.8 0.7 0.6 0.5 0.4
Head Queries 2253.12 1443.51 1073.79 761.06 600.31 441.51 227.42 66.36
Torso Queries 1897.53 961.90 617.27 334.10 200.17 111.28 48.37 12.89
Tail Queries 1804.80 813.24 473.40 215.50 113.99 58.86 21.46 4.60

higher popularity need more candidates and queries
with lower popularity need fewer.

In Table 3, we present the average number of
retrieved items under different CDF values with
the same cutting off strategy in Figure 2. As the
probability decreases, queries claim a higher rele-
vance level for items, thus the average numbers of
retrieved items decreases accordingly. Comparing
different queries, head queries retrieve more items
than torso and tail queries under all CDF thresholds,
which again confirms the conclusion above.

5 Conclusion

In this paper, we have proposed a novel proba-
bilistic embedding based retrieval model, namely
pEBR, to address the challenges of insufficient re-
trieval for head queries and irrelevant retrieval for
tail queries. Based on the noise constrastive es-
timator, we have proposed two instance models:
ExpNCE and BetaNCE, with the assumption that
relative items follow truncated exponential distri-
bution or beta distribution, which allow us to easily
compute a probabilistic CDF threshold instead of
relying on fixed thresholds, such as a fixed number
of items or a fixed relevance score. Comprehensive
experiments and ablation studies show that the pro-
posed method not only achieves better performance
in terms of recall and precision metrics, but also
present desirable item distribution and number of
retrieved items for head and tail queries.

6 Limitations

While our probabilistic model demonstrates sig-
nificant improvements in retrieval accuracy and
system performance, it remains inherently con-
strained by the two-tower and late-interaction re-
trieval paradigms (e.g., DSSM architectures). No-
tably, the emerging paradigm of generative retrieval
(Kuai et al., 2024; Li et al., 2024; Deng et al., 2025)
powered by large language models (LLMs) intro-
duce new opportunities and challenges that our
current framework does not address. We identify
two promising directions for future research: 1)
developing hybrid architectures that integrate the
robustness and reliability of our probabilistic mod-
eling with the semantic flexibility of generative
retrieval, particularly for dynamic cutoff optimiza-
tion. 2) Exploring constrained generation tech-
niques that retain the precision and advantages of
our current approach while mitigating LLM hallu-
cinations through adaptive distribution modeling,
thereby enhancing both accuracy and reliability in
retrieval tasks.
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A Inference Truncation

The major goal of using query dependent item dis-
tribution in neural retrieval is to give statistical
meaning to the retrieved candidate set. Previously
a somewhat arbitrary combination of cosine simi-
larity threshold and top-K threshold are used.

St,K(q) = Top
cos(q,·)
K ({di : cos(q,di) ≥ t})

The cosine threshold does not account for the vari-
ability of item distributions across different queries,
while the top-K threshold is mainly to save infer-
ence cost.

Now for a given q-isotropic spherical distribu-
tion H , whose marginal density with respect to
cos(q, ·) is given by h : [−1, 1] → R+, we can
compute its CDF as follows

P(H < t) =

∫ t
−1 h(x)(1− x2)(n−3)/2dx
∫ 1
−1 h(x)(1− x2)(n−3)/2dx

. (4)

For a given h and t, (4) can be computed numer-
ically. For the two special h we are concerned here,
we can give semi-closed forms:

• For the Beta density (BetaNCE) h(x) ∝ (1 +
x)α−1(1− x)β−1, the normalization constant,
after the rescaling [−1, 1] → [0, 1], is a com-
plete Beta integral

∫ 1

0
xα+

n−5
2 (1− x)β+

n−5
2 dx = B(α+

n− 3

2
, β +

n− 3

2
)

=
Γ(α+ n−5

2 )Γ(β + n−5
2 )

Γ(α+ β + n− 4)
,

while the numerator is propor-
tional to an incomplete Beta integral
∫ 1+t

2

0
xα+

n−5
2 (1− x)β+

n−5
2 dx =: B 1+t

2
(α+

n− 3

2
, β +

n− 3

2
).

• For the truncated exponential density (cor-
responding to InfoNCE), h(x) ∝ ex/τ ,
the integral we need to compute is
the following modified Bessel integral
∫ t

−1
ex/τ (1− x2)

n−3
2 dx =

∫ t

−1
ex/τ (1 + x)

n−1
2

−1(1− x)
n−1
2

−1dx.

This admits a closed form solution for any t
provided n > 2 is odd, however the solution
has alternating signs, which is numerically
unstable especially for large n.

Due to the difficulty of exact solutions, we resort
to numeric quadratures:

import scipy.integrate as integrate
import scipy.special as special
import math

def BetaInt(alpha, beta, t):
return integrate.quad(

lambda x: (1+x)**(alpha-1) * \
(1-x) ** (beta-1), -1, t)

def BetaExpInt(alpha, beta, tau, t):
return integrate.quad(

lambda x: (1+x)**(alpha-1) * \
(1-x)**(beta-1) * \
math.exp(x/tau), -1, t)

cache = {}

def CosineInvCDF(p, quad_fn, *args):
values = cache.setdefault(

quad_fn, {}).get(tuple(args))
if not values:

denom = quad_fn(*args, 1)[0]
values = \

cache[quad_fn][tuple(args)] \
= [quad_fn(*args, i/500-1)[0] \

/ denom for i in range(1001)]
if p >= values[-1]:

return 1
if p <= values[0]:

return -1
right = min(i for i,

v in enumerate(values) if v >= p)
left = right - 1

return (right * (p-values[left])+left*
(values[right]-p)) / \

(values[right]-values[left])/500-1

def BetaInvCDF(p, alpha, beta):
return CosineInvCDF(

p, BetaInt, alpha, beta)

def BetaExpInvCDF(p, alpha, beta, tau):
return CosineInvCDF(

p, BetaExpInt, alpha, beta, tau)

def InfoNCEInvCDF(p, n, tau):
return CosineInvCDF(

p,BetaExpInt,(n-1)/2,(n-1)/2,tau)
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B Backbone Experiments

Our proposed pEBR method is orthogonal to the
underlying two-tower architecture and can be seam-
lessly integrated into various backbone models. To
further validate the generalizability of our method,
we conducted additional experiments using BGE, a
transformer-based embedding model, as the back-
bone for our two-tower setup. As shown in table 4,
our method consistently outperforms both top-K
and fixed-score truncation approaches in terms of
Recall@1500 across different backbone models,
demonstrating the generalizability and effective-
ness of pEBR.

Table 4: Recall@1500 on different methods.

All Queries Head Torso Tail
BGE-topk 0.9592 0.9556 0.9622 0.9585
BGE-score 0.9352 0.9415 0.9320 0.9347
BGE-pEBR 0.9691 0.9730 0.9731 0.9641

C Different Corpus Sizes

We have conducted supplementary experiments
with varying training data sizes. The tabel 5 shows
that while absolute recall@1500 decreases as train-
ing data is reduced, the relative improvement
brought by our method remains stable. This sug-
gests that the query distribution modeling enabled
by pEBR converges efficiently, and our method is
robust even with moderate-sized datasets.

Table 5: Recall@1500 on different corpus sizes.

87M 40M 20M
BGE-topk 0.9592 0.9535 0.9482
BGE-score 0.9352 0.9153 0.9102
BGE-pEBR 0.9691 0.9672 0.9524

D Different Recall Cutoffs

To provide a more comprehensive evaluation, we
also experimented with smaller k values (e.g.,
k=500 and k=1000). Detailed results are presented
in the Table 6.

Table 6: Performance at different recall cutoffs.

R@1500 R@1000 R@500
BGE-topk 0.9592 0.9350 0.8833
BGE-score 0.9352 0.8598 0.7344
BGE-pEBR 0.9691 0.9589 0.9226
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