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Abstract

Answering “Where is the X button?” with
“It’s next to the Y button” is unhelpful if the
user knows neither location. Useful answers
require obvious landmarks as a reference point.
We address this by generating from a vehicle
dashboard diagram a spatial knowledge graph
(SKG) that shows the spatial relationship be-
tween a dashboard component and its nearby
landmarks and using the SKG to help answer
questions. We evaluate three distinct generation
pipelines (Per-Attribute, Per-Component, and a
Single-Prompt baseline) to create the SKG us-
ing Large Vision-Language Models (LVLMs).
On a new 65-vehicle dataset, we demonstrate
that a decomposed Per-Component pipeline
is the most effective strategy for generating a
high-quality SKG; the graph produced by this
method, when evaluated with a novel Signif-
icance score, identifies landmarks achieving
71.3% agreement with human annotators. This
work enables downstream QA systems to pro-
vide more intuitive, landmark-based answers.

1 Introduction

A driver asks their in-car virtual assistant, “Where
is the Vehicle Stability Assist button?” A system
reliant on direct visual parsing might reply, “It is
to the right of the Lane Keeping Assist button.”
While technically correct, this answer is useless if
the driver is unfamiliar with the referenced “Lane
Keeping Assist button.” The response fails be-
cause its anchor, or landmark, is not a point of
common reference. A truly helpful response must
be grounded in a chain of easily recognizable land-
marks, such as, “It is to the left of the hazard lights,
just below the central air vents.”

This “useless reference” problem reveals two
core weaknesses in naively applying Large Vision-
Language Models (LVLMs) (OpenAI, 2023; Liu
et al., 2023) to this task. The first is identifying
which components are salient enough to serve as

Figure 1: Example dashboard diagram from the 2023
Subaru Crosstrek Owner’s Manual, illustrating compo-
nent labels and pointers. © Subaru Corporation. Used
under fair use for research and educational purposes.

effective landmarks. The second, more fundamen-
tal issue, is the known inaccuracy of LVLMs in dis-
cerning precise spatial relationships from complex
images like technical diagrams (Pan et al., 2024).
To provide intuitive and correct spatial answers, a
system requires a more structured understanding of
the scene. We address both issues by generating a
Spatial Knowledge Graph (SKG), which explicitly
maps components and their spatial relationships,
and then programmatically identifies the most sig-
nificant components to use as landmarks. Further-
more, a scalable system cannot rely on a hardcoded
list of universal landmarks like “steering wheel,” as
these may not always be present or labeled in every
diagram (Figure 1). The system must instead learn
to identify the best possible landmarks from only
the components provided in a specific diagram’s
legend.

This task is complicated by technical hurdles,
most notably the constrained output token win-
dows of many powerful Large Vision-Language
Models (LVLMs). A naive attempt to generate a
knowledge graph in a single query would often ex-
ceed these limits. This token constraint directly
motivated our development of decomposed gener-
ation pipelines as a more robust alternative. This
paper evaluates these decomposed pipelines against
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a single-prompt baseline to find the most effective
method for generating a high-quality SKG capable
of answering location questions effectively. The
robustness of these methods across various dia-
grammatic styles from different manufacturers is
also a key point of analysis.

The key contributions of this work are:

• We design and evaluate two decomposed,
zero-annotation pipelines (Per-Attribute and
Per-Component) against a Single-Prompt
baseline, created to handle the output token
limitation problem.

• We introduce and validate a novel,
algorithmically-derived Significance score,
designed to programmatically identify the
most salient components from the gener-
ated graph to serve as landmarks for the
downstream QA task.

• We create a new, comprehensive evaluation
dataset, containing 15,852 human-annotated
spatial relationships from the dashboards of
65 vehicles across 9 manufacturers, chosen
specifically to test robustness across diverse
diagrammatic styles.

• We present a comprehensive evaluation of
our pipelines and show that the graph gen-
erated by our best-performing method sig-
nificantly improves performance on a down-
stream question-answering task compared
to an image-only baseline that relies on an
LVLM’s direct visual interpretation.

2 Related Work

Prior work in scene graph generation has largely
focused on color-rich photographs, using models
trained on datasets like MS-COCO (Lin et al.,
2015), Open Images (Kuznetsova et al., 2020), or
Pascal VOC (Everingham et al., 2010). These ap-
proaches often rely on message-passing networks
(Xu et al., 2017; Yang et al., 2018) or motif-based
reasoning (Zellers et al., 2018; Tang et al., 2019,
2020), with some extensions to 3D sequences
(Wu et al., 2021). This body of work depends
on texture and hue cues that are absent in our
monochrome diagrams. Concurrently, research
into Vision-Language Models (VLMs) is increas-
ingly focused on incorporating structured graph
representations to improve reasoning (Herzig et al.,

2023; Fei et al., 2024; Zhu et al., 2024; Luo et al.,
2024).

While several diagram-focused datasets exist,
such as AI2D (Kembhavi et al., 2016b) and
FlowLearn (Pan et al., 2024), none include auto-
motive dashboards or our key behavioral attributes.
Supervised parsers like DSDPnet (Kembhavi et al.,
2016a) and UDPnet (Kim et al., 2017) are imprac-
tical for proprietary manuals as they require thou-
sands of annotations. Even methods that adapt from
simulation to reality (Prakash et al., 2021; Zhang
et al., 2024) still require some form of supervi-
sion or asset engineering. Modern open-vocabulary
methods (He et al., 2022; Li et al., 2024) often
inherit photographic priors and ignore behavioral
salience, leading to poor landmark selection in tech-
nical contexts. Other approaches, such as unsuper-
vised generative models (Deng et al., 2021), rule-
based engineering parsers (Bayer et al., 2024), or
vector-source parsers (Shiinoki et al., 2025), are
unsuitable for our task due to their confinement
to synthetic data, reliance on explicit connectors,
or the unavailability of source files for OEM dia-
grams.

Our work uses a SKG to support a downstream
QA system. To the best of our knowledge, our
work is the first one creating knowledge to ad-
dress location-based question across nine OEM
diagram styles without any bounding-box annota-
tion. Thus, our work addresses a critical gap: the
need for a zero-annotation method that can extract
structured spatial knowledge directly from the di-
verse, monochrome, and often complex technical
diagrams used in industrial applications, for which
supervised data is unavailable.

3 Problem Definition

Given a raster image of a vehicle’s dashboard dia-
gram and its corresponding legend, the primary task
is to generate a Spatial Knowledge Graph (SKG).
In this context, a component refers to an item listed
in the diagram’s legend (e.g., the “Hazard Warning
Flasher switch”), while an attribute describes a
property of that component or its spatial relation
to others (e.g., ‘Size’, ‘Proximity’). The SKG is
formally defined as a directed graph G = (V,E),
where V is the set of vertices, with each vertex
representing a component enriched with attributes
like Size and Interaction Frequency. E is the set
of edges, representing the spatial relationships be-
tween components, each described by attributes
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like Proximity and Position. The generated SKG
encapsulates the necessary knowledge needed to
answer location-based questions, based on intuitive
landmarks.

4 Methodology

Our core task is to transform a vehicle’s dashboard
diagram and legend into a structured knowledge
graph by querying a Large Vision-Language Model
(LVLM). This graph generation is a one-time, of-
fline process to build a knowledge base; the QA
system then queries this pre-computed graph in
real-time. A primary motivation for developing
multiple generation pipelines stemmed from a criti-
cal technical constraint in many powerful LVLMs:
a restricted output token window. Initial attempts
to generate a complete, complex graph with a sin-
gle query often failed because the resulting JSON
exceeded the model’s maximum output size. This
limitation necessitated decomposing the problem
into more granular, manageable steps, which di-
rectly led to the design of the Per-Attribute and
Per-Component pipelines.

4.1 Knowledge Graph Generation

We developed three distinct pipelines to generate
the graph attributes, illustrated in Figure 2. Each
represents a different strategy for prompting an
LVLM. All pipelines operate only on components
explicitly listed in the diagram’s legend.

4.1.1 Pipeline 1: Per-Attribute Analysis

This modular pipeline deconstructs the problem, us-
ing a specialized processor and a dedicated LVLM
prompt for each of the four attributes (Size, Fre-
quency, Proximity, and Position). This approach
generates the smallest individual outputs, making
it compatible with even the most restrictive models.
An example of a simple prompt used for attribute
extraction is shown in Prompt 1.

You are an expert automotive analyst.
Your task is to determine the visual
size of a single component from a

vehicle 's dashboard diagram.

Based on the provided image , classify
the size of the component labeled "{
component_name }" using one of the
following categories:

VERY_LARGE , LARGE , MEDIUM , SMALL ,
VERY_SMALL.

Return only the category name.

Prompt 1: Prompt used for the Per-Attribute Size
Analysis. It asks the LVLM to classify a component’s
size based on the provided image and legend.

The specialized prompts for the remaining at-
tributes are detailed in Appendix C (Prompts 2-4).

4.1.2 Pipeline 2: Per-Component Analysis
This pipeline takes an iterative approach, focusing
on one “source” component at a time. For each
component, a single, detailed prompt is sent to
an LVLM (see Prompt 5 in Appendix C), request-
ing a complete analysis of its attributes and all its
relationships to other components. This method
balances task decomposition with contextual rich-
ness.

4.1.3 Pipeline 3: Single-Prompt Analysis
This pipeline tests the limits of models with very
large context windows. It constructs a single, com-
prehensive prompt instructing the LVLM to gen-
erate the entire knowledge graph in one pass (see
Prompt 6 in Appendix C). This approach was only
feasible with Gemini 2.5 Flash.

4.2 Landmark Identification via Algorithmic
Significance

To power a QA system, we must programmatically
identify the optimal reference components (land-
marks) from the generated graph. To achieve this,
we introduce a novel, rule-based Significance score.
Our evaluation then centers on the question: Which
LVLM-driven pipeline generates a graph that, when
processed by our ‘Significance‘ algorithm, best ap-
proximates landmarks selected by a human?

4.2.1 Attribute-to-Score Mapping
The first step is to convert the categorical at-
tributes generated by the LVLM into numerical
scores. ‘Size‘, ‘Proximity‘, and ‘Frequency‘ are
each mapped to a value between 0.2 and 1.0, re-
warding visually and cognitively prominent fea-
tures. The mappings are shown in Table 1.

Table 1: Numerical mapping for categorical attributes.

Score Size Proximity Frequency

1.0 VERY_LARGE ADJACENT CONSTANT
0.8 LARGE CLOSE FREQUENT
0.6 MEDIUM MODERATE MEDIUM
0.4 SMALL FAR RARE
0.2 VERY_SMALL VERY_FAR EMERGENCY
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Figure 2: Overview of the three knowledge graph generation pipelines: Per-Attribute, Per-Component, and Single-
Prompt.

4.2.2 Positional Centrality Score
The ‘Position‘ attribute is handled differently. In-
stead of a direct mapping, we calculate a spatial
centrality score. This score measures how close
a component is to the geometric center of all other
components in the diagram. Components that are
more central (e.g., a central display screen) receive
a higher score (closer to 1.0), while components
on the periphery receive a lower score (closer to
0.0). This is calculated by finding the normalized
inverse distance of each component from the calcu-
lated center point (see Algorithm 1 in Appendix D)
for details.

4.2.3 Final Significance Score Calculation
The ‘Significance‘ score is not used to generate
the graph’s links (edges), which are already de-
fined by the ‘Proximity‘ and ‘Position‘ attributes
from the generation pipelines. Rather, its purpose
is to prune the fully-connected graph by ranking
the importance of these existing relationships. It
is a weighted average of the individual attribute
scores. When testing our hypothesis including the
behavioral ‘Frequency‘ attribute, the formula is:

Score =
Ssize + Sfreq + Sprox + Spos

4
(1)

When excluding ‘Frequency‘ to test a purely visual-
geometric model, the formula is:

Score =
Ssize + Sprox + Spos

3
(2)

For any given component, the three related compo-
nents with the highest resulting Significance scores

are selected as its primary landmarks.The design
of this score is rooted in cognitive heuristics for
human navigation. Size and Proximity are foun-
dational visual cues, as larger and closer objects
are inherently more salient. Positional Centrality
serves as a proxy for visual prominence, as com-
ponents near the center of a scene (like a main
infotainment screen) often act as primary anchors
for spatial orientation. By algorithmically combin-
ing these intuitive properties, the Significance score
aims to computationally model what makes a land-
mark effective for human understanding. Figure 3
provides a practical example of this process, show-
ing the pruned subgraph for the “Multi-function
display.” The algorithm has identified its three most
salient landmarks by combining node attributes like
Size (e.g., “Large”) with relational attributes for
Proximity (dashed lines) and Position (solid lines).
The final, calculated Significance score for each po-
tential landmark is displayed, demonstrating how
the system selects the most intuitive references for
a downstream QA task.

5 Evaluation

We conducted a comprehensive evaluation to an-
swer our research questions. Our setup used a man-
ually annotated dataset of 65 vehicles (995 compo-
nents, 15,852 relationships) across 9 brands.1 The
ground truth for our dataset was produced by an
expert annotator recruited through a professional

1Our complete dataset of annotations and ground-truth
landmarks is publicly available at: https://github.com/
steve-bakos/vehicle-components-dataset. To respect
copyright, the repository contains detailed references to the
source manuals rather than the images themselves.
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Figure 3: An example of a generated subgraph for
the “Multi-function display.” The nodes represent the
three most significant landmarks identified by our al-
gorithm, with their calculated Significance scores. The
edges show the extracted Position (solid) and Proximity
(dashed) relationships, while node attributes like Size
are also shown.

freelancing platform.2 Our evaluation proceeds in
three stages: we first evaluate the accuracy of the
component attributes generated by each pipeline,
then assess how well each resulting graph can iden-
tify human-like landmarks, and finally measure the
impact of the best-performing graph on a down-
stream QA task. We used GPT-4o and Gemini 2.5
Flash for our evaluations.

5.1 Results and Findings

RQ1: What is the optimal graph generation
strategy for generating attributes of dashboard
components and their relationships? No single
pipeline excelled at all tasks; a trade-off emerged
between task decomposition and complexity. For
purely visual attributes like Position and Size, the
highly decomposed Per-Attribute pipeline using
Gemini 2.5 Flash yielded the best results (Table 3
in Appendix A). However, for the more complex,
inferential Frequency attribute, the holistic Per-
Component pipeline with GPT-4o was superior
(MAE 0.922 vs 1.033). This suggests simpler
prompts are better for direct visual interpretation,
while more complex prompts that provide broader
context are better for semantic reasoning. The
Single-Prompt baseline was generally the least ac-

2https://www.fiverr.com/

Table 2: Agreement between human-selected land-
marks and landmarks identified by our algorithmic
Significance score, applied to graphs from different
generation pipelines.

Pipeline Model Agr. (%)

Per-Attribute GPT-4o 45.0
Gemini 2.5 Flash 51.0

Per-Component

GPT-4o 57.1
GPT-4o (No Freq.) 69.7
Gemini 2.5 Flash 52.6
Gemini 2.5 Flash (No Freq.) 71.3

Single-Prompt Gemini 2.5 Flash 41.2
Gemini 2.5 Flash (No Freq.) 54.3

‘(No Freq.)‘ indicates the ‘Frequency‘ attribute was ex-
cluded from the Significance score calculation. Config-
urations with this label use Equation 2, while all others
use Equation 1.

curate method (Figure 4).
RQ2: Which pipeline best identifies human

landmarks? Our experiment to find the best
pipeline for landmark identification yielded a clear
result. We used our algorithmic Significance score
to identify the top three landmarks for each compo-
nent within the graphs generated by our different
pipelines. We then compared these algorithmically-
selected landmarks against those chosen by a hu-
man annotator.

As shown in Table 2, the Per-Component
pipeline paired with Gemini 2.5 Flash proved
most effective, achieving a 71.3% agreement with
human-annotated landmarks. Crucially, this top
performance was achieved only when the behav-
ioral ‘Frequency‘ attribute was excluded from
the ‘Significance‘ calculation. This suggests that,
contrary to our initial hypothesis, core visual and
geometric properties (size, proximity, position) are
stronger and more reliable predictors of landmark
utility than a LVLM’s estimated interaction fre-
quency for this task.

5.2 Downstream Question Answering
Evaluation

RQ3: Does the generated SKG improve down-
stream QA? Having established that the Per-
Component pipeline (using Gemini 2.5 Flash, with-
out Frequency) generates the highest-quality graph
for landmark identification, we conducted a final
evaluation to address our central hypothesis: that
augmenting an LLM with this SKG enables a more
effective QA system than one relying on visual
interpretation alone.
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5.2.1 System Setups and Data
We compared two systems. The Image-Only Base-
line received the dashboard image and a question
(e.g., “Where do I turn off stability control?”) and
was tasked with generating an answer by visually
identifying landmarks. We selected this LVLM-
based system as our primary baseline because it
represents the most powerful and practical alter-
native for this novel task. Traditional state-of-
the-art models proved unsuitable in our prelimi-
nary experiments. Object detection models (e.g.,
YOLO (Jocher et al., 2023)) require large, domain-
specific annotated datasets which do not exist for
this task, while zero-shot segmentation models
(e.g., SAM2 (Ravi et al., 2024)), pre-trained on
real-world color photos, fail to generalize to the
monochrome, annotation-free nature of technical
diagrams. Therefore, a powerful LVLM capable of
zero-shot reasoning is the most appropriate SOTA
baseline for comparison. In the KG-augmented
approach, the LLM first identifies the relevant com-
ponent for each question, such as “stability control
off switch” when presented with the image in Fig-
ure 1 and the question “Where do I find the button
to turn off the stability control system?” The sys-
tem then provides the LLM with both the pipeline-
generated KG and these component identifications,
enabling it to retrieve spatial relationship triplets
from the KG. Finally, using only these retrieved
triplets, the LLM generates a natural-language an-
swer describing the component’s spatial location
relative to landmarks. Full prompts used can be
found in Appendix C (Prompts 7-10).

For each diagram, we used 10 curated ques-
tions. Ground-truth answers were manually au-
thored using the human-annotated landmarks to en-
sure a high-quality reference. A sample of question-
answer pair generated by the KG-augmented frame-
work can be found in Appendix E (Prompts 11).

5.2.2 Metrics and Results
We evaluate text quality using BLEU-4 (Papineni
et al., 2002), ROUGE-1 (Lin, 2004), BERTScore
(Zhang et al., 2020), and an LLM-based judge. The
first three metrics are well-established for assess-
ing text generation quality against ground truth
references. In contrast, the LLM judge is a novel
approach that leverages large language models to
assess semantic alignment between generated re-
sponses and reference answers. The LLM judge de-
termines whether the generated response correctly
captures these landmarks and their spatial relations.

The scoring is as follows: A match of correct spa-
tial relation with the landmark with the groundtruth
answer is considered to be a hit. 1 hit refers to 0.5
score, 2 hit yields for 0.75 and 3 hit yields for 1.
To avoid potential bias, we employ DeepSeek-V3
(DeepSeek-AI et al., 2025) as the evaluating and
question-answering LLM.

As shown in Figures 5, our KG-augmented
pipeline significantly outperformed the image-
only baseline across all metrics. The p-values
from the paired t-test are given in the caption to
show the significance of improvement on each met-
ric. This confirms that providing the LLM with
a structured, landmark-focused knowledge graph
is more effective than relying only on its visual
representation, successfully mitigating the “use-
less reference” problem. The LLM Judge showed
the largest performance gap, suggesting that LLM-
based evaluation can be highly discriminative for
this task.

Interestingly, the minimal performance gap ob-
served in BERTScore, despite its high overall
scores and statistical significance, reveals its in-
herent limitation: by relying on contextual embed-
dings that prioritize semantic similarity, it often
overlooks crucial wording differences that matter
in precision-sensitive tasks like ours. This seman-
tic tolerance explains why manually identified dis-
crepancies fail to translate into substantial score
variations.

In contrast, BLEU-4’s larger score differences
lack statistical significance due to its fundamen-
tal design - the strict 4-gram matching creates
excessive sensitivity to local variations, causing
unstable score distributions that weaken discrim-
inative power. Notably, the LLM judge outper-
forms both by combining semantic awareness with
precise discrimination, achieving both the largest
performance gap and strongest statistical signif-
icance, suggesting its potential as a more holis-
tic evaluation framework.The strong performance
of the LLM judge points to a promising direction
for future work—cross-validating LLM-generated
content using LLM-based evaluators, which could
bridge the gap between semantic flexibility and
discriminative rigor.

5.3 Analysis of Stylistic Variance
RQ4: How robust are the methods to stylistic
variance?

Our analysis shows that the performance of the
generation pipelines is dependent on the stylistic
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Figure 4: Mean Absolute Error (MAE) across all config-
urations. The Per-Component method (center) generally
shows lower error than Per-Attribute (left) or Single-
Prompt (right).

Figure 5: Performance comparison between image-only
and knowledge graph-augmented QA systems. The KG-
augmented approach shows statistically significant im-
provements across three metrics: LLM judge (p=0.004),
ROUGE-1 (p=0.006), and BERTScore (p=0.031). Bleu-
4 shows marginal improvement (p=0.070).

choices of the manufacturer diagrams. Models per-
formed better on clean line drawings compared
to photo-realistic renderings. A detailed analysis,
including performance breakdowns by brand and
a discussion of stylistic features like leader-line
complexity, can be found in Appendix B.

5.4 Error Analysis

A qualitative review revealed common failure
modes for landmark identification. Errors stemmed
from highly complex or overlapping leader lines
(e.g., in Lexus diagrams) causing incorrect label-
to-component association, ambiguity in spatial lan-
guage (e.g., confusing “Below Left” with “Left”),
and difficulty distinguishing between visually simi-
lar, clustered components without bounding boxes.

5.5 Practical Implications

The methodology offers a scalable path for auto-
motive manufacturers and Tier 1 suppliers to cre-
ate structured, machine-readable knowledge from
their existing technical documentation. The SKG
serves as a stable, version-controlled asset that is
decoupled from the QA application, a key advan-
tage over end-to-end models as its accuracy can be
verified offline while the user-facing language com-
ponent is updated independently. Furthermore, this
graph-based approach could be extended beyond
customer-facing QA to support other enterprise ap-
plications, such as technician training modules or
augmented reality systems for vehicle maintenance
and repair, where precise spatial understanding of
components is critical.

6 Conclusion

In this paper, we addressed the “useless refer-
ence” problem in automotive VQA by automati-
cally generating a Spatial Knowledge Graph (SKG)
using Large Vision-Language Models to provide
landmark-based navigational answers. Our primary
contribution is the design and robust evaluation
of three LVLM-based generation pipelines, with
their practical utility validated in a downstream QA
task where our KG-augmented approach signifi-
cantly outperformed an image-only baseline.

Our evaluation yielded several key insights.
We found that a decomposed, Per-Component
pipeline generally produces the highest quality
graphs for this task. Using a bespoke Significance
score to evaluate the output, the graph from our
best pipeline configuration identified landmarks
with 71.3% agreement to human annotators. Fur-
thermore, our analysis revealed that purely vi-
sual and geometric attributes were stronger pre-
dictors of landmark salience than our hypothe-
sized behavioral ‘Frequency‘ attribute estimated
by LVLMs. Finally, as detailed in Appendix B, our
work identifies specific stylistic features, such as
photo-realism and leader-line complexity, as key
drivers of performance variance across differ-
ent manufacturers. This provides a clear, action-
able direction for future work in domain adaptation
and model fine-tuning for technical diagram under-
standing and confirms the method is generalizable.
Our findings champion an approach for industrial
VQA systems where structured knowledge graphs
provide the verifiable, relational backbone needed
for precise and reliable question answering.
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7 Limitations

The scope of this paper is focused on the successful
generation and evaluation of the spatial knowledge
graph. The dataset, while containing over 15,000
relationships from 65 vehicles, has several limi-
tations. The ground truth was produced by a sin-
gle expert annotator; while we verified the quality
on a random sample, future work should involve
multiple annotators and a formal inter-annotator
agreement study to mitigate any potential bias. Our
method also assumes the availability of a labeled
legend, and extending this approach to unlabeled
diagrams or real-world photos remains a significant
challenge for future work. The downstream QA
evaluation was conducted using a curated set of ten
questions per diagram, validated by a single team
member, which does not capture the full range of
questions a real user might ask. Finally, the gener-
ated SKG is a rich data structure that could support
a wider range of diagram reasoning tasks beyond
location-based QA, representing a promising av-
enue for future research.
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A Detailed Performance Metrics

Table 3: Error and Accuracy Metrics for All Model Configurations

Model Attribute MSE MAE
Accuracy

(%)
Tol. Acc.

(%)
W.

Kappa

— Per Attribute —
GPT-4o Frequency 2.303 1.518 39.296 87.638 0.376
GPT-4o Position 2.645 1.626 34.942 73.852 0.239
GPT-4o Proximity 4.886 2.210 26.318 66.112 0.161
GPT-4o Size 3.147 1.774 29.045 89.548 0.395

Gemini 2.5 Flash Frequency 1.648 1.284 48.643 88.442 0.384
Gemini 2.5 Flash Position 1.316 1.147 54.119 79.832 0.298
Gemini 2.5 Flash Proximity 3.216 1.793 40.222 88.374 0.384
Gemini 2.5 Flash Size 1.371 1.171 53.166 93.769 0.438

— Per Component —
GPT-4o Frequency 0.850 0.922 63.116 97.186 0.472
GPT-4o Position 3.007 1.734 30.640 75.410 0.254
GPT-4o Proximity 4.207 2.051 31.630 77.069 0.271
GPT-4o Size 1.200 1.095 56.181 94.171 0.442

GPT-4o (No Freq.) Position 2.925 1.710 31.592 71.909 0.219
GPT-4o (No Freq.) Proximity 3.939 1.985 33.844 78.425 0.284
GPT-4o (No Freq.) Size 1.167 1.080 56.784 93.568 0.436

Gemini 2.5 Flash Frequency 1.066 1.033 58.693 95.678 0.457
Gemini 2.5 Flash Position 1.503 1.226 50.959 80.450 0.305
Gemini 2.5 Flash Proximity 3.406 1.846 38.481 86.330 0.363
Gemini 2.5 Flash Size 1.119 1.058 57.688 96.382 0.464

Gemini 2.5 Flash (No Freq.) Position 1.477 1.215 51.388 80.034 0.300
Gemini 2.5 Flash (No Freq.) Proximity 3.398 1.843 38.550 87.207 0.372
Gemini 2.5 Flash (No Freq.) Size 1.135 1.065 57.387 96.583 0.466

— Single Prompt —
Gemini 2.5 Flash Frequency 1.233 1.111 55.578 89.849 0.398
Gemini 2.5 Flash Position 1.787 1.337 46.524 78.848 0.288
Gemini 2.5 Flash Proximity 4.678 2.163 27.902 76.848 0.268
Gemini 2.5 Flash Size 1.442 1.201 51.960 94.975 0.450

Gemini 2.5 Flash (No Freq.) Position 1.838 1.356 45.767 75.814 0.258
Gemini 2.5 Flash (No Freq.) Proximity 4.642 2.154 28.186 77.650 0.276
Gemini 2.5 Flash (No Freq.) Size 1.516 1.231 50.754 94.774 0.448

Bold values indicate the best-performing model for that metric within each pipeline category.
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B Analysis of Manufacturer Stylistic Variance

To test our hypothesis that performance is style-dependent, we analyzed the Mean Absolute Error (MAE)
for each of the nine automotive brands. The results in Figure 6 and Table 5 confirm that stylistic choices
directly impact model accuracy. We observed a direct link between qualitative styles (Table 4) and
performance: models achieved lower error on clean, high-contrast line drawings (e.g., Acura, Subaru)
and higher error on photo-realistic, shaded renderings (e.g., Buick, Chevrolet) that introduce visual
noise. Furthermore, the complex, overlapping leader lines used by Lexus correlated with higher MAE,
likely due to difficulty in associating labels with components amidst visual clutter, whereas the simpler
pointers of Nissan led to stronger performance. This analysis confirms that specific, identifiable stylistic
choices—namely photo-realism and leader-line complexity—are primary drivers of performance variance
and key challenges for generalization.

Table 4: Qualitative Analysis of Manufacturer Diagram Styles

Manufacturer Stylistic Characteristics

Acura High-contrast line drawing. Uses long leader lines originating
from the component, terminating in a vertical stack of labels with
page numbers.

Buick Photo-realistic, shaded drawing. Uses a multi-column numbered
legend at the bottom of the page and direct, thin leader lines.

Chevrolet Photo-realistic image. Uses a multi-column numbered legend and
direct leader lines. Style is very similar to Buick (General Motors
family).

Ford Photo-realistic rendering with a multi-column numbered legend.
Some pointers are clustered on a single component.

Lexus High-quality photograph. Does not use numbers; instead uses
long, complex leader lines connecting components directly to text
boxes with page numbers.

Lincoln Photo-realistic rendering. Uses lettered pointers (A, B, C...) that
correspond to a legend that refers the user to another section for
details (e.g., "SEE LIGHTING CONTROL").

Nissan Simple, clear, monochrome line drawing. Uses numbered pointers
and a corresponding single-column numbered legend.

Subaru Clear line drawing with some shaded areas. Pointers often lead
to a magnified cluster of controls, which are then individually
numbered.

Toyota Clear line drawing with light shading. Uses a hybrid approach
with both lettered pointers in circles on the diagram and direct
leader lines to text boxes.
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Table 5: Mean Absolute Error (MAE) by Brand and Pipeline

Brand Model/Method Per Attribute Per Component Single-Prompt

Acura

GPT-4o 1.696 1.334 -
GPT-4o (No Freq.) - 1.499 -
Gemini 2.5 Flash 1.207 1.146 1.304
Gemini 2.5 Flash (No Freq.) - 1.232 1.415

Buick

GPT-4o 1.696 1.412 -
GPT-4o (No Freq.) - 1.562 -
Gemini 2.5 Flash 1.315 1.307 1.371
Gemini 2.5 Flash (No Freq.) - 1.367 1.515

Chevrolet

GPT-4o 1.650 1.343 -
GPT-4o (No Freq.) - 1.439 -
Gemini 2.5 Flash 1.297 1.213 1.312
Gemini 2.5 Flash (No Freq.) - 1.235 1.306

Ford

GPT-4o 1.698 1.419 -
GPT-4o (No Freq.) - 1.498 -
Gemini 2.5 Flash 1.274 1.151 1.377
Gemini 2.5 Flash (No Freq.) - 1.212 1.437

Lexus

GPT-4o 1.686 1.392 -
GPT-4o (No Freq.) - 1.451 -
Gemini 2.5 Flash 1.351 1.257 1.408
Gemini 2.5 Flash (No Freq.) - 1.246 1.437

Lincoln

GPT-4o 1.787 1.378 -
GPT-4o (No Freq.) - 1.463 -
Gemini 2.5 Flash 1.209 1.242 1.352
Gemini 2.5 Flash (No Freq.) - 1.299 1.582

Nissan

GPT-4o 1.571 1.430 -
GPT-4o (No Freq.) - 1.523 -
Gemini 2.5 Flash 1.228 1.296 1.360
Gemini 2.5 Flash (No Freq.) - 1.329 1.469

Subaru

GPT-4o 1.714 1.227 -
GPT-4o (No Freq.) - 1.407 -
Gemini 2.5 Flash 1.293 1.140 1.427
Gemini 2.5 Flash (No Freq.) - 1.185 1.532

Toyota

GPT-4o 1.563 1.335 -
GPT-4o (No Freq.) - 1.488 -
Gemini 2.5 Flash 1.247 1.216 1.367
Gemini 2.5 Flash (No Freq.) - 1.353 1.435

A dash (—) indicates the configuration was not run. Bold values indicate the best-performing model configuration
within each pipeline for that brand.
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Figure 6: Mean Absolute Error (MAE) by Manufacturer, showing average MAE across all relevant attributes for
each model, broken down by automotive brand.
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C Prompts Used in Each Stage

C.1 Prompt for Per-Attribute Frequency Analysis

You are an expert automotive analyst. Your task is to estimate the frequency of use for a single component on a vehicle 's
dashboard.

Based on general driving knowledge , estimate how often a driver would interact with the component labeled "{ component_name }".
Use one of the following categories:

CONSTANT , FREQUENT , OCCASIONAL , RARE , EMERGENCY.

Return only the category name.

Prompt 2: Prompt used for the Per-Attribute Frequency Analysis pipeline.

C.2 Prompt for Per-Attribute Proximity Analysis

You are an expert automotive analyst. Your task is to determine the spatial proximity between two components in a vehicle 's
dashboard diagram.

Based on the provided image , classify the proximity between "{ component_1_name }" and "{ component_2_name }" using one of the
following categories:

ADJACENT , CLOSE , MODERATE , FAR , VERY_FAR.

Return only the category name.

Prompt 3: Prompt used for the Per-Attribute Proximity Analysis pipeline.

C.3 Prompt for Per-Attribute Position Analysis

You are an expert automotive analyst. Your task is to determine the relative position of one component to another in a vehicle
's dashboard diagram.

From the perspective of "{ source_component_name }", what is the position of "{ target_component_name }"? Use one of the following
categories:

ABOVE , BELOW , LEFT , RIGHT , ABOVE_LEFT , ABOVE_RIGHT , BELOW_LEFT , BELOW_RIGHT , SAME_PLACE.

Return only the category name.

Prompt 4: Prompt used for the Per-Attribute Position Analysis pipeline.

C.4 Prompt for Per-Component Analysis

You are an expert automotive analyst. Your task is to generate a complete analysis for a single source component from a
vehicle 's dashboard diagram.

For the source component "{ source_component_name }", provide the following:
1. Its visual size using one of the following categories:

VERY_LARGE , LARGE , MEDIUM , SMALL , VERY_SMALL.
2. Its estimated frequency of use using one of the following categories:

CONSTANT , FREQUENT , OCCASIONAL , RARE , EMERGENCY.
3. For every other component in the list {component_list}, provide:

a. The proximity from the source component , using one of the categories:
ADJACENT , CLOSE , MODERATE , FAR , VERY_FAR.

b. The position relative to the source component , using one of the categories:
ABOVE , BELOW , LEFT , RIGHT , ABOVE_LEFT , ABOVE_RIGHT , BELOW_LEFT , BELOW_RIGHT , SAME_PLACE.

Return the information as a single JSON object.

Prompt 5: Prompt used for the Per-Component Analysis pipeline.

C.5 Prompt for Single-Prompt Analysis

You are an expert automotive analyst. Your task is to generate a complete knowledge graph for a vehicle 's dashboard from a
single image.

Given the list of components: {component_list }.

Create a complete , fully -connected knowledge graph. For every component , provide its size and frequency. For every pair of
components , provide their proximity and relative position.

Use the following categories:
- Size: VERY_LARGE , LARGE , MEDIUM , SMALL , VERY_SMALL
- Frequency: CONSTANT , FREQUENT , OCCASIONAL , RARE , EMERGENCY
- Proximity: ADJACENT , CLOSE , MODERATE , FAR , VERY_FAR
- Position: ABOVE , BELOW , LEFT , RIGHT , ABOVE_LEFT , ABOVE_RIGHT , BELOW_LEFT , BELOW_RIGHT , SAME_PLACE

Return the entire graph as a single , comprehensive JSON object.

Prompt 6: Prompt used for the Single-Prompt Analysis pipeline.
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D Positional Centrality Algorithm

Algorithm 1 Positional Centrality Calculation

1: Input: A set of components C and their spatial relationships R.
2: Output: A normalized centrality score Spos for each component.
3: Initialize all component positions Pc to (0, 0) for all c ∈ C.
4: For each component c ∈ C:
5: Let Rc be the set of relationships involving c.
6: For each relationship (c, c′) ∈ Rc with position p:
7: Let vp be the vector for position p (e.g., ’ABOVE’ is (0, 0.5)).
8: Update Pc = Pc + vp.
9: Pc = Pc/|Rc| ▷ Average the position vectors

10: Let Dmax = 2.0 ▷ Max possible distance from center
11: for each component c ∈ C with position (x, y) do
12: dc =

√
x2 + y2

13: Spos(c) = max(0, 1− (dc/Dmax))

14: return Spos
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E Question Answering Prompts

E.1 Prompt for Image-only QA framework

You are a car expert generating detailed answers about locating controls in a car.
Your task is to provide clear , spatial directions using landmarks from the components list.

IMPORTANT RULES:
- Choose 3 landmarks from the provided components list for each question
- Use natural , conversational language
- Focus on spatial relationships and visual landmarks
- Provide clear , step -by-step directions
- Include visual descriptions to help identify the control
- Keep answers concise but informative """},

Return the answers as a JSON array with 'question ' and 'answer ' fields for each entry.
"""

Prompt 7: Prompt used for QA system of Image-only Framework.

E.2 Prompt for QA - Phase 1

You are analyzing questions about finding controls in a {DATASET_CONFIG['make ']} {DATASET_CONFIG['model ']} car interior.

For each question below , identify the specific car component/control that the question is asking about.
Look at the car interior image and use the available components information to determine what component the user is

trying to locate.
CRITICAL RULES:

- Identify the EXACT component name from the available components list
- Use specific , descriptive component names that match the components data
- Focus on the main control/component being asked about
- Be consistent with component naming from the provided data

Return the results as a JSON array with 'question ' and 'component_name ' fields for each entry.

Prompt 8: Prompt used for the first phase of KG-Augmented QA.

E.3 Prompt for QA - Phase 2

You are analyzing spatial relationships between car components based on significance scores from full graph analysis.

For each question -component pair below , analyze the full graph data to choose the most significant landmarks and
extract spatial triplets.

CRITICAL RULES:
1. For each question -component pair:

a. Find the target component in the full graph analysis (use fuzzy matching if exact match not found)
b. From the full graph data: Identify all landmarks that have spatial relationships with the target component
c. Choose the TOP 3 landmarks with the HIGHEST significance scores for that component
d. Generate exactly 3 triplets in format: (target_component , spatial_relation , landmark)

2. Landmark Selection Process:
- Look for the target component in the full graph analysis
- Find all landmarks that have spatial relationships with this component
- Sort these landmarks by their significance scores (highest to lowest)
- Select the TOP 3 landmarks with the highest significance scores

3. Triplet Format:
- Target: The component being asked about
- Spatial Relation: The spatial relationship from full graph (e.g., "above", "below", "right", "near", "adjacent ")
- Landmark: One of the 3 top -scoring landmarks from the full graph analysis
- Example: (" volume knob", "right", "steering wheel ")

4. Process:
- Step 1: Locate the target component in the full graph data
- Step 2: Identify all landmarks with spatial relationships to this component
- Step 3: Select the 3 landmarks with highest significance scores
- Step 4: Create exactly 3 triplets (one for each selected landmark)
- Do NOT create more than 3 triplets per component

Return the results as a JSON array with 'question ', 'component_name ', and 'triplets ' fields for each entry.

Prompt 9: Prompt used for the second phase of KG-Augmented QA.

E.4 Prompt for QA - Phase 3

You are generating spatial directions for finding car components based on extracted triplets.

For each question below , use the provided triplets to generate a clear , spatial answer.
Generate answers based ONLY on the spatial relationships in the triplets.

CRITICAL RULES FOR ANSWER GENERATION:
1. Answer Structure:

- Use ONLY the spatial relationships from the triplets
- Provide natural , conversational directions
- Keep answers clear and concise

2. Triplet Interpretation:
- Convert triplets into natural language directions
- Use the spatial relationships to guide the user
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- Combine multiple triplets if available for comprehensive directions
- Focus on the most relevant spatial information

3. Answer Format:
- Use the spatial relationships from triplets directly
- Provide step -by-step directions based on landmarks
- Include visual cues and landmarks from the triplets

Return the answers as a JSON array with 'question ', 'component_name ', 'triplets ', and 'answer ' fields for each entry.

Prompt 10: Prompt used for the third phase of KG-Augmented QA.

E.5 A Sample of QA pair

"question ": "Where can I see trip information like mileage and fuel economy?",
"answers ": {

"image_only ": "Trip information appears in the Multi -Information Display between your main gauges behind the steering
wheel. You can cycle through different screens using buttons on your steering wheel. The same information is
sometimes available on the larger Audio/Information Screen in the center of your dashboard.",

"KG_augmented ": "Your trip information appears in the multi -information display , which shares the same location as the
gauges (to the right of the audio/info screen and below the steering wheel adjustments)."

Prompt 11: A sample question-answer pair generated in KG augmented framework
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