DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models
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Abstract

Recent advancements in slow-thinking reason-
ing models have shown exceptional perfor-
mance in complex reasoning tasks. However,
their tendency for "overthinking" on simple
problems leads to excessive computational re-
source usage and increased inference latency,
which hinders their widespread industrial adop-
tion. While current mitigation strategies uni-
formly reduce reasoning tokens, they risk de-
grading performance on challenging tasks that
require extended reasoning. This paper in-
troduces Difficulty-Adaptive Slow-Thinking
(DAST), a novel framework that enables mod-
els to autonomously adjust Chain-of-Thought
(CoT) length based on problem difficulty. We
propose a Token Length Budget (TLB) met-
ric and leverage budget-aware preference op-
timization to implement DAST, which penal-
izes inefficiency on simple problems while in-
centivizing deep reasoning for complex ones.
Experiments demonstrate DAST’s significant
value for practical application: it effectively
mitigates overthinking, substantially lowering
costs and latency—while crucially preserving
high accuracy on complex problems, paving the
way for the efficient application of advanced
reasoning models.’

1 Introduction

Recently, significant advancements have been
made in slow-thinking reasoning models, ex-
emplified by OpenAI’s ol (OpenAl, 2024) and
DeepSeek-R1 (Guo et al., 2025). These slow-
thinking reasoning models, which simulate human
deep-thinking mechanisms through self-reflection,
error correction, and exploration, have demon-
strated remarkable potential in complex reason-
ing tasks such as mathematical problem-solving
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3x+7=22, x=? DeepSeek R1 (1041 tokens)

[Thinking Process]
think
Oka;

[Final Response]|
To solve the equation 3v + 7= 22:
Step 1: Subtract 7 from both sides
3 +7-7=22-7==> 3r=15
Step 2: Divide both sides by 3
3x/3=15/3 ==>x=35
Verification:
Substitute x = 5 back into the original equation:
3(5)+7=15+7=22
Final Answer: 5

DeepSeek V3 (58 tokens)

[Final Response]|
To solve the equation 3x + 7 = 22 for x, follow these steps:
1. Subtract 7 from both sides:
x+7-7=22-7
Simplifying this, we get:
=15
2. Divide both sides by 3:
3x/3=15/3
Simplifying this, we get:
x=5
Final Answer: 5

Figure 1: An Example to illustrate the overthinking
phenomenon.

(MAA, 2024) and programming challenges (Jain
et al., 2024).

However, empirical studies (Chen et al., 2024;
Sui et al., 2025; Liu et al., 2025) have shown
that these reasoning models suffer from the phe-
nomenon of overthinking. In other words, these
models tend to generate redundant solutions and
unnecessarily complex reasoning steps when ad-
dressing simple problems, leading to inefficient
computational resource utilization. For instance,
as demonstrated in Figure 1, traditional LLM
(DeepSeek V3) can solve basic mathematical prob-
lems such as “3x + 7=22, x=?" with only 58 to-
kens, while reasoning models with thinking process
such as DeepSeek-R1 may consume over 1000 to-
kens for the same problem. This overthinking phe-
nomenon not only significantly reduces the reason-
ing efficiency, but also causes information overload
for users.
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Current approaches (Sui et al., 2025; Xia et al.,
2025; Chen et al., 2024) to mitigate the overthink-
ing problem typically employ a one-size-fits-all
strategy, uniformly reducing reasoning steps or to-
ken counts across all problems. Although these ap-
proaches significantly reduce the output length of
slow-thinking models, they carry the risk of perfor-
mance degradation, particularly when addressing
challenging problems. Prior studies (Zeng et al.,
2024; Muennighoff et al., 2025) have demonstrated
that adequate reasoning length is critical for slow-
thinking models to effectively solve complex tasks.
It is therefore essential to devise approaches that
mitigate overthinking phenomena while maximally
preserving reasoning capabilities.

This raises a fundamental question: Can slow
thinking models autonomously adjust reasoning
depth based on problem difficulty, thereby gen-
erating concise responses for simple questions
while maintaining sufficiently extended CoT rea-
soning for complex ones? We propose a Difficulty-
Adaptive Slow-Thinking (DAST) framework to
tackle this challenge.

Our key idea is straightforward: Given that tasks
of varying difficulty levels inherently demand dif-
ferent reasoning depths, we propose to establish a
mapping relationship between problem complex-
ity and target response length. By comparing the
length of the current response with the target re-
sponse length, we can determine whether to apply
additional rewards or penalties to the current an-
swer. Building upon this, we construct a training
objective to achieve adaptive reasoning. Specif-
ically, we first introduce a difficulty quantifica-
tion metric termed “Token Length Budget” (TLB),
which integrates both the accuracy of sampled re-
sponses and their length distributions. This metric
effectively combines problem difficulty character-
istics with token length information. For multiple
generated responses sampled, our method applies
budget-aware reward shaping: Responses exceed-
ing the TLB of simple questions receive penalty
signals, while those approaching the TLB for com-
plex problems receive positive incentives. This
mechanism allows us to construct pair-wise budget
preference training data that inherently encodes the
relationship between problem difficulty and target
response length. Through follow-up preference
optimization, we enable the slow-thinking model
to acquire adaptive reasoning capabilities, strategi-
cally allocating more computational resources to
challenging problems while maintaining efficient

processing of simpler tasks. The proposed DAST
method essentially establishes a learnable mapping
between problem difficulty levels and correspond-
ing target response length, achieving intelligent
computation allocation during the inference stage
without compromising reasoning quality.

Our main contributions are as follows:

1. We propose a difficulty-adaptive slow thinking
(DAST) scheme, which effectively alleviates
the phenomenon of overthinking while main-
taining the reasoning performance, especially
on difficult tasks.

2. We propose a novel problem difficulty quan-
tification metric (TLB) that is applicable to
many downstream tasks.

3. We conduct extensive validation experiments
across multiple datasets with models of vary-
ing scales. The results demonstrate that our
DAST approach offers a practical and efficient
solution for large reasoning models, achieving
significant reductions in computational over-
head while maintaining robust performance.

2 Methodology

In this section, we introduce our proposed DAST
method in detail. Our key insight lies in enhanc-
ing existing reasoning models through budget-
preference training, enabling adaptive response
generation with length that corresponds to prob-
lem complexity. The main challenge lies in estab-
lishing a principled relationship between response
length and problem difficulty. To this end, we pro-
pose a novel reasoning Token Length Budget (TLB)
metric that dynamically scales with problem com-
plexity: simpler questions receive smaller length
allocations while complex ones are allocated ex-
tended budgets. This metric not only serves as a
length reference for response generation but also
could be used to quantify problem difficulty.

The technical implementation of DAST involves
three crucial steps: First, we calibrate the initial
rule-based reward scores of each response via com-
paring its actual token length with the TLB of the
corresponding problem. Second, constructing a
pairwise budget-preference training dataset based
on the calibrated reward scores. Finally, employing
SimPO (Meng et al., 2025) to fine-tune the original
reasoning model, endowing it with adaptive reason-
ing capabilities. The overall framework of DAST
is depicted in Figure 2.
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Figure 2: Overview of our proposed DAST method.

2.1 Token Length Budget Definition

Our proposed Token Length Budget (TLB) metric
is formally defined as:

Lbudget =p- L?“F (1 - p) . Lmaz, (1)

where

P:ﬁ

denotes the sampling accuracy. Here, c is the num-
ber of correct responses sampled from the current
question with the backbone LRM, N is the total
number of sampled responses. Lz represents the
average token length of the correct responses, and
Lax is the maximum generation length.

The higher the sampling accuracy, the closer
Lyydget 1s to the average length of correct responses
(L7), while lower accuracy brings Ly, qget closer to
the maximum generated length. A sampling accu-
racy of 0 indicates extreme difficulty, in which case
the model should be encouraged to think deeply
and generate longer CoT. At this point, TLB equals
the model’s maximum generation length. As shown
in Figure 3, the average TLB exhibits strong posi-
tive correlation with problem difficulty level on the
MATH training dataset, demonstrating its potential
as an effective measure for quantifying problem
complexity.

2.2 Reward Score Calibration

In reasoning scenarios such as mathematics and
coding, ol-like slow thinking models typically em-
ploy rule-based rewards as feedback signals for
training (Guo et al., 2025; Team et al., 2025). In
this work, traditional rule-based rewards are cali-
brated by incorporating the deviation between ac-
tual response length and the TLB metric. This
calibration allows the reward score to jointly cap-
ture both difficulty-aware information and length

characteristics, enabling difficulty-adaptive train-
ing.

) max(—0.5\ 4+ 0.5,0.1) if correct
reward (i) = o
min(0.9A — 0.1, —0.1) if incorrect,
(2)
where
P L; — Lbudget
Lbudget

The calibrated reward score for the response ¢
is defined as Equation 2. From Figure 4, we can
derive the following insights:

For a correct answer, if its length exceeds TLB, it
will result in a reward decay. The simpler the ques-
tion, the smaller the TLB. If the generated length
significantly surpasses TLB, the reward will decay
severely. Conversely, if it falls below TLB, the re-
ward will be amplified, encouraging the model to
generate shorter answers within TLB.

For incorrect answers, if the actual length is be-
low TLB, it indicates insufficient reasoning. In this
case, the model is encouraged to engage in more
thorough thinking process and generate longer re-
sponses. The closer the length is to TLB, the
greater the calibrated reward score. Once the TLB
is reached, the reward score saturates.

2.3 Budget Preference Data Construction

For each input question x, N candidate responses
are sampled with corresponding TLB L&)d get, COM-
puted as formalized in Equation 1. The correspond-
ing reward scores are then derived using Equation
2. These responses are subsequently ranked based
on their reward scores to construct contrastive pairs
(x, yw, y;) for subsequent preference optimization,
where y,, and y; denote the winning and losing

responses respectively.
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Figure 3: Average TLB distribution across diffi-
culty levels (Ly.x = 4096). Results are com-
puted using responses sampled from QwQ-32B-preview
and DeepSeek-R1-Distill-Qwen-32B (DS-32B) on the
MATH training set. The higher TLB for DS-32B stems
from its structured output format containing both rea-
soning chains and final answers.

We categorize contrastive pairs into two distinct
classes 2: (1) Dual-Correct Pair (DCP): Both re-
sponses yield correct answers, but the preferred
instance y,, demonstrates significantly higher out-
put conciseness (|y,,| < |y;|). DCP is designed to
encourage the model to generate responses that are
both correct and as concise as possible within the to-
ken length budget. (2) Dual-InCorrect Pair (DICP):
Both responses produce incorrect answers, yet
Y exhibits substantially longer reasoning chains
(|yw| > |y1]). DICP is designed to stimulate more
extensive reasoning attempts when the model has
not yet produced a correct answer and remains
within the corresponding TLB.

For each question, we first select the DCP and
DICP pairs with maximal reward margin AR =
R(yw) — R(y1), then apply a two-stage filtering
process: 1. We establish a truncation threshold
d € (0,1) to eliminate the bottom 6| D| pairs with
minimal AR, where | D| denotes the candidate set
size. 2. To maintain data quality and training effi-
ciency, we retain at most two highest-margin pairs
(one DCP and one DICP) per question.

This selection mechanism ensures statistical sig-
nificance in reward differences while preserving
informative contrastive signals, ultimately enhanc-
ing the stability of preference optimization.

2There is actually a third class: Correct-InCorrect Pair
(CICP), but our experiments show that CICP does not improve
the performance.
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Figure 4: Calibrated reward function with TLB.

2.4 Budget Preference Training

The constructed dataset D, enables alignment of
reasoning LLMs through Simple Preference Opti-
mization (SimPO) (Meng et al., 2025). We chose
SimPO due to its characteristic of being more sensi-
tive in controlling answer length. The optimization
objective is formulated as:

LsimpPo (1) = —E(z,y, y)~D [log a(

B B
Tl log o (yw|) — Tl log mo (y1]z) — 7)] 3)

Y

where 3 and -y are hyperparameters.

3 Experiments

3.1 Experimental Setup

Backbone Reasoning Models We conduct com-
parative experiments on two Large Reasoning
Models (LRMs): DeepSeek-R1-DistillQwen-7B
(DS-7B) and DeepSeek-R1-Distill-Qwen-32B (DS-
32B) (Guo et al., 2025).

Benchmarks We evaluate model performance
on following widely used reasoning benchmarks:
MATH-500 (Lightman et al., 2023), AIME2024
(MAA, 2024), and GPQA (Rein et al., 2024).

Baseline Methods We compare our method with
the following representative approaches designed
for efficient reasoning: Concise Thoughts (CCoT)
(Renze and Guven, 2024), Chain of Draft (CoD)
(Xu et al., 2025), SFTsportest (Munkhbat et al.,
2025; Chen et al., 2024), SimPOgportest (Chen
et al., 2024). To validate the effectiveness of our
designed reward function, We keep the DAST set-
tings entirely unchanged, only replacing the rank-
ing criterion for contrastive pairs from Equation 2
to the cosine reward function introduced in (Yeo
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et al., 2025) and the length penalty reward func-
tion defined in (Team et al., 2025), and thereby
develop another two versions of the SimPO base-
line: SimPOCosine and SimPOLenPenalty-

Training Details For both backbone models, we
generate 20 candidate responses for each question
in the MATH (Hendrycks et al., 2021) training
set with maximum sequence length constrained to
4,096 tokens to compute its TLB. Following re-
ward score calibration via Equation 2, we construct
the preference training set for SimPO optimization.
The truncation threshold § is set to 0.15 and 0.18
for DS-7B and DS-32B, yielding final training sets
of 10295 and 9813 contrastive pairs for DS-7B
and DS-32B, respectively. All models are trained
for 1 epoch using AdamW optimizer with learning
rate Ir = 5e-6. All of our experiments were run on
a NVIDIA GPU machine with 8 x H100. More
training configurations are listed in Table 1.

Decoding Configuration In our evaluation setup,
all models were constrained to a maximum gen-
eration length of 32,768 tokens to align with
DeepSeek’ technical report (Guo et al., 2025). Fol-
lowing (Chen et al., 2024; Yeo et al., 2025), we em-
ploy greedy decoding for all the models. Results
were computed using OpenR1 evaluation scripts®.

Model  Name Value
training samples 10295
learning rate Se-6
DCP % 91.26%

DS-7B DICP % 8.74%
epoch 1
Lnax 4096
B 200
¥ 1
training samples 9813
learning rate Se-6
DCP % 87.73%

DS-32B DICP % 12.27%
epoch 1
Loz 4096
B 200
ol 1

Table 1: Training configuration of DAST.

3.2 Results and Analysis
3.2.1 Overall Results

The main results are presented in Table 2. We have
the following findings: Prompt-based methods

3https://github.com/huggingface/open-rl

(CCoT, CoD) show unstable performance, often in-
curring accuracy losses, which are particularly pro-
nounced on complex task AIME 2024. For exam-
ple, ACC of CoD with DS-7B on AIME 2024 drops
from 60.0% to 43.3%. Aggressive compression
methods (SimPOsportest, SIMPOL enpenaty) achieve
the most significant token reduction on both DS-7B
and DS-32B across all benchmarks. However, this
substantial compression invariably sacrifices some
accuracy. SimPOp eqpenairy demonstrates a slightly
better overall balance against SImPOghorest » PO-
tentially because its reward function introduces the
average length of batch data as a comparison base-
line, thereby better navigating the length-accuracy
trade-off. SFTsporest proves to be a strong baseline
but fails to compress effectively on complex tasks
like AIME 2024. It is plausible that the straightfor-
ward SFT with shortest responses may have com-
promised the model’s instruction following ability,
resulting in ineffective termination of responses
when confronted with complex tasks.

DAST and SimPOcgsine €xhibit similar over-
all trends in balancing ACC and CR, the poten-
tial reason may be that neither method strictly
prioritizes brevity but can encourage longer re-
sponses when beneficial. The superior performance
of DAST over the standard cosine-based reward
across benchmarks on both ACC and CR validates
the effectiveness of our proposed budget-based re-
ward function.

Despite being exclusively math-trained, DAST
(DS-7B) achieves 51.51% (+3.53%) on GPQA with
modest CR (+4.2%), demonstrating certain abil-
ity of domain generalization. On the challenging
AIME 2024, DAST (DS-7B) does not reduce the
average response length (CR -1.9%). This, com-
bined with a substantial ACC improvement from
60.0% (Origin) to 70.0% suggests that DAST does
not indiscriminately shorten reasoning paths but
can adaptively allocate more reasoning steps for
complex problems.

Overall, the results in Table 2 affirm that DAST
effectively navigates the intricate trade-off between
conciseness and reasoning performance. It gener-
ally preserves or improves the reasoning capabil-
ities of the backbone models while achieving re-
markable CoT reductions, outperforming the base-
lines in this combined objective. This is particu-
larly evident with the more capable DS-32B model,
where DAST achieves strong compression (30%
average compression) alongside accuracy improve-
ments across all the benchmarks.
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MATH-500 AIME 2024 GPQA
MODEL METHOD
ACCt LEN| C-LEN] CR{ C-CRf ACC? LEN| C-LEN] CR{ C-CRt ACCt LEN| CLEN| CR{ C-CRt
Origin 932 4039 3506 - - 60.0 10603 7448 - - 4798 8021 7242 - -
CCoT 922 3388 2887 16.1% 17.7% 400 10976 6497  -3.5% 12.8% 4798 7612 6914  51%  4.5%
CoD 758 1596 1234 60.5% 64.8% 433 9399 6630  114% 11.0% 4949 7178 6932  10.5% 43%
Ds.7p  SimPOsmores 89.8 1891 1557  532% 55.6% 533 8291 3847  21.8% 484% 5051 6068 5401  244% 254%
SFThortest 918 2987 2408  260% 31.3% 500 12989 6227  -22.5% 164% 5101 7760 6578  33%  92%
SimPOgosine 932 3897 3223  35% 81% 633 12572 6783  -186% 89% 50.00 8230 6912  -26% 4.6%
SIMPOrenpenay 894 1922 1612 524% 540% 633 7419 4478  30.0% 39.9% 5101 5860 4847  269% 33.1%
DAST(ours) 93.6 3309 2709  18.1% 22.8% 70.0 10804 7924  -19%  64% 5151 7684 6480  42% 10.5%
Origin 944 3782 3384 - - 733 10955 9124 - - 65.15 6410 5923 - -
CCoT 932 2044 1733 46.0% 488% 567 8436 5678  23.0% 37.8% 63.13 5820 5143  92% 132%
CoD 936 1941 1628  48.7% 519% 433 7288 5065  335% 445% 6212 5107 4831  203% 18.4%
Ds.ap  SimPOuwores 89.0 1107 998 70.7% 170.5% 367 2580 855  76.4% 90.6% 63.13 2455 2286  61.7% 61.4%
SFThortest 946 2402 2141  365% 367% 667 8204 6577  25.1% 279% 6465 6044 5030  57% 15.1%
SimPOgogine 942 2325 1968  385% 41.8% 633 7379 5317  32.6% 41.7% 6515 5835 4987  9.0% 158%
SimPOpenpenay ~ 90.6 1190 1066  68.5% 68.5% 433 2748 2047  749% 77.6% 6212 2375 2111  629% 64.4%
DAST(ours) 958 2044 1744  46.0% 48.5% 767 7023 5409  359% 40.7% 6515 5535 4514  137% 23.8%

Table 2: Evaluation results across the benchmarks.

Following metrics are adopted: ACC denotes the accuracy of

the final answer. LEN refers to the average response length, measured in tokens. C-LEN represents the average
number of tokens in all correct responses. CR is the compression ratio, which is defined as token length reduction
ratio (vs. original model). C-CR is the C-LEN reduction ratio against original model.

Comparison of Accuracy across difficulty levels
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Figure 5: Comparative results for different difficulty levels on MATH-500

3.2.2 Fine-grained Analysis

We also compared CR of DAST (DS-32B) on
MATH-500 according to difficulty level. As shown
in Figures 5, DAST achieved the best Level 5 ac-
curacy with significant margin against other meth-
ods, which demonstrates that it maintains its rea-
soning ability under complex problems. Although
SimPOsportest Shows the most significant reduction
in response length, its reasoning capability notably
declines when addressing complex problems.

METHOD L1 L2 L3 L4 LS
SimPOgportest 72.0%  64.1% 67.6% 72.1% 72.5%
DAST 585% 47.7% 51.9% 46.7% 40.8%

Table 3: Comparison of CR between SimPOgporiesc and
DAST across different levels in MATH-500 on DS-32B.

Furthermore, Table 3 reveals that SImPOgportest
exhibits limited differentiation in CR across differ-

ent difficulty levels. In contrast, the DAST method
shows discernible adaptive capabilities, achieving
approximately 58.5% CR at Level 1 compared to
the original model, while this reduction decreases
to approximately 40.8% at the most challenging
Level 5. This progressive variation validating its
difficulty-adaptive nature.

3.2.3 Ablation Study

To reveal the individual effects of different compo-
nents of our method, we tested different variants
of DAST on MATH-500 with DS-7B by removing
DCP or DICP. The ablation results are shown in
Table 4. We see that the DCP and DICP compo-
nents exhibit specialization patterns analogous to
domain-specific experts. Without DICP (w/o DCP),
the framework incentivizes models to fully uti-
lize the token budget, resulting in an accuracy im-
provement (+1.4% versus DS-7B). However, this
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comes at the cost of overly redundant answer length
(+17.8% versus DS-7B). Conversely, eliminating
DICP while preserving DCP (w/o DICP) drives
the model to strictly adhere to budget constraints
through aggressive compression, achieving optimal
compression ratio (59.8%) but significantly impair-
ing problem-solving capability (-3.2% accuracy).
The optimal performance is achieved when DCP
and DICP are combined, indicating that DCP and
DICP are complementary to each other.

We further explored integrating CICP into
DAST’s training set (incorporating CICPs with the
largest reward score discrepancies per question).
However, this integration yielded no significant
performance gains (bottom row in Table 4). We
will investigate the ineffectiveness of CICP in the
future work.

Model ACC LEN C-LEN CR
DS-7B 93.2 4039.13 3506.64

DAST 93.6 3309.16 2708.63 18.0%
w/oDCP  94.6 4759.07 3996.78 -17.8%
w/o DICP  90.0 1624.60 1299.50 59.8%
+ CICP 932 329596 2573.00 18.3%

Table 4: Ablation Results on MATH-500 with DS-7B.

3.2.4 Impact of Truncation Threshold

To investigate the impact of the truncation thresh-
old 9, we conducted grid search validation on 100
randomly selected samples from MATH-500. As
shown in Figure 6, the DS-32B model achieves
peak ACC with § = 0.15, accompanied by a CR
of 47% in generated token length. This empirical
evidence guided our final selection of § = 0.15 for
DS-32B to optimize the Accuracy. For the DS-
7B variant, the same hyperparameter search on the
same validation set identified 0.18 as the optimal d.

It is worth noting that when § = 0, the model’s
CR becomes extremely low (even negative), primar-
ily because the training data contains DICPs with
low discriminability and excessive length, which
causes reward hacking and prevents SimPO from
capturing the correct direction for length optimiza-
tion.

4 Related Work

Mitigating “overthinking” in Large Reasoning
Models (LRMs) to enhance reasoning efficiency
has garnered increasing research attention (Sui
et al., 2025; Liu et al., 2025). Existing approaches

Impact of Truncation Threshold
100 F60
Accuracy
—e— Compression Ratio Lso

98 -
ka0

%)

96

Accuracy (%)

F20
94 1

Compression Ratio (

rlo

92 +

920

T T T T T T -10
012 015 018 0.2 0.25 0.3
Truncation Threshold

T T T
0 0.08 0.1

Figure 6: The impact of truncation threshold 4.

can be broadly categorized into three main types
: Prompt-based Methods (Nayab et al., 2024;
Xu et al., 2025; Renze and Guven, 2024).Output-
based Methods (Hao et al., 2024; Shen et al., 2025;
Sun et al., 2024; Yang et al., 2025; Zhang et al.,
2025). Post-training Methods (Chen et al., 2024;
Ma et al., 2025; Kang et al., 2025; Xia et al., 2025;
Munkhbat et al., 2025; Team et al., 2025; Luo et al.,
2025; Arora and Zanette, 2025; Yeo et al., 2025).

While existing methods show promise for effi-
cient reasoning, they often apply uniform Chain-of-
Thought (CoT) compression across all problems,
compromising performance on complex ones. Our
work introduces difficulty-adaptive inference by as-
signing a token budget per problem based on its
perceived difficulty. Although some studies (Aggar-
wal and Welleck, 2025; Muennighoff et al., 2025)
use predefined token budgets, and one related work
(Han et al., 2024) adapts budgets to problem com-
plexity, it requires iterative prompt searches to de-
termine the budget and has not been validated on
“slow thinking” models.

5 Conclusion

This work addresses the critical efficiency-
performance dilemma in slow thinking models
through difficulty-aware reasoning adaptation. By
establishing correlation between problem complex-
ity and optimal solution length, the proposed DAST
framework enables dynamic resource allocation for
reasoning. Experimental validations across repre-
sentative benchmarks confirm the effectiveness of
our method.
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Limitations

While our introduced method achieves a remark-
able trade-off between reasoning accuracy and re-
sponse compression rate, following limitations war-
rant discussion:

Domain-Specific Evaluation Scope Our current
benchmarking focuses exclusively on STEM disci-
plines (e.g., mathematics, physics, chemistry), leav-
ing code generation and general domain tasks un-
explored. We plan to extend the evaluation bench-
marks in the future.

Threshold Sensitivity Our method is sensitive
to the truncation threshold. Therefore, it requires
some additional cost to carefully adjust the thresh-
old.

Off-Policy Learning Constraints The proposed
DAST framework, though computationally effi-
cient through preconstructed training data, may
inherently limit performance potential compared to
online reinforcement learning approaches. We plan
to explore on-policy reinforcement learning vari-
ants using our designed reward function for further
improvement.
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A Case Study

Figure 7 demonstrate a comparison of results for a
simple problem from DeepSeek-R1-Distill-Qwen-
32B. It can be observed that that the original out-
puts include extensive unnecessary and redundant
thinking processes, while the outputs after applying
DAST are more concise and focused.

100+200-300=?

[Thinking Process]

<think>

Well, the user is asking what 100 plus 200 minus 300 equals. First, I need to
clarify the order of this calculation. According to the basic rules of
mathematics, addition and subtraction are performed from left to right, so
first calculate 100 plus 200, and then subtract 300.

What is 100 plus 200? 100 plus 200 equals 300, no problem there. Next,
subtract 300 from 300, and the result is 0. It seems quite simple, but to ensure
accuracy, I can double-check the calculation process.

Alternatively, I can do it step by step: 100 plus 200 is 300, and then 300
minus 300 is indeed 0. Calculating it this way, the result remains the same.

Additionally, I can verify it another way, for example, by viewing the entire
expression as 100 + (200 - 300). In this case, 200 minus 300 is -100, and then
100 plus (-100) is also 0. This method of calculation also yields a consistent
result, so the answer is correct.

Overall, whether calculating from left to right or adjusting the position of the
parentheses, the result is 0. Therefore, the answer to the user's question is 0.
<think>

[Final Response]
The calculation process for 100 + 200 - 300 is as follows:

First, perform the addition: /100 + 200 = 300
Then, subtract 300 from the result: 300 - 300 = 0

Therefore, 100 + 200 - 300 equals 0.
(@)

100+200-300=2?

[Thinking Process]

think>
Okay, so I've got this math problem here: 100 plus 200 minus 300. Alright,
starting with 100, 100 plus 200 is... let me count... 100, 200, 300. So that's
300. Now, from there, I need to subtract 300. So, 300 minus 300. Hmm, that
should be zero, right? That makes sense. I don't think I made any mistakes
here. So yeah, I'm pretty confident the answer is zero.
<think>

[Final Response]
The result of the calculation is : 0

(b)

Figure 7: (a) An overthinking case from DeepSeek-
R1-Distill-Qwen-32B. (b) Output from DeepSeek-R1-
Distill-Qwen-32B with DAST.

B Brief Introduction of Benchmarks

* MATH-500 (Lightman et al., 2023): 500 high
school competition-level mathematical prob-
lems stratified into 5 difficulty levels, ranging
from Level 1 (easiest) to Level 5 (hardest);

* AIME 2024 (MAA, 2024): 30 curated prob-
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Concise CoT Prompt

.

lems from the American Invitational Mathe-
matics Examination testing complex problem-
solving;

¢ GPQA (Rein et al., 2024): 198 PhD-level
science questions across physics, chemistry,
and biology.

You are an intelligent assistant.\nYour
task is to answer the following
questions.\nThink step-by-step through
the problem to ensure you have the
correct answer.\nThen, put your final
answer within \\boxed{{}}.\n Be concise.

Figure 8: The prompt we used to implement CCoT
method.

Chain-of-Draft Prompt

(.

Think step by step, but only keep a
minimum draft for each thinking step,
with 5 words at most.\nThen, put your
final answer within \\boxed{{}}.

Figure 9: The prompt we used to implement CoD
method.

C Introduction of Baseline Methods

* Concise Thoughts (CCoT) (Renze and Gu-
ven, 2024): It encourages the model to gen-
erate concise reasoning process via simply
append “Be concise” to the prompt. Please
refer to Figure 8 for specific prompt templates
for CCOT.

¢ Chain of Draft (CoD) (Xu et al., 2025): This
is another prompt-based method which in-
structs the model to generate concise draft
intermediate steps during reasoning. Please
refer to Figure 9 for specific prompt templates
for CoD.

* SFTshortest (Munkhbat et al., 2025; Chen
et al., 2024): This method selects the shortest
correct response from the backbone model’s
sampled answers as the ground truth, and then
performs supervised fine-tuning (SFT) on the
backbone model.
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* SimPOgportest (Chen et al., 2024): SimPO
with contrastive instance pairs generated by
the backbone reasoning model, which takes
the shortest correct sampled response of each
problem as positive instance and the longest
correct counterpart as negative instance.

* SimPOcgsine: We keep the DAST settings en-
tirely unchanged, only replacing the ranking
criterion for contrastive pairs from the reward
function defined in Section 2.2 to the cosine re-
ward function introduced in (Yeo et al., 2025).
We aim to verify the effectiveness of our pro-
posed reward function through a comparative
analysis with SImPOcggine-

e SimPOypeppenaity: We employ the length
penalty reward function defined in (Team
et al., 2025) to evaluate the sampled responses
for each question, select the highest and low-
est ranked instances to construct contrastive
pairs, and thereby develop another version of
the SimPO baseline.



