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Abstract

In clinical science, biomarkers are crucial in-
dicators for early cancer detection, prognosis,
and guiding personalized treatment decisions.
Although critical, extracting biomarkers and
their levels from clinical texts remains a com-
plex and underexplored problem in natural lan-
guage processing research. In this paper, we
present BIOPSY, an end-to-end pipeline that
integrates a domain-adapted biomarker entity
recognition model, a relation extraction model
to link biomarkers to their respective mutations,
a biomarker-type classifier, and finally, a tai-
lored algorithm to capture biomarker expres-
sion levels. Evaluated on 5,000 real-world clin-
ical texts, our system achieved an overall F1
score of 0.86 for oncology and 0.87 for neu-
roscience domains. This reveals the ability
of the pipeline to adapt across various clini-
cal sources, including trial records, research
papers, and medical notes, offering the first
comprehensive solution for end-to-end, context-
aware biomarker extraction and interpretation
in clinical research.

1 Introduction

Traditional approaches in biomedical text mining
(Zhu et al., 2013) have primarily focused on ex-
tracting entities such as drugs, diseases, genes, and
treatments. However, the complexity of clinical
research extends far beyond these basic elements.
Progress in this domain increasingly depends on
capturing more nuanced attributes that directly in-
fluence trial designs, outcomes, and treatment ef-
ficacy. One such critical attribute is the biomarker
(Califf, 2018).

A biomarker is a measurable indicator of a bi-
ological condition or process. In the context of
cancer (Wu and Qu, 2015), biomarkers are pro-
teins, genes, or molecules in humans that indicate
the presence, stage, and subtype of the disease. A
mutation is a specific change in this gene sequence
or structure. Both of these combined, are often

used to determine a patient’s eligibility for specific
treatments, assess prognosis, or monitor response
to therapy. In this work, we use the term biomarker
entity to refer broadly to biomarkers mentioned in
clinical texts (e.g., EGFR, HER2, PD-L1) as well
as their corresponding mutations (e.g., Exon 19,
T790, L858R).

Biomarkers have become essential for advancing
precision medicine (Santoshi and Sengupta, 2021),
enabling more targeted and effective therapies. Pro-
fessionals involved in drug development, clinical
trial design, and pharmaceutical intelligence signif-
icantly rely on biomarker entities to make informed
decisions about patient eligibility, therapeutic tar-
gets, and study endpoints. As a result, identifying
and analyzing biomarkers and their mutations has
become a focal point in the clinical and pharmaceu-
tical industries.

The extraction of biomarker entities is notably
challenging, particularly when identical terms may
denote distinct medical concepts within clinical
texts. For instance, a term might denote a drug
target (Torchilin, 2000), which is typically a pro-
tein in the human body that serves as the bind-
ing site for a therapeutic agent, or a biomarker,
which reflects a biological state or condition of the
protein. Consider the Human Epidermal Growth
Factor Receptor 2 (HER2) protein (Gutierrez and
Schiff, 2011). In the sentence “elevated HER2 ex-
pression correlates with poor prognosis”, HER2
functions as a biomarker, indicating disease sever-
ity. In contrast, in “using trastuzumab to inhibit
HER2 in first-line patients”, HER2 acts as a drug
target, serving as the molecular site for therapeutic
intervention. Disambiguating such cases is crucial
for accurate information extraction.

Hence, we propose BIOPSY (Biomarkers In On-
cology: Pipeline for Structured Yielding), a one-
stop solution designed to help clinical experts with
fast, accurate, and structured biomarker insights
on clinical texts. BIOPSY combines a domain-
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adapted Named Entity Recognition (NER) (Ker-
aghel et al., 2024) system, a relation extraction
model for linking biomarkers to their respective
mentioned mutations, a large language model us-
ing few-shot prompting (Brown et al., 2020) for
entity type classification, and a tailored algorithm
for extracting biomarker expression levels. Addi-
tionally, a custom-built post-processing algorithm
aggregates the extracted information and presents
it in an industry-standard format, approved by clin-
ical experts.

2 Related Works

Biomedical information extraction (Perera et al.,
2020) has witnessed substantial progress in recent
years, with dedicated tools and systems (Hous-
sein et al., 2021) addressing cancer-specific entity
recognition (Zhou et al., 2022), stratification, and
biomarker-level detection. Prior research has pri-
marily focused on developing systems that extract
well-established biomedical entities such as dis-
eases, drugs, genes/proteins, and clinical proce-
dures. However, these systems are often limited in
scope, targeting a narrow set of biomarkers or spe-
cific scoring expressions, and thus fail to generalize
across the broader biomarker landscape required
for comprehensive clinical trial analysis.

Few of the well established tools in this domain
are ScispaCy (Neumann et al., 2019) and CLAMP
(Soysal et al., 2017). The ScispaCy library offers a
deployment-ready framework for extracting clini-
cal entities (genes, diseases, chemicals, etc.) mak-
ing the use of spaCy (Montani et al., 2023) models
retrained on biomedical literature sourced from
PubMed 1 and GENIA (Kim et al., 2003). It is a
fast, robust system often preferred for its low la-
tency and easy-to-implement framework. CLAMP
being a versatile tool for NER, is also preferred
for its fast performance, but like ScispaCy, lacks
coverage for biomarker-specific text mining.

Some of the recent works employ transformer-
based architecture to push the NER performance
forward. BERN2 (Sung et al., 2022), building upon
BERN (Kim et al., 2019) utilizes a hybrid approach
combining rule-based and neural components, im-
proving inference and accuracy over BERN. Both,
BERN2 and BioReX (Gao et al., 2024) rely on stan-
dard medical ontologies, addressing NER along
with entity normalization, with BioReX placing
special focus on oncology pathological reports.

1https://pubmed.ncbi.nlm.nih.gov

DeepPhe-CR (Hochheiser et al., 2023) on the other
hand reports end-to-end clinical concept pipelines
that include NER and eligibility screening, but per-
form well only on structured registries, as opposed
to free-text eligibility criteria.

However, there have been approaches that take
a deep dive into biomarker-targeted extractions,
placing importance on this entity to serve the evolv-
ing needs of the clinical/pharmaceutical industries.
Works like Holmes et al. (2021), Pironet et al.
(2021), and Lin et al. (2024) focus on biomarker
extraction for breast cancer biomarkers like PD-L1
and HER2. These works demonstrate good per-
formance on biomarker-specific tasks but remain
constrained by factors like biomarker variety, scor-
ing methods, and language. They incorporate rule-
based and classifier-driven approaches that achieve
high F1 scores but remain limited to specific can-
cers, with benchmarking on a limited set of 5-6
biomarkers and require substantial domain engi-
neering for expansion.

Recent efforts have explored large language
models and domain-specific transformers for can-
cer biomarker extraction. Alkhoury et al. (2025)
proposed a system to extract PD-L1 testing de-
tails from unstructured Electronic Health Records
(EHR), achieving high accuracy across institutions.
Cohen et al. (2025) introduced CancerBERT, a
breast cancer-specific language model that outper-
formed general biomedical models in phenotype
extraction. While both studies demonstrate the
strengths of domain adaptation, they face limita-
tions in generalization: the former is narrowly fo-
cused on PD-L1 and institution-specific formats,
while the latter is trained solely on breast cancer
corpora. These constraints underscore the need for
broader, multi-biomarker systems that generalize
across diseases and documentation styles.

3 Methodology

In this section, we walk through the design and de-
velopment of BIOPSY, an end-to-end system for ex-
tracting and interpreting biomarker data from clini-
cal text. BIOPSY is a modular pipeline built with
each component tailored to our four key tasks. The
first component recognizes and extracts biomarkers
and mutations, followed by the second component,
which performs semantic relation extraction be-
tween the biomarker and mutation entities. The
third component is employed to classify the ex-
tracted biomarker and mutation (if captured) into
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Figure 1: BIOPSY Pipeline

one of three classes ("positive", "negative", and "as-
sessment"). The last component of the pipeline is
responsible for extracting the biomarker expression
or biomarker level in the human body.

We begin by describing the data generation pro-
cess used to create our proprietary dataset, which
plays a pivotal role in training and fine-tuning the
components of the pipeline. Figure 1 represents
the construct of this pipeline along with the input,
intermediate outputs, and the final output of the
process.

3.1 Dataset Sourcing and Generation

Training Dataset: The specialized nature of this
field, along with its complexity and limited prior re-
search, has resulted in a significant lack of labeled
and open-source datasets. To address this gap, we
curate a handcrafted dataset of 5,000 real-world
oncology-focused abstracts, sampled from Clini-
calTrials.gov 2 and PubMed. Each abstract was
carefully annotated to highlight biomarker, muta-
tion, and drug target entities, ensuring balanced

2https://clinicaltrials.gov

Figure 2: Snippet of our proprietary dataset.

representation across all known oncology biomark-
ers and mutations. Building on this foundation, we
employed few-shot prompting and fine-tuning with
GPT-4o (OpenAI et al., 2024) to generate 50,000
synthetic samples and labels in batches. To ensure
consistency in quality, we test sentence complex-
ity, class representation, and entity richness across
the dataset. The Flesch-Kincaid readability metric
(Gopal et al., 2021) is first applied for baseline fil-
tering. A domain-aware vocabulary density test, us-
ing the Unified Medical Language System (UMLS)
(Humphreys et al., 1993) meta-thesaurus, is then
conducted to retain only those samples that match
the medical density of the real-world data. This
is followed by class balancing to ensure uniform
distribution across categories. This process results
in a final proprietary dataset of 37,000 samples,
which have been quality checked by the clinical
experts. This data is used to train our NER models
for the biomarker entity extraction task.

Testing Dataset: To address the linguistic com-
plexity of real-world clinical texts, we utilize our
handcrafted dataset of 5,000 manually labeled sam-
ples 3 focused on oncology. These datasets were
sourced and labeled to reflect the authentic clinical
trial language and entity usage, serving as rigorous
benchmarks for in-domain evaluation. Addition-
ally, to assess the generalization of the pipeline, an
independent hand-labeled dataset of 2,000 samples
focused on neuroscience, which is a distinct thera-
peutic area in clinical terms, was created. This
external dataset facilitates the evaluation of the
pipeline’s adaptability and robustness when applied
to a different therapeutic domain, thereby demon-
strating its potential utility in an industry charac-
terized by shifting priorities driven by regulatory
requirements, evolving global health needs, and
commercial considerations.

3https://github.com/SanyaCodes/
BIOPSY-Dataset-5K
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3.2 Biomarker Entity Extraction

Multiple NER models were evaluated by training
on synthetically generated biomedical data, fol-
lowed by systematic hyperparameter tuning to opti-
mize performance across entity types as shown
in Appendix A. Among the models tested, the
GLiNER biomed-large-v1.0 model (Zaratiana et al.,
2024) achieved the highest overall F1 score of 0.88,
indicating strong generalization to complex clinical
language.

Further qualitative analysis of its outputs re-
vealed that the model, after training, was capable
of reliably distinguishing between key biomedi-
cal entity categories, including biomarkers, muta-
tions, and drug targets. In particular, GLiNER
exhibited robust recognition of context-specific
mentions, such as oncology-related genes (e.g.,
EGFR, KRAS, ALK) and mutational variants (e.g.,
T790M, Exon 20), even when phrased ambiguously
or embedded in longer clinical expressions.

The model’s ability to detect rare or low fre-
quency biomarker terms, which are often underrep-
resented in manually curated corpora, suggests that
synthetic training data can help expand entity cov-
erage. This is especially valuable for downstream
tasks such as biomarker stratification, trial match-
ing, and precision oncology applications, where
entity diversity and disambiguation are critical.

3.3 Biomarker Mutation Relation Extraction

While GLiNER effectively detects biomarkers and
mutations, a dedicated component is required to
extract semantic relations between them. For ex-
ample, in texts listing multiple biomarkers and
mutations, such as “the patient must be tested
positive for EGFR Exon 19, ALK, BRAF V600,
and HER2 mutations”, accurate relation extraction
(Fraile Navarro et al., 2023) is essential.

To address this, a relation extraction model based
on ensemble learning and an attention mechanism
is fine-tuned, following the methodology proposed
by Jia et al. (2024). Their approach combines multi-
ple biomedical language models such as BioBERT
(Lee et al., 2020), BlueBERT (Peng et al., 2019)
and PubMedBERT (Gu et al., 2021) as base classi-
fiers. These models are trained independently on
our relation-labeled dataset, and their output prob-
abilities are aggregated using an attention-based
stacking mechanism. A meta-classifier then inte-
grates these weighted predictions to produce the
final relation label between biomarkers and their

respective mutation. This architecture enables ro-
bust and context-aware relation extraction across
complex biomedical texts, reporting an F1 score of
0.87 as shown in Appendix B.

3.4 Biomarker Stratification
Inferring patient stratification from clinical texts
based on biomarker status poses a variety of seman-
tic and contextual challenges. More specifically,
the clinical trial texts often express biomarker strat-
ification using nuanced phrasing under the Trial
Criteria section. For example, a criterion such as

“patients should not have any EGFR sensitizing mu-
tation to qualify for enrollment” implies that the
patient should test EGFR-Negative to be included
in this trial since there is just one layer of negation
in the sentence with respect to the biomarker. There
can be multiple layers of negation; for instance, the
text could read “Patients will be excluded if no
EGFR sensitizing mutation is found”. This sen-
tence contains two layers of negation nested in
the sentence with respect to the EGFR biomarker,
hence implying that the patient should be EGFR-
Positive to be included in this study. Further com-
plexities arise in cases where specific mutation pro-
files are referenced under inclusion and exclusion
in a single sentence. A great example of this is

“patients should carry the EGFR Exon 19 mutation
but not the other sensitizing mutations, including
but not limited to T790 and Exon 20”. This text im-
plies that to qualify for the trial, a patient should be
marked by EGFR Exon 19-Positive, EGFR Exon
20-Negative, and EGFR T790-Negative. The third
category is assessment, wherein a patient should be
marked EGFR-Assessment and undergo testing to
qualify for the trial. The sentence would generally
read “Patient must provide a tumor tissue sample
for biopsy to test for EGFR status”. Such speci-
ficity necessitates deep reasoning beyond general
biomarker presence.

This step not only presents a convoluted context
around the mentioned biomarker that needs to be
understood by a model, but also a wide variety of
linguistic complexities, such as nested negation,
the presence of multiple biomarker groups in a sin-
gle text piece, and so on. This presents the need
for a context-aware model that has been trained
on a wide variety of data and incorporates the un-
derstanding of different styles of human writing.
Large language models and some advanced context-
aware classification models are able to solve this
challenge. Based on the tuning and experimenta-
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tion with our datasets, Llama 3.1 70B (Grattafiori
et al., 2024) model demonstrates this capability
with 0.85 F1 score as seen in Appendix C. In our
observation, the recent capabilities of LLMs re-
main unmatched due to their deep understanding
of language, large training datasets, and increasing
context retention ability.

3.5 Biomarker Level Determination
It is often seen in clinical texts that for biomarkers
like PD-L1 and HER2, among a few others, the
authors of trials do not explicitly state whether the
patient allowed to be enrolled in the study should
test positive or negative. They provide qualifica-
tion scores instead, for example, “PD-L1 Tumor
Proportion Score (TPS) should be greater than
50%” or “the patient must test HER2 IHC 3+”
that implicitly convey that the patient must be PD-
L1 Positive and HER2 Positive, respectively. On
the other hand, a phrase like “PD-L1 < 1%” will
imply that the patient is PD-L1 Negative. In an ever-
expanding field like oncology, there exist 150-200
biomarkers recognized by the U.S. Food and Drug
Administration (FDA) and 10-15 major scoring
techniques used by clinical specialists worldwide,
making adaptability crucial.

The process begins with tokenizing the text us-
ing spaCy (v3.7), followed by sentence segmen-
tation to facilitate more efficient context process-
ing. Each sentence is subsequently parsed using
a constituency parser, such as BENEPAR (Kitaev
et al., 2018), to extract immediate noun phrases.
During experimentation, noun phrases compris-
ing biomarker names and scoring methods were
observed to dominate those containing numerical
values in the constituency parse tree. Addition-
ally, regular expressions were utilised to identify
candidate phrases containing numerical scores, as
commonly found in clinical texts. QuantityIE is
then employed (Wang et al., 2023) to traverse the
constituency parse tree and identify the smallest
enclosing noun phrase that contains a numerical
value along with its candidate context. A second
filtering pass is applied to retain only those candi-
date spans where the numerical value is a nummod
(numerical modifier) or amod (adjective modifier)
of a biomarker token. The quantified biomarker
entity is also verified to have a direct syntactic de-
pendency with the numerical modifier (nummod)
in the parse tree. For instance, “50%” is a num-
mod of clinical scoring methods like “TPS” and is
compounded by “PD-L1”, resulting in the “PD-L1

Figure 3: An example of a constituency parse tree.

TPS” span.
These spans are normalized using a predefined

mapping to ensure domain-specific formatting and
consistent interpretation of the final output. Iden-
tified relations follow a structured format, such as:
"span": "PD-L1 TPS", "relation": ">", "value":
"50%". In a subsequent step, an additional curated
mapping is applied to determine whether the combi-
nation of “relation” and “value” indicates a Positive
or Negative expression state for the biomarker. This
method achieves 0.89 F1 score on our hand-labeled
dataset.

3.6 Post Processing

To refine the extractions, stratification, and
biomarker levels, standardized mappings are uti-
lized to resolve biomarkers and their mutations
into their respective official terminology. This is
followed by the creation of structured tuples in the
format (biomarker, mutation, stratification, score).
In instances where stratification is not explicitly
stated and thus undetermined by the LLM, domain-
specific logic is applied to infer the class type based
on the extracted score levels.

4 Results

Through experimentation on various tasks, we have
chosen the best-trained and fine-tuned components
to build the pipeline. Since there are not many
research works that solve this end-to-end industry-
relevant problem spread across all biomarkers and
therapeutic areas, to the best of our knowledge,
we test this pipeline on the handcrafted test set in
Oncology and Neuroscience settings.

We observe that the model demonstrates excep-
tional capability in learning the context around
words since it identifies biomarkers of the neuro-
science domain as well as the oncology domain
(refer Table 1).

To further evaluate the contribution of domain-
specific fine-tuning, we compared BIOPSY against
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Dataset Precision Recall F1
Oncology 0.85 0.88 0.86
Neuroscience 0.91 0.84 0.87

Table 1: Comparative Evaluation of NER Models for
Biomarker Entity Recognition

a direct GPT-4o baseline with and without any
specialized training data. Tables 2 and 3 present
the comparative performances across oncology and
neuroscience domains, respectively.

While GPT-4o exhibits excellent zero-shot capa-
bilities, our trained pipeline outperforms both the
untrained baseline pipeline and standalone GPT-4o
across all metrics. This performance gap high-
lights that, although large language models provide
reasonable starting points, the complexity of clin-
ical applications necessitates specialized training.
These findings validate our decision to invest in
domain-specific adaptation, where accurate and
context-aware interpretation is critical for clinical
deployment. The results also demonstrate the tan-
gible value added by our proprietary dataset, which
enables precise biomarker identification and rela-
tion extraction in real-world clinical text.

Model P R F1
GPT-4o 0.69 0.78 0.73
BIOPSY (untrained) 0.77 0.73 0.75
BIOPSY (fine-tuned) 0.85 0.88 0.86

Table 2: Oncology domain: comparison of GPT-4o,
baseline BIOPSY, and fine-tuned BIOPSY models.

Model P R F1
GPT-4o 0.78 0.71 0.74
BIOPSY (untrained) 0.74 0.68 0.71
BIOPSY (fine-tuned) 0.91 0.84 0.87

Table 3: Neuroscience domain: comparison of GPT-4o,
baseline BIOPSY, and fine-tuned BIOPSY models.

5 Conclusion

This paper presents BIOPSY, an end-to-end
pipeline for clinical biomarker extraction that inte-
grates entity recognition, mutation linking, stratifi-
cation, and level inference. By combining curated
datasets, transformer-based models, large language
models, and syntax-guided extraction, BIOPSY
achieves high accuracy across diverse biomarker
types and therapeutic domains. Our evaluation

across oncology and neuroscience demonstrates
the value of domain-specific fine-tuning, highlight-
ing BIOPSY’s robustness and adaptability. Ad-
dressing a pressing need in clinical research, it
provides a scalable and interpretable solution for
biomarker-centric text mining, with strong poten-
tial for deployment in trial design, drug develop-
ment, and precision oncology. Future work will
extend this pipeline to additional therapeutic ar-
eas and explore automatic dataset generation for
continual fine-tuning.

6 Limitations

While BIOPSY achieves strong performance across
diverse clinical tasks and therapeutic domains,
there remain opportunities to further enhance its
scope and adaptability. A portion of the train-
ing data is synthetically generated using few-shot
prompting with LLMs, which—though carefully
curated and domain-filtered—can be further en-
riched with larger real-world datasets to capture
greater linguistic diversity. Additionally, while
BIOPSY generalizes effectively to oncology and
neuroscience, extending its evaluation to additional
therapeutic areas will help validate its cross-domain
robustness.
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A Model Selection Study for Biomarker
Entity Extraction

Several biomedical NER models, originally trained
on general clinical entities, were fine-tuned on a
proprietary biomarker-specific dataset. Their abil-
ity to differentiate between biomarkers, mutations
and drug targets, a critical distinction in clinical
research, was evaluated. The study aimed to assess
each model’s capacity to capture the contextual
cues essential for accurate entity recognition. The
evaluation was conducted on a proprietary test set,
and the results are summarised in Table 4. GLiNER
biomed-large-v1.0 demonstrated superior perfor-
mance, achieving the highest F1 score. Addition-

Model Precision Recall F1
TinyBERN 0.71 0.68 0.69
BERN2 0.76 0.74 0.75
LLama 3.1 70B 0.79 0.76 0.77
Qwen2.5 72B 0.78 0.75 0.76
GLiNER biomed-large-v1.0 0.86 0.91 0.88
GLiNER biomed-NER 0.84 0.83 0.83

Table 4: Comparative Evaluation of NER Models for
Biomarker Entity Recognition
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Model Precision Recall F1
Rule-based Classifier 0.61 0.59 0.60
BiLSTM + Attention 0.72 0.70 0.71
LLama 3.1 70B 0.84 0.85 0.84
Ensemble + Attention 0.86 0.88 0.87

Table 5: Comparative Evaluation of Relation Extraction
Models for Biomarker–Mutation Associations

ally, off-the-shelf large language models were eval-
uated using few-shot learning techniques. These
models showed promising results in recognizing
biomarker entities without requiring further fine-
tuning, but struggled with disambiguating closely
related biomarkers and drug targets.

B Model Selection Study for Biomarker
Mutation Relation Extraction

To identify the most effective relation extraction
model, several approaches were evaluated. These
included rule-based classifiers, bidirectional LSTM
architectures (Zhou et al., 2016), attention-based
ensemble models, and LLM-based methods, par-
ticularly using LLama 3.1 70B. These models
were fine-tuned using a custom-labeled dataset
of biomarker–mutation pairs derived from clini-
cal text. The primary evaluation objective was to
assess the model’s ability to accurately infer true
biomarker–mutation associations, especially in the
presence of negations, nested clauses, and domain-
specific phrasing. Table 5 presents the comparative
evaluation results across all tested models.

C Model Selection Study for Biomarker
Stratification

Accurate classification of biomarkers into positive,
negative (Bhatia et al., 2018), and assessment cat-
egories requires a strong understanding of contex-
tual cues, often dispersed across multiple sentences
and phrases. Traditional approaches, such as rule-
based systems (Chapman et al., 2001) and ontology-
driven methods, typically struggle with complex
cases involving nested negations or distributed con-
text. Table 6 presents the precision, recall, and F1
scores of the LLMs selected and evaluated during
this study.

D Post-Processing: Human Expert
Collaboration

For better interpretability, we include an example
illustrating how post-processing integrates domain

Model Precision Recall F1
Rule-based 0.61 0.53 0.56
Llama 3 8B 0.72 0.69 0.70
Llama 3.1 70B 0.87 0.83 0.85
Qwen2.5 72B 0.84 0.85 0.84

Table 6: Comparative Evaluation of rule-based, neural
and LLM models for Biomarker Stratification

expertise to normalize biomarker scoring outputs.
Programmed death-ligand 1 (PD-L1) is fre-

quently reported in clinical text using two met-
rics: Tumor Proportion Score (TPS), or the per-
centage of tumor cells showing PD-L1 expression,
and Combined Positive Score (CPS), or the ratio
of PD-L1–positive tumor and immune cells to all
viable tumor cells. In cases where the stratifica-
tion is not explicitly mentioned in the text but a
score is measured on the TPS or CPS scales, we
make use of domain knowledge to interpret the
scores extracted. For instance, in the sentence “Pa-
tients with PD-L1 TPS ≥ 50% were considered
for the study, while TPS < 1% were excluded.”
the model output before post-processing is:

• PD-L1, stratification = null, score ≥ 50%

• PD-L1, stratification = null, score < 1%

But after the Post-Processing step, the output
contains the inferred stratification:

• PD-L1, stratification = positive, score ≥ 50%

• PD-L1, stratification = negative, score < 1%

The post-processing step applies clinical thresh-
olds derived from domain literature and expert con-
sultation to interpret categorical outcomes. Specifi-
cally, a TPS or CPS score greater than or equal to 1
is considered positive, whereas a TPS or CPS score
less than 1 is considered negative.

These rules are specific to our downstream use
case. We implemented them as configurable map-
pings within the post-processing module, hence
they can be refined within the post-processing
module, depending upon the end user’s specific
needs/interpretations. The resulting framework
preserves expert transparency, interpretability, and
modularity while enabling automated consistency
across datasets.

2321


