
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 2252–2269
November 4-9, 2025 ©2025 Association for Computational Linguistics

ECHO-LLaMA: Efficient Caching for High-Performance LLaMA Training

Maryam Dialameh1,2, Rezaul Karim2, Hossein Rajabzadeh1,2, Omar Mohamed Awad2

Boxing Chen2, Walid Ahmed2, Yang Liu2, Hyock Ju Kwon1

1University of Waterloo, Waterloo, Canada
2Ascend Team, Huawei Technologies, Toronto, Canada

{maryam.dialameh,hossein.rajabzadeh,hjkwon}@uwaterloo.ca
{omar.mo.awad}@outlook.com

{rezaul.karim3, boxing.chen,walid.ahmed1,yang.liu8}@huawei.com

Abstract
This paper introduces ECHO-LLaMA, an effi-
cient LLaMA architecture designed to improve
both the training speed and inference through-
put of LLaMA architectures while maintaining
its learning capacity. ECHO-LLaMA trans-
forms LLaMA models into shared KV caching
across certain layers, significantly reducing
KV computational complexity while maintain-
ing or improving language performance. Ex-
perimental results demonstrate that ECHO-
LLaMA achieves up to 77% higher token-per-
second throughput during training, up to 16%
higher Model FLOPs Utilization (MFU), and
up to 14% lower loss when trained on an equal
number of tokens. Furthermore, on the 1.1B
model, ECHO-LLaMA delivers approximately
7% higher test-time throughput compared to
the baseline. By introducing a computation-
ally efficient adaptation mechanism, ECHO-
LLaMA offers a scalable and cost-effective
solution for pretraining and finetuning large
language models, enabling faster and more
resource-efficient training without compromis-
ing performance.

1 Introduction

Large language models (LLMs) have shown re-
markable success across a wide range of natural
language processing (NLP) tasks, including text
generation (Makridakis et al., 2023), summariza-
tion (Zhang et al., 2024), and question answering
and more (Chang et al., 2024). Despite their ca-
pabilities, training and deploying these models is
highly resource-intensive, demanding significant
computational power and memory (Chowdhery
et al., 2023). For instance, a transformers-based
LLM requires about three terabyte KV-cached
memory for a model of size 500B with 8k con-
text length and 128 batch size (Pope et al., 2023).
Furthermore, the process of pretraining for LLMs
is both resource and data intensive (Milano et al.,
2023; Hoffmann et al., 2022).

Figure 1: ECHO-LLaMA architecture uses shared KV
caching and is trained through layer-wise adaptation,
progressively converting pretrained LLaMA models
into ECHO-LLaMA. Sharing L−N KV-layers (total
layers minus self-attention layers) reduces computa-
tional overhead and improves inference speed.

Several existing works have been proposed to
address the challenge of improving transformer ef-
ficiency (Zhang et al., 2023; Yang et al., 2023; Lee
et al., 2024; Tang et al., 2024; Adnan et al., 2024;
Hajimolahoseini et al., 2023; Ahmed et al., 2023),
including GQKVA (Javadi et al., 2023), Beyond
KV Caching (Liao and Vargas, 2024) and EchoAtt
(Rajabzadeh et al., 2024) that specifically share the
attention weights across layers to decrease com-
putation and parameters; however, they still need
to cache for V matrices. YOCO (You Only Cache
Once) is another similar work that investigates shar-
ing key-value (KV) caches across the second-half
of layers (cross-decoder layers) while employing
windowed-attention for the first half; thereby gain-
ing computational and memory efficiency during
training and inference (Sun et al., 2024). YOCO

2252



models, however, use windowed self-attention,
which limits their ability to capture long-range
token dependencies (Beltagy et al., 2020). Fur-
thermore, they apply shared KV caches to exactly
half of the layers, enforcing a rigid and subopti-
mal KV sharing strategy. This lack of flexibility is
particularly problematic for edge devices, which
may benefit from adaptive KV sharing, allowing
for shorter or longer KV reuse based on resource
constraints and workload demands. Inspired by
YOCO, this paper introduces ECHO-LLaMA, an
efficient modification of LLaMA architectures that
focuses on having efficient training and pretrain-
ing processes of LLaMA models. ECHO-LLaMA
leverages a caching strategy where KV representa-
tions are shared across cross-decoder layers (typ-
ically the second half of the LLaMA layers), ef-
fectively reducing memory overhead and compu-
tational redundancy. Despite cross-decoder layers,
the model remains strictly causal and retains the
standard autoregressive masking used in LLaMA
architectures.

Unlike the original YOCO approach (Sun et al.,
2024), which is designed for training models from
scratch, ECHO-LLaMA extends this methodology
to pre-trained LLaMA models, enabling a more ef-
ficient adaptation without requiring full re-training.
This is achieved through incremental adaptation, a
strategy that incrementally transitions pre-trained
LLaMA models into the ECHO architecture while
maintaining or improving their language capabili-
ties. The results demonstrate significant improve-
ments in training throughput (up to 77%), Model
FLOPs Utilization (MFU, up to 16%), and lower
loss (up to 14%) compared to baselines. Moreover,
ECHO-LLaMA achieves faster test-time through-
put (approximately 7% on the 1.1B model), further
showcasing its effectiveness for large-scale model
deployment. By reducing training costs, accelerat-
ing inference, and preserving model performance,
ECHO-LLaMA represents a scalable and practical
solution for optimizing pre-trained large language
models.

The proposed ECHO-LLaMA framework offers
several significant advantages. First, it achieves
faster inference without sacrificing language per-
formance. Second, it reduces the need for heavy
pre-training, making it a practical approach for
building efficient versions of LLaMA models.
Third, experiments conducted on "Nvidia-V100
GPUs" and "Huawei Ascend NPU-910B" devices
show that ECHO-LLaMA consistently achieves

higher training throughput and competitive per-
formance compared to LLaMA baselines. Ad-
ditionally, the results demonstrate the ability of
the proposed framework to maintain or improve
model performance while reducing computational
costs. Hence, the main contributions of this
work are summarized as follows: 1) We pro-
pose ECHO-LLaMA, an efficient LLaMA archi-
tecture that shares KV caches across selected set
of layers to reduce computational redundancy. 2)
ECHO-LLaMA employs a layer-wise incremen-
tal adaptation for the training strategy to effi-
ciently convert pre-trained LLaMA models into
the ECHO-LLaMA structure. 3) This approach
significantly improves training throughput and in-
ference speed without compromising language per-
formance. 4) Extensive experiments demonstrate
higher model FLOPs utilization, lower loss, and
increased tokens-per-second throughput compared
to baseline models.

2 Proposed Method

This section introduces our efficient framework for
converting pretrained LLaMA models into ECHO-
LLaMA architectures through incremental layer-
wise adaption. The core idea consists of two parts:
1) the ECHO-LLaMA architecture and 2) layer-
wise incremental adaptation strategy. Figure 1
illustrates the workflow of the ECHO-LLaMA,
in which the first half of the layers remains full
self-attention with full KV caches, and the second
half of layers are gradually converted into cross-
decoders with only one set of global KV caches.
Each cross-decoder layer uses the global KV, com-
puting by linearly transforming the output of the
middle layer followed by an RMS normalization
(Zhang and Sennrich, 2019).

Given an input sequence of token embeddings
x1, x2, . . . , xn ∈ Rd, where d is the hidden size,
the first N layers of an ECHO-LLaMA model (out
of a total of L layers) operate similarly to standard
LLaMA layers. The parameter N ∈ {L/2, . . . , L}
is a hyperparameter that controls the extent of KV
sharing in ECHO-LLaMA. Let’s Xl−1 be the out-
put of layer l−1, which would be the input to layer
l. Therefore, for an input Xl−1, l ∈ {0, 1, ..., N},
we have:

{
X ′

l = Self-Attn
(
RMSNorm(Xl−1)

)
+Xl−1,

Xl = SFF
(
RMSNorm(X ′

l)
)
+X ′

l .
(1)

2253



Self-Attn(X) = softmax
(
XWQ (XWK)T√

dk

)
XWV .

(2)
where WQ,WK ,WV ∈ Rdmodel×dk , dk represents
the dimensionality of the key and query vectors,
typically set as dk = dmodel

h and h is the number
of attention heads. The LLaMA MLP module is a
SiLU (Elfwing et al., 2018) activated feed forward
module, SFF(X), consisting of a gate projection,
an up projection, and a down projection. Given an
input tensor X , the MLP transformation is defined
as:

SFF (X) = Wdown

(
SiLU(WgateX + bgate)⊙

(WupX + bup)
)
+ bdown

(3)

where Wgate ∈ Rd×dup , bgate ∈ Rdup (bias for
gate projection parameters), Wup ∈ Rd×dup , bup ∈
Rdup (up projection parameters), Wdown ∈ Rdup×d,
bdown ∈ Rd (down projection parameters), and ⊙
represents the element-wise Hadamard product.
The output of layer-N , i.e. XN , is then passed
through global WK and W V followed by RMS
normalization, creating one shared KV for the rest
of layers. In other words, layers l ∈ {N+1, ..., L}
use the same KV matrices and, therefore, compute
cross attention between query and shared KV. This
modification allows LLaMA models to save KV
cache memory and increase both training and infer-
ence speed. Assuming XN as the output of layer
N , the shared KV in ECHO-LLaMA is computed
as follows:

Kshared = RMSNorm(WK
globalXN ) (4)

Vshared = RMSNorm(W V
globalXN ) (5)

where WK
global and W V

global follows the same size
as WK and W V . We further modify the LLaMA
architecture to compute cross attention between
query and shared-KV as follows:

Cross-Attn(X) = softmax
(
XNWQ (Kshared)

T
√
dk

)
Vshared.

(6)
As depicted in Figure 1, the output of cross atten-
tion is then added by a residual and passed through
RMS normalization and SFF module.

Algorithm 1 Incremental Adaptation for ECHO-
LLaMA
Require: Pretrained model Fθpre , total layers L,

threshold layer N for cross-decoder conver-
sion, token budget per stage Tstage ≈ 4M,
training steps per stage S ≈ 150, final token
budget Tfinal ≈ 4B

Ensure: Adapted model Fθ

1: Initialize: Fθ ← Fθpre

2: Define adaptation range: R ← {ℓ | ℓ =
L,L− 1, . . . , N}

3: for all ℓ ∈ R (in descending order) do
4: Convert layer ℓ into a cross-decoder layer

in Fθ

5: Update parameters θ(ℓ) by minimizing

min
θ(ℓ)
L
(
Fθ,Dℓ

)

for S steps on a token set of size Tstage
6: end for
7: Fine-tune Fθ for 1 epoch on a token set of size
Tfinal

8: return Fθ

2.1 Incremental Adaptation Strategy
ECHO-LLaMA leverages incremental adaptation
from a pre-trained LLaMA model. Denote the pa-
rameters of layer ℓ by θ(ℓ). The layers {1, . . . , L}
are partitioned into ordered blocks {B1,B2, . . . },
where each block Bm is adapted in a separate stage.
In our experiments, we assume the size of Bm is 1.
The incremental adaptation process is defined as
follows:

1. Initialization: For all ℓ, set θ(ℓ) ← θ
(ℓ)
pretrained.

2. Stage m Update: For each ℓ ∈ Bm, up-
date θ(ℓ) via gradient descent on a data subset
Dm ⊆ D, while keeping parameters in layers
ℓ /∈ Bm frozen.

The stage-m objective is:

min
{θ(ℓ):ℓ∈Bm}

L
(
Fθ,Dm

)
. (7)

The overall training objective is defined as the
cross-entropy loss:

L(θ;D) = ∑
(xi,yi)∈D

∑Ti
t=1− logPθ(yi,t | xi, yi,1:t−1)

(8)
where Ti is the target sequence length for the ith
sample. During incremental adaptation, only the

2254



Model CQA BQ WG PiQA Arc_c Arc_e OBQA HS Avg. Acc Throughput Improvement
Zero-Shot Results

TinyLLaMA (Baseline) 20.15 56.02 59.35 72.63 32.68 55.47 36.80 61.47 49.32 NA

TinyLLaMA (Baseline+CT) 20.06 55.84 59.34 72.41 32.53 55.35 36.73 61.35 49.20 NA

ECHO-TinyLLaMA-25%-Shared-KV 20.72 58.86 59.75 73.45 33.19 54.12 36.40 59.01 49.44 3.35% ↑
ECHO-TinyLLaMA-50%-Shared-KV 20.64 58.69 58.96 73.72 31.74 53.54 35.00 59.01 48.91 7% ↑

5-Shot Results
TinyLLaMA (Baseline) 19.0 62.11 62.12 74.65 36.43 69.23 38.20 62.19 52.98 NA

TinyLLaMA (Baseline+CT) 18.88 62.10 62.08 74.68 36.41 69.20 38.21 62.20 52.97 NA

ECHO-TinyLLaMA-25%-Shared-KV 19.10 63.41 62.16 74.67 36.50 68.14 36.89 59.35 52.53 3.35%↑
ECHO-TinyLLaMA-50%-Shared-KV 18.10 62.39 61.48 73.78 36.35 66.20 37.00 59.93 51.79 7%↑

Table 1: Zero-shot and 5-shot evaluation results for different models across multiple benchmarks. The last column
reports the test throughput improvement compared to the baseline in terms of generated tokens per seconds. NA
means not applicable. CT means continual training on the same dataset as ECHO versions. Additional evaluation
results on larger models and more diverse datasets are included in Appendix A.

parameters in the current block Bm are updated.
Algorithm 1 outlines the incremental adaptation
strategy used to transform a pre-trained LLaMA
model into the ECHO-LLaMA architecture. Start-
ing with the pretrained model Fθpre , we define an
adaptation range

R = {ℓ | ℓ = L,L− 1, . . . , N},

where L is the total number of layers and N is the
target layer at which adaptation stops. In general,
each layer ℓ ∈ R can be grouped as a block Bm
in a block-wise incremental adaptation strategy.
For each layer (or block Bm) in R, the standard
self-attention is converted into cross-attention by
introducing global shared KV matrices. The param-
eters θ(ℓ) of the converted layer are then updated
by minimizing the loss function

L
(
Fθ,Dℓ

)

for S ≈ 150 steps using a token budget of
Tstage ≈ 4M tokens. This incremental update en-
ables the model to effectively adapt to the new
cross-attention mechanism while mitigating catas-
trophic forgetting (Kirkpatrick et al., 2017).
Once all layers in R have been incrementally
adapted, the entire model Fθ undergoes a final
fine-tuning phase for one epoch on a larger token
set (Tfinal ≈ 4B tokens). This final phase allows
the model to further refine its representations, sta-
bilize training dynamics, and enhance overall gen-
eralization for downstream tasks. By incrementally
updating layers (or blocks) with approximately 150
training steps per stage, the method achieves a fa-
vorable balance between computational cost and
performance, preserving critical information flow
and ensuring robust cross-attention mechanisms.

2.1.1 Memory Footprint
In a standard LLaMA model, each layer ℓ has its
own key and value projection matrices, incurring a
memory cost proportional to:

L× (2d2).

where p is sharing ratio. For ECHO-LLaMA, with
partial KV sharing, the cost becomes:

(1− p)L× (2d2) + 2d2.

Thus, the ratio of KV memory usage in ECHO-
LLaMA versus the baseline is:

(1− p)L× (2d2) + 2d2

L× (2d2)
= (1− p) +

1

L
.

For large L, this ratio approximates 1− p.

3 Experiments

Benchmarks- The evaluation benchmarks used
to assess the performance of ECHO-TinyLLaMA
1 span a wide range of natural language under-
standing tasks, ensuring comprehensive coverage
of different linguistic and reasoning challenges:
CommonsenseQA (CQA), BoolQ (BQ), Wino-
grande (WG), PiQA, ARC_c and Arc_e (chal-
lenge and easy), OpenBookQA (OBQA), and Hel-
laSwag (HS). These benchmarks collectively test
the model’s strengths in commonsense reasoning,
linguistic understanding, and scientific knowledge
application.

TinyLLaMA MFU- The MFU for the original
TinyLLaMA and ECHO-TinyLLaMA was eval-
uated on different configuration of Nvidia-V100

1Converting from TinyLLaMA-1.1B https:
//huggingface.co/TinyLlama/TinyLlama_v1.1

2255

https://huggingface.co/TinyLlama/TinyLlama_v1.1
https://huggingface.co/TinyLlama/TinyLlama_v1.1


Model Train Loss MFU (%) NPU-910B MFU (%) V100 (SDPA)
NPU GPU 1 4 8 1 4 8

LLaMA-125M (base) 5.25 5.06 14.35 9.19 8.33 23.59 22.30 21.96
ECHO-LLaMA-125M 5.28 5.08 14.49 9.62 9.45 24.32 22.73 22.25
TinyLLaMA (base) 4.65 4.97 24.17 22.11 22.19 34.34 34.33 LSE
ECHO-TinyLLaMA 4.45 4.67 27.10 27.98 22.51 39.32 34.42 LSE
LLaMA-3B (base) 4.25 4.68 29.36 32.21 30.89 OOM 35.31 34.01
ECHO-LLaMA-3B 4.15 4.70 30.78 48.31 46.34 OOM 37.34 36.05
LLaMA-7B (base) 3.90 4.56 OOM 38.78 35.07 OOM OOM 31.67
ECHO-LLaMA-7B 3.34 4.00 35.58 LSE 35.53 OOM OOM 35.74

Table 2: Unified comparison across NPU-910B and V100 (sequence length = 2048). MFU is reported for 1, 4, and
8 devices; OOM = out-of-memory, LSE = loss-scale error. All models were trained under an equal budget; best
numbers per row are bold in the source data.

GPUs and Ascend-910B NPUs, different batch
sizes, fixed sequence length of 2048, and 100 train-
ing steps. We use the MFU calculation script from
LLaMA-Factory repository (Zheng et al., 2024)
2. However, in case of the device types (GPU or
NPU), this script needs several modification be-
fore computing MFU, including setting precision
to fp16, increasing the number of workers for data
pre-processing, setting the finetuning_type to full,
and updating the theoretical FLOPs based on your
computing devices.
Language Model Evaluations- We used LM-
Harness repository as an evaluation tool to as-
sess the language performance of different ECHO-
LLaMA architecture (Gao et al., 2024). 3

To evaluate the effectiveness of our incremen-
tal training strategy, we incrementally applied the
training on approximately 4 billion tokens 4 , ini-
tializing the ECHO-TinyLLaMA models from the
baseline weights (hug). We experiment for flexi-
bly growing KV sharing architectures allowing the
cross-decoders to be used for 25% and 50% of the
layers in contrast to a fixed sharing size of YOCO.
For 25% configuration, only the last 25% of layers
are converted into cross-decoder layers. In the case
of the 50% configuration, the entire second half of
the layers are transitioned into cross-decoders.

The evaluation results, presented in Table 1,
demonstrate that ECHO-TinyLLaMA with 25%
shared cross-decoders consistently outperforms
the baseline in both zero-shot and 5-shot settings,

2Please see cal_mfu.py in their repository.
3We acknowledge that a direct comparison with YOCO

models would be valuable; however, no official checkpoints
have been released publicly, preventing such an evaluation. A
direct comparison with YOCO models was not possible, as no
official checkpoints for YOCO have been released publicly.

4Taken from https://huggingface.co/datasets/
cerebras/SlimPajama-627B/tree/main/train

achieving the highest average accuracy in the zero-
shot case and performing competitively in the 5-
shot scenario. Notably, ECHO-TinyLLaMA with
50% cross-decoders closely matches the baseline
performance in both evaluation setups, with an
average accuracy gap of less than 0.5% in the zero-
shot setting and about 1.2% in the 5-shot case.
Despite this negligible drop, the 50% configuration
delivers a 7% throughput improvement, high-
lighting its effectiveness in balancing generation
speed with competitive accuracy. To rule out the
possibility that the gains are due to training length
or configuration, we ran a continual training (CT)
experiment on the baseline using the same dataset
as ECHO-LLAMA. As shown in Table 1, CT pro-
vided no meaningful improvements and in some
tasks even slightly reduced performance.
Appendix A includes more results on larger mod-
els and more diverse datasets. Moreover, Ap-
pendix A.3 provides a comparison results show-
ing that the incremental strategy outperforms the
full-stage approach, where all designated layers
are converted to shared-KV at once.
Efficiency Comparison-Table 2 provides a de-
tailed comparison between ECHO and non-ECHO
versions of LLaMA models of four sizes of param-
eters: 125M, 1.1B, 3B, and 7B. The experiments
were conducted on two devices: Ascend-910B
5 and Nvidia V100, each using up to 8 devices.
The comparison metrics include training loss at
equal train steps and training MFU. From the re-
sults, we observe the following trends: NPU-910B:
The ECHO-LLaMA models consistently outper-
form the non-ECHO counterparts across all LLM
sizes. ECHO-LLaMA models achieve lower loss
values and up to 15% improvements in MFU, as

5Fused Attention is employed as an attention acceleration
mechanism

2256

https://huggingface.co/datasets/cerebras/SlimPajama-627B/tree/main/train
https://huggingface.co/datasets/cerebras/SlimPajama-627B/tree/main/train


Figure 2: Comparison between of training throughput (Tokens/sec) and final loss for ECHO-LLaMA models and
their baselines. ECHO versions consistently achieve lower loss with higher or comparable Tokens/sec speed. Each
model is pretrained from scratch on 4B tokens through 1000 steps. Values on top each set of bars shows train
token/second throughput.

evidenced by reductions in Train Speed sec/step
and increases in Train Token/sec. For example,
ECHO-LLaMA-3B improves the MFU by 15%.
GPU-V100: The ECHO versions are comparable
to or better than the non-ECHO counterparts in
training loss. Additionally, ECHO-LLaMA mod-
els generally achieve higher training MFU, up to
4%.

To further examine the effectiveness of KV-
sharing strategies, we implemented a YOCO vari-
ant of TinyLLaMA by converting the pretrained
TinyLLaMA into a YOCO structure (sharing KV
across the last half of layers) and then contin-
ually training it on 4B tokens using the same
dataset as ECHO. As shown in Table 4, YOCO-
TinyLLaMA underperforms compared to both the
baseline TinyLLaMA and our ECHO-TinyLLaMA
variants. In contrast, ECHO consistently improves
accuracy across most benchmarks in both zero-
shot and 5-shot settings, indicating that incremen-
tal adaptation via ECHO provides a more effective
approach than YOCO-style sharing at this scale.

To evaluate the impact of ECHO on long-context
performance, we further conducted experiments on
the LongBench-V2 benchmark using LLaMA-3.2-
8B and its ECHO variants. The zero-shot results

are reported in Table 3. As reported in the table,
with 25% KV sharing, the scores across all diffi-
culty levels remain almost identical to LLaMA-3.2-
8B, indicating that ECHO can be applied without
sacrificing long-context capability. At 50% shar-
ing, we observe modest drops, particularly on the
medium and long subsets, suggesting that more
aggressive sharing introduces some trade-offs in
handling extended sequences. Additional evalua-
tions on coding and other benchmarks are provided
in Table 5 and Table 6 in the Appendix.

4 Discussion

One of the main advantages of ECHO-LLaMA
over YOCO models is its flexibility in choos-
ing a balance between attention layers and cross-
attention layers based on end-user needs. Unlike
YOCO models, which rigidly apply shared-KV
caching to a fixed subset of layers, ECHO-LLaMA
allows dynamic allocation of self-attention and
cross-attention mechanisms. This adaptability en-
ables fine-tuning for different deployment scenar-
ios—whether prioritizing efficiency on resource-
constrained edge devices or maximizing perfor-
mance in high-compute environments. Addition-
ally, the ability to configure attention structures

2257



Model Easy (%) Hard (%) Short (%) Medium (%) Long (%)
LLaMA-3.2-8B 30.6 29.5 35.1 27.8 25.7
ECHO-LLaMA-3.2-8B-25% 29.7 28.8 35.1 27.5 25.7
ECHO-LLaMA-3.2-8B-50% 28.4 26.7 33.6 26.1 23.8

Table 3: Zero-shot performance of LLaMA-3.2-8B and ECHO variants on LongBench-V2. Results are reported as
accuracy (%).

Model CQA BQ WG PiQA Arc-c Arc-e OBQA HS Avg. Acc
Zero-Shot Results
TinyLLaMA (Baseline) 20.15 56.02 59.35 72.63 32.68 55.47 36.80 61.47 49.32

YOCO-TinyLLaMA 18.23 53.65 55.19 68.88 28.56 51.43 33.73 57.97 45.95

ECHO-TinyLLaMA-25% KV 20.72 58.86 59.75 73.45 33.19 54.12 36.40 59.01 49.44
ECHO-TinyLLaMA-50% KV 20.64 58.69 58.96 73.72 31.74 53.54 35.00 59.01 48.91

5-Shot Results
TinyLLaMA-1.1B (Baseline) 19.00 62.11 62.12 74.65 36.43 69.23 38.20 62.19 52.98
YOCO-TinyLLaMA 17.25 59.71 58.80 71.45 34.63 63.97 35.12 55.32 49.53

ECHO-TinyLLaMA-25% KV 19.10 63.41 62.16 74.67 36.50 68.14 36.89 59.35 52.53

ECHO-TinyLLaMA-50% KV 18.10 62.39 61.48 73.78 36.35 66.20 37.00 59.93 51.79

Table 4: Comparison of TinyLLaMA, YOCO-TinyLLaMA, and ECHO-TinyLLaMA in zero-shot and 5-shot
settings across multiple benchmarks (accuracy).

per task allows ECHO-LLaMA to optimize both
inference speed and long-range dependency mod-
eling, making it a more versatile solution across di-
verse workloads. Another key advantage of ECHO-
LLaMA over YOCO models is its cost-effective
adaptation strategy. While YOCO models require
training from scratch or extensive modifications
to integrate their fixed KV-sharing mechanism,
ECHO-LLaMA leverages incremental adaptation
to efficiently transform a pretrained LLaMA model
into its structured format. This eliminates the need
for expensive full-scale pretraining while maintain-
ing—or even surpassing—baseline performance.
Our experiments on TinyLLaMA demonstrate this
efficiency, where a 25% KV-sharing configura-
tion slightly outperformed the baseline in language
modeling, and a 50% KV-sharing configuration
achieved comparable performance, all while signif-
icantly improving inference speed and KV cache
efficiency.

The 77% speed-up shown in Figure 2 (from 200k
to 355k tokens/sec) corresponds to the ECHO-
LLaMA-125M model, a relatively small-scale sys-
tem with 125M parameters. At this scale, KV
projection and caching account for a large share
of both memory and compute relative to Feed For-
ward modules (FFs), making KV-sharing highly
impactful for throughput. As model size grows,

however, FFs dominate in parameters and compu-
tation, reducing the relative benefit of KV-sharing.
This trend is reflected in our MFU and throughput
results across model sizes, as reported in Table 2
and Appendix B.

5 Conclusion

We present ECHO-LLaMA, a flexible cross-layer
KV-sharing framework designed to address key in-
efficiencies in LLM training and inference. Un-
like prior methods that rely on fixed architec-
tures, ECHO-LLaMA enables seamless adaptation
of existing pretrained LLaMA models through a
layer-wise incremental training strategy. Evaluated
across model sizes from 125M to 7B parameters,
our approach delivers up to 50% faster training and
7% higher throughput at comparable or better lan-
guage modeling performance. The 25% and 50%
cross-decoder sharing configurations highlight the
scalability–efficiency trade-offs available to practi-
tioners.

2258



Limitations

The proposed framework relies on the availability
of pre-trained models, which inherently constrains
its applicability to scenarios where such models
are accessible. Additionally, although the ECHO-
LLaMA adaptation reduces computational over-
head and improves inference speed, the reliance
on shared key-value caching may introduce chal-
lenges for extremely long sequence tasks, where
memory bottlenecks could still occur. Furthermore,
the evaluation primarily focuses on zero/few shot
performance and model efficiency, leaving broader
generalization capabilities (e.g., domain adaptation
or multi-task learning) unexplored.

References
TinyLlama/TinyLlama_v1.1 · Hugging Face —
huggingface.co. https://huggingface.co/
TinyLlama/TinyLlama_v1.1. [Accessed 27-01-
2025].

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain,
Prashant Nair, Ilya Soloveychik, and Purushotham
Kamath. 2024. Keyformer: Kv cache reduction
through key tokens selection for efficient generative
inference. Proceedings of Machine Learning and
Systems, 6:114–127.

Walid Ahmed, Habib Hajimolahoseini, Austin Wen,
and Yang Liu. 2023. Speeding up resnet architecture
with layers targeted low rank decomposition. arXiv
preprint arXiv:2309.12412.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1
others. 2021. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, and 29 others. 2023. Qwen technical
report. arXiv preprint arXiv:2309.16609.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, and 1 others. 2024.
A survey on evaluation of large language models.
ACM Transactions on Intelligent Systems and Tech-
nology, 15(3):1–45.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg

Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, and 1 others. 2023. Palm: Scal-
ing language modeling with pathways. Journal of
Machine Learning Research, 24(240):1–113.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018.
Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning.
Neural networks, 107:3–11.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2024. A framework for few-shot language
model evaluation.

Habib Hajimolahoseini, Walid Ahmed, and Yang Liu.
2023. Training acceleration of low-rank decomposed
networks using sequential freezing and rank quanti-
zation. arXiv preprint arXiv:2309.03824.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.
2021a. Aligning ai with shared human values. Pro-
ceedings of the International Conference on Learn-
ing Representations (ICLR).

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021b. Measuring massive multitask language un-
derstanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021c. Measuring mathemati-
cal problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, and 1 others. 2022.
Training compute-optimal large language models.
arXiv preprint arXiv:2203.15556.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao

2259

https://huggingface.co/TinyLlama/TinyLlama_v1.1
https://huggingface.co/TinyLlama/TinyLlama_v1.1
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602


Fu, Maosong Sun, and Junxian He. 2023. C-
eval: A multi-level multi-discipline chinese evalu-
ation suite for foundation models. arXiv preprint
arXiv:2305.08322.

Farnoosh Javadi, Walid Ahmed, Habib Hajimolahoseini,
Foozhan Ataiefard, Mohammad Hassanpour, Saina
Asani, Austin Wen, Omar Mohamed Awad, Kan-
gling Liu, and Yang Liu. 2023. Gqkva: Efficient pre-
training of transformers by grouping queries, keys,
and values. arXiv preprint arXiv:2311.03426.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, and 1 others. 2017.
Overcoming catastrophic forgetting in neural net-
works. Proceedings of the national academy of sci-
ences, 114(13):3521–3526.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jae-
woong Sim. 2024. {InfiniGen}: Efficient generative
inference of large language models with dynamic
{KV} cache management. In 18th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI 24), pages 155–172.

Bingli Liao and Danilo Vasconcellos Vargas. 2024. Be-
yond kv caching: Shared attention for efficient llms.
arXiv preprint arXiv:2407.12866.

Spyros Makridakis, Fotios Petropoulos, and Yanfei
Kang. 2023. Large language models: Their success
and impact. Forecasting, 5(3):536–549.

Silvia Milano, Joshua A McGrane, and Sabina Leonelli.
2023. Large language models challenge the future
of higher education. Nature Machine Intelligence,
5(4):333–334.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi-
ciently scaling transformer inference. Proceedings
of Machine Learning and Systems, 5:606–624.

Hossein Rajabzadeh, Aref Jafari, Aman Sharma,
Benyamin Jami, Hyock Ju Kwon, Ali Ghodsi,
Boxing Chen, and Mehdi Rezagholizadeh. 2024.
Echoatt: Attend, copy, then adjust for more ef-
ficient large language models. arXiv preprint
arXiv:2409.14595.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui
Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang,
and Furu Wei. 2024. You only cache once: Decoder-
decoder architectures for language models. arXiv
preprint arXiv:2405.05254.

Hanlin Tang, Yang Lin, Jing Lin, Qingsen Han, Shikuan
Hong, Yiwu Yao, and Gongyi Wang. 2024. Razo-
rattention: Efficient kv cache compression through
retrieval heads. arXiv preprint arXiv:2407.15891.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, and 1 others. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar
Panda, and Yoon Kim. 2023. Gated linear attention
transformers with hardware-efficient training. arXiv
preprint arXiv:2312.06635.

Biao Zhang and Rico Sennrich. 2019. Root mean
square layer normalization. Advances in Neural In-
formation Processing Systems, 32.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy
Liang, Kathleen McKeown, and Tatsunori B
Hashimoto. 2024. Benchmarking large language
models for news summarization. Transactions of the
Association for Computational Linguistics, 12:39–
57.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, and 1 oth-
ers. 2023. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Ad-
vances in Neural Information Processing Systems,
36:34661–34710.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Compu-
tational Linguistics.

2260

http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372


Appedix

A More Evaluation on ECHO
Architecture

To further validate the effectiveness and gener-
alizability of our proposed ECHO mechanism,
we applied it to multiple publicly available mod-
els with LLaMA-style architectures. Table 5
presents a detailed comparison of baseline models
and their ECHO-enhanced counterparts across a
broad range of standard evaluation benchmarks,
including MMLU (Hendrycks et al., 2021b,a), C-
Eval (Huang et al., 2023), GSM8K (Cobbe et al.,
2021), MATH (Hendrycks et al., 2021c), Hu-
manEval (Chen et al., 2021), and MBPP (Austin
et al., 2021; Touvron et al., 2023).

We examine LLaMA2-7B (Touvron et al., 2023).
The results show that applying ECHO with 25%
shared cross-decoder layers leads to a consistent
improvement in average performance (22.56 vs.
22.15), with minor gains across multiple tasks.
However, pushing to 50% shared layers introduces
degradation (average drops to 21.26), suggesting
that over-sharing can hurt task-specific expressivity
at this scale.

Given that the Qwen models (Bai et al., 2023)
adopt a transformer architecture closely aligned
with LLaMA—including the use of rotary posi-
tional embeddings and RMSNorm—we extended
the ECHO framework to Qwen-1.8B and Qwen-7B
as well. For Qwen-1.8B, applying ECHO with 25%
shared decoders marginally improves the average
score (27.8 vs. 27.5), while the 50% configuration
results in performance decline. Similar trends hold
for Qwen-7B, where the 25% variant achieves the
best overall average (41.31), modestly surpassing
the baseline, while the 50% configuration again
incurs noticeable drop-offs.

These results collectively reinforce two key find-
ings: (1) ECHO reliably improves efficiency with-
out sacrificing performance when applied conser-
vatively (e.g., 25% sharing), and (2) the technique
is transferable across architectures that share foun-
dational transformer principles, such as LLaMA
and Qwen.

A.1 Training Efficiency and Performance
Comparison of ECHO-LLaMA Models

To further illustrate the efficiency of the ECHO-
LLaMA models, we compare the training through-
put (Tokens/sec) and the final loss for different

model sizes. Figure 3 shows the performance com-
parison across all four LLM sizes (125M, 1.1B,
3B, and 7B) and their ECHO-LLaMA counterparts.
The results demonstrate that the ECHO-LLaMA
models consistently achieve lower final loss com-
pared to the non-ECHO versions while achieving
higher or comparable throughput (Tokens/sec). For
instance, ECHO-LLaMA-125M improves the train-
ing throughput by a significant margin while main-
taining a comparable loss, and ECHO-LLaMA-7B
reduces the loss substantially with a moderate im-
provement in throughput. These findings highlight
the effectiveness of the ECHO structure in achiev-
ing better optimization efficiency during training.

A.2 Performance Evaluation of
ECHO-LLaMA Structure During
Pretraining from Scratch

In this section, we evaluate the performance of our
ECHO-LLaMA structure during pretraining from
scratch for different sizes of large language models
(LLMs): 125M, 1.1B, 3B, and 7B. The experi-
ments are conducted on two hardware platforms:
GPU (V100) and NPU (Ascend-910B). For each
LLM size, we analyze the training dynamics using
three types of plots:

1. Train Loss per Steps: Tracks the training
loss as a function of the number of training
steps.

2. Train Loss per Train Time: Evaluates the
relationship between training loss and the
elapsed training time.

3. Train Loss per Number of Train Tokens:
Measures how efficiently the model learns as
a function of the number of processed tokens.

To compare GPU and NPU performance across
different LLM sizes, we organize the results in a
structured figure layout. Figures 4, 5, 6, and 7
present the results, where Each model size has a
separate figure, and each figure contains two rows:

• The first row contains plots for GPU (V100).

• The second row contains plots for NPU
(910B).

Within each row, there are three subfigures, cor-
responding to the three types of plots. The left
subfigure illustrate the training loss behavior in
terms of training steps, the middle subfigure de-
scribes the training loss in terms of time, and the

2261



Model MMLU (5-shot) C-Eval (5-shot) GSM8K (8-shot) MATH (4-shot) HumanEval (0-shot) MBPP (3-shot) Avg.
LLaMA2-7B (baseline) 46.8 32.5 16.7 3.3 12.8 20.8 22.15

ECHO-LLaMA2-7B-25% 46.9 33.4 17.2 3.6 13.5 20.8 22.56

ECHO-LLaMA2-7B-50% 46.2 31.8 15.6 2.1 12.2 19.7 21.26

Qwen-1.8B (baseline) 45.3 56.1 32.3 2.3 15.2 14.2 27.5

ECHO-Qwen-1.8B-25% 45.8 56.3 32.6 2.4 15.5 14.7 27.8

ECHO-Qwen-1.8B-50% 44.1 54.7 30.8 1.8 13.9 12.7 26.33

Qwen-7B (baseline) 58.2 63.5 51.7 11.6 29.9 31.6 41.08

ECHO-Qwen-7B-25% 58.4 63.8 52.4 12.1 29.7 31.5 41.31

ECHO-Qwen-7B-50% 57.3 62.2 50.4 10.4 28.6 29.8 39.78

Table 5: Evaluating the generalizability of the ECHO mechanism across LLaMA and Qwen architectures on diverse
reasoning and coding benchmark. The results are reported in terms of accuracy.

Model MMLU (5-shot) AGIEval-En (5-shot) Arc-c (25-shot) SQuAD (1-shot) Avg.
LLaMA3.2-1B (baseline) 32.1 23.1 32.7 49.0 34.22

ECHO-LLaMA3.2-1B-25% 32.4 23.3 32.6 49.3 34.40

ECHO-LLaMA3.2-1B-50% 31.3 21.5 30.4 47.8 32.75

LLaMA3.2-3B (baseline) 58.0 39.1 69.1 67.7 58.47

ECHO-LLaMA3.2-3B-25% 58.3 39.2 69.0 67.6 58.52

ECHO-LLaMA3.2-3B-50% 56.7 37.3 68.1 65.7 56.95

LLaMA3.2-8B (baseline) 66.7 47.7 79.6 69.7 65.92

ECHO-LLaMA3.2-8B-25% 66.8 47.9 79.5 69.9 66.02

ECHO-LLaMA3.2-8B-50% 65.4 47.1 78.4 68.4 64.82

Table 6: Evaluating the generalizability of the ECHO mechanism across several LLaMA3.2 models on diverse
benchmark. The results are reported in terms of accuracy.

right one shows the same loss in terms of number
of training tokens. As the plots depicts, the ECHO
versions suppress or compete with the baselines,
particularly in 7B model size. This observation
shows that by increasing the size of model, the
impact of ECHO-LLaMA becomes more strong.
This is because in larger model sizes, the memory
and compute demands grow significantly, making
efficient KV sharing crucial for reducing memory
overhead and improving throughput.

A.3 Comparison of Incremental vs.
Full-Stage Shared-KV Fine-Tuning

To evaluate the effectiveness of incremental strat-
egy for applying shared key-value (KV) represen-
tations, we compare Incremental Sharing, where
shared-KV layers are introduced gradually during
training starting from the final layer, and Full-
Stage Sharing, where a fixed subset of layers (25%
or 50%) are converted to shared-KV at once and
jointly fine-tuned.

Figures 8 and 9 present the results for zero-
shot and 5-shot evaluations across diverse bench-
mark datasets. Incremental Sharing consistently
outperforms Full-Stage Sharing at both 25% and

50% sharing ratios, indicating that incremental
adaptation enables the model to better preserve
pre-trained knowledge while integrating structural
modifications. This improvement is most notable
in datasets such as Arc-c and OBQA, where the
performance gap exceeds 2%.

A.4 MFU-Loss-Speed

Figure 3 compares the training throughput (To-
kens/sec), Model FLOPs Utilization (MFU), and
final loss across various LLaMA models and their
ECHO-LLaMA counterparts. The ECHO-LLaMA
versions consistently demonstrate improvements
in MFU for configurations with 1, 4, and 8 de-
vices, while achieving lower or comparable final
loss compared to their baselines. Notably, ECHO-
LLaMA models, such as ECHO-LLaMA-125M
and ECHO-TinyLLaMA, exhibit significant speed
improvements, as indicated by the purple bars,
while maintaining competitive or better loss values.
These results explains the effectiveness of ECHO-
LLaMA’s architecture in enhancing both training
efficiency and model performance.

2262



Figure 3: Comparison of training throughput (Tokens/sec) and final loss for ECHO and non-ECHO models on
NPU-910B. ECHO-LLaMA versions consistently achieve lower loss with higher or comparable Tokens/sec speed.

A.5 Scaling Law Validation-
To validate the scalability of ECHO-LLaMA mod-
els, we conducted experiments across various
model sizes (125M, 1.1B, 3B, and 7B) and com-
pared the training losses with their baseline coun-
terparts. Each model is pretrained on 4B tokens
through 1000 training steps.
As shown in Figure 11, the ECHO-LLaMA models
consistently achieve lower training loss than the
baseline models as the model size increases. This
observation demonstrates that ECHO architectures
adhere to the scaling law while also offering en-
hanced training efficiency through their innovative
design.

A.6 GPU Memory Efficiency of
Echo-TinyLLaMA-

To evaluate the efficiency of ECHO-TinyLLaMA,
we compare its GPU memory consumption against
the baseline TinyLLaMA across various sequence
lengths. As shown in Figure 10, ECHO-
TinyLLaMA achieves a substantial reduction in
memory consumption, requiring almost two times
less GPU memory than TinyLLama at all tested se-
quence lengths. For instance, at a sequence length
of 16k tokens, ECHO-TinyLLaMA consumes only
6.4 GB, whereas TinyLLaMA requires 14 GB, re-
sulting in a 2.19x reduction. This trend continues
across longer sequences, with the reduction reach-
ing up to 2.33x at 32k tokens. Such improvements
are particularly critical for enabling longer-context

processing on resource-constrained hardware.

A.7 Ablation Study: Selecting the Optimal
Number of Training Steps per Stage-

we conducted an ablation study measuring the ef-
fect of different training steps S on training loss.
The goal was to assess at what point additional
steps provide diminishing returns in loss reduc-
tion, thereby justifying our selection of 150 train-
ing steps. We evaluated training loss for ECHO-
TinyLLaMA across six different layers (ranging
from layer 22 to layer 12) at increasing training
steps: 25, 50, 100, 150, 200, and 300. The loss val-
ues at each step were recorded to observe the rate
of improvement. The plot in Figure 12 illustrates
the training loss progression for each layer as the
number of training steps increases. We observe a
sharp decrease in loss from 25 to 150 steps, indi-
cating effective learning during this phase. How-
ever, beyond 150 steps, the slope of loss reduction
significantly flattens, suggesting diminishing re-
turns with additional training. For instance, at 150
steps, Layer 22’s loss decreases from 2.8 (25 steps)
→ 1.97 (150 steps), a significant drop. Extending
training to 200 or 300 steps results in only marginal
improvements (1.85 at 200 steps, 1.80 at 300 steps),
making the additional cost inefficient.

2263



LLaMA-125M Model Training Results

GPU (V100) Results

NPU (910B) Results

Figure 4: Training results for the LLaMA-125M LLM on GPU (V100) and NPU (910B). The columns represent
(1) Train Loss vs. Steps, (2) Train Loss vs. Train Time, and (3) Train Loss vs. Number of Train Tokens.

A.8 Ablation Study on Block Size for Layer
Adaptation

To understand the impact of block size in incre-
mental layer adaptation, we conducted an ablation
study by varying the number of layers updated in
each block. As shown in Table 7, a smaller block
size leads to better performance. Specifically, set-
ting the block size to 1 consistently yields the high-
est average accuracy in both 25% and 50% shared-
KV configurations. This supports our hypothesis
that gradually converting one layer at a time mini-
mizes disruption to the pretrained weights, reduces
information loss, and helps the model avoid catas-
trophic forgetting. In contrast, larger block sizes
(2 or 3) degrade performance and require more
training steps to recover.

B Guidelines for Selecting
Cross-Attention Layer Ratio

To balance the trade-off between model efficiency
and effectiveness, we provide empirical guidelines
for selecting the percentage of layers using shared-
KV in ECHO-LLaMA. As shown in Table 8, based
on recent experiments using LLaMA-7B with a
sequence length of 4096, there exists a clear trade-
off between the percentage of shared layers and
key performance metrics such as MFU, elapsed
time, and total FLOPs.

Moderate KV-sharing ratios (e.g., 18–25%) con-
sistently offer the best trade-off, achieving high
normalized MFU and reduced training time and

Table 7: Ablation study on block size during incremen-
tal adaptation for TinyLLaMA-1.1B-V1.1. We report
zero-shot average accuracy across multiple tasks. Block
size 1 consistently outperforms larger sizes.

Zero-shot, 25% Shared-KV
Block Size Avg. Accuracy Observations

1 49.44 Best performance; stable adapta-
tion

2 48.73 Slight degradation; slower recov-
ery

3 46.67 Noticeable drop; higher forget-
ting

Zero-shot, 50% Shared-KV
Block Size Avg. Accuracy Observations

1 52.53 Best performance; stable adapta-
tion

2 50.49 Slight degradation; slower recov-
ery

3 47.19 Noticeable drop; higher forget-
ting

FLOPs without substantial degradation in model
throughput. In contrast, very high sharing levels
(e.g., 75% and above) lead to diminishing returns
or degraded utilization, and 50% sharing shows
suboptimal MFU due to load imbalance during KV
sharing. These insights provide practical guidance
for industry-scale deployments where efficiency
and performance must be balanced.

C Questions / Answers

This section addresses several questions relevant
to the research.

2264



TinyLLaMA-1.1B Model Training Results

GPU (V100) Results

NPU (910B) Results

Figure 5: Training results for TinyLLaMA-1.1B LLM on GPU (V100) and NPU (910B). The columns represent (1)
Train Loss vs. Steps, (2) Train Loss vs. Train Time, and (3) Train Loss vs. Number of Train Tokens.

Table 8: Trade-off analysis on LLaMA-7B (seq_len = 4096) for varying cross-attention layer sharing ratios. Metrics
include actual and normalized MFU, elapsed time, and model FLOPs. Normalization is done relative to the
0%-sharing baseline.

KV Sharing (%) # Shared Layers MFU (%) Elapsed Time (s) Model FLOPs Norm. MFU Norm. Time Norm. FLOPs
0 0 62.450 104.140 1.965 0.000 1.000 1.000
3 1 63.246 102.620 1.957 0.948 0.881 0.968
6 2 63.438 101.870 1.949 0.957 0.822 0.937
9 3 63.613 101.150 1.940 0.965 0.765 0.901

15 5 64.098 99.500 1.932 0.987 0.636 0.870
18 6 64.390 99.270 1.923 1.000 0.618 0.834
21 7 64.160 99.250 1.915 0.990 0.616 0.802
25 8 63.900 99.090 1.906 0.978 0.604 0.767
28 9 63.461 99.180 1.898 0.958 0.611 0.735
50 16 62.137 98.140 1.839 0.897 0.529 0.502
75 24 63.494 92.070 1.763 0.959 0.053 0.202
85 27 63.039 91.400 1.737 0.938 0.001 0.099
99 31 62.131 91.390 1.712 0.897 0.000 0.000

C.1 Q1. Why is there no direct comparison
with YOCO models?

First, no official checkpoints for YOCO models
have been released publicly, and a full pretraining
of YOCO models from scratch is beyond the scope
of this work. Second, while YOCO and ECHO-
LLAMA both adopt a shared-KV mechanism, their
methodologies differ fundamentally. YOCO re-
quires a heavy pretraining phase from scratch,
whereas ECHO-LLAMA proposes a lightweight
fine-tuning approach that transforms existing pre-
trained models into ECHO architectures. For these
reasons, we did not include a direct comparison
with YOCO in our evaluation.

C.2 Q2. Why does the training throughput
speedup degrade significantly beyond a
certain model size threshold?

The reduced speedup observed for models ex-
ceeding a certain size threshold is primarily due
to the increasing dominance of non-KV compo-
nents—such as MLP layers—in the overall com-
pute cost. As the model size grows, the pro-
portion of parameters and computation attributed
to these non-shared components becomes signif-
icantly larger than that of the shared KV layers.
Consequently, the relative benefit of KV-sharing
diminishes, leading to a lower overall throughput
speedup.

2265



LLaMA-3B Model Training Results

GPU (V100) Results

NPU (910B) Results

Figure 6: Training results for LLaMA-3B on GPU (V100) and NPU (910B). The columns represent (1) Train Loss
vs. Steps, (2) Train Loss vs. Train Time, and (3) Train Loss vs. Number of Train Tokens.

D What is the motivation for sharing in
the range [L/2, L]?

In ECHO-LLAMA, KV-sharing is always applied
in a top-down pattern, i.e. incrementally convert-
ing layers into shared-KV starting from the last
transformer layer. Specifically, in a model with
L total layers, we begin converting the topmost
layer (#L) to the shared-KV format, followed by
layer L−1, and so on. The process continues until
a user-defined cutoff layer N is reached. In this
paper, we experimented with two practical config-
urations: sharing the last 25% and the last 50%
of layers (i.e., N = L/4 and N = L/2, respec-
tively). These settings reflect meaningful trade-offs
between memory throughput and performance, and
were selected to showcase the effectiveness of our
method. However, the approach is flexible and
supports other thresholds (e.g., L/3, L/6) depend-
ing on the deployment constraints. Moreover, we
added an ablation study showing that the top-down
pattern works the best, in comparison with bottom-
up pattern. Table 9 shows the results for 25%
and 50% KV-sahring, explaining that the the Top-
Down pattern performs better than the Bottom-Up
pattern. The Bottom-Up pattern starts sharing-KV
from a lower layer and continue upward. All the
results are conducted on TinyLLaMA1.1B-V1.1.

E Model Configurations for
LLaMA-125M and LLaMA-3B

We provide detailed configuration settings for the
LLaMA-125M and LLaMA-3B models, which
were developed solely for this research. These
configurations are designed by following the ar-
chitectural patterns of TinyLLaMA, LLaMA-7B,
and other higher versions of the LLaMA family.
We adhered to the scaling strategy used in LLaMA
models, ensuring proportional ratios for hidden
size, intermediate size, number of layers, and at-
tention heads as the models scale up.

E.1 LLaMA-125M Configuration

The following configuration outlines the settings
for the LLaMA-125M model:

{
"architectures": ["ECHOLLaMAForCausalLM"],
"hidden_size": 768,
"intermediate_size": 2048,
"num_hidden_layers": 12,
"num_attention_heads": 12,
"max_position_embeddings": 2048,
"vocab_size": 32000,
"rotary_emb_base": 10000,
"tie_word_embeddings": False,
"use_cache": True,
"layer_norm_epsilon": 1e-5,
"init_std": 0.02,
"torch_dtype": "float16",
"model_type": "echo_llama",
"pad_token_id": None,
"bos_token_id": 1,
"eos_token_id": 2

}

2266



LLaMA-7B Model Training Results

GPU (V100) Results

NPU (910B) Results

Figure 7: Training results for LLaMA-7B on GPU (V100) and NPU (910B). The columns represent (1) Train Loss
vs. Steps, (2) Train Loss vs. Train Time, and (3) Train Loss vs. Number of Train Tokens.

Figure 8: LLaMA-7B: Comparing Incremental Sharing over Full-Stage Sharing for shared-KV adaptation.

E.2 LLaMA-3B Configuration

The following configuration outlines the settings for the
LLaMA-3B model:

{
"architectures": ["ECHOLLaMAForCausalLM"],
"hidden_size": 3072,
"intermediate_size": 8192,
"num_hidden_layers": 26,
"num_attention_heads": 24,
"max_position_embeddings": 2048,
"vocab_size": 32000,
"rotary_emb_base": 10000,
"tie_word_embeddings": False,
"use_cache": True,
"layer_norm_epsilon": 1e-5,
"init_std": 0.02,
"torch_dtype": "float16",
"model_type": "echo_llama",
"pad_token_id": None,
"bos_token_id": 1,
"eos_token_id": 2

}

E.3 Notation
Table 10 summarizes the key notations used throughout the pa-
per. These notations are consistent with standard transformer-
based LLM literature and are used to describe our cross-layer
KV-sharing architecture and training procedure.

2267



Figure 9: LLaMA-7B: Comparing Incremental Sharing over Full-Stage Sharing for shared-KV adaptation.

Figure 10: GPU memory usage comparison between the baseline TinyLLaMA and ECHO-TinyLLaMA across
different sequence lengths. ECHO-TinyLLaMA consistently consumes nearly half the memory compared to
TinyLLaMA, as indicated by the annotated reduction ratios.

125M 1.1B 3B 7B

3.5

4

4.5

5

Model Size

Tr
ai

n
L

os
s

LLaMA ECHO-LLaMA

Figure 11: Scaling law diagram comparing training
loss for ECHO-LLaMA of different sizes against the
baselines.

Figure 12: Training Loss vs. Training Steps for Differ-
ent Layers in ECHO-TinyLLaMA. The loss decreases
significantly up to 150 steps, after which the rate of
improvement diminishes. This justifies our selection of
S ≈150 training steps as the optimal point for balanc-
ing computational cost and performance.

2268



Model CQA BQ WG PiQA Arc_c Arc_e OBQA HS Avg. Acc
Top-Down (25%-Shared-KV) 20.02 55.18 56.31 68.01 30.25 55.18 30.84 44.35 45.02
Bottom-Up (25%-Shared-KV) 19.11 54.35 54.84 67.35 30.04 54.67 30.26 43.96 44.32
Top-Down (50%-Shared-KV) 18.13 53.45 55.71 66.34 28.63 54.97 30.74 44.83 44.09
Bottom-Up (50%-Shared-KV) 17.05 52.11 53.85 65.21 27.18 53.67 29.48 43.51 42.75

Table 9: Comparison of top-down vs. bottom-up shared-KV patterns on various language understanding benchmarks.
Accuracy (%) is reported for each dataset, and the average accuracy is shown in the last column.

Notation Description
L Total number of layers in the model
N Threshold layer index where KV-sharing starts (user-defined stopping layer)
Xl−1 Input to layer l
X ′

l Output of the self-attention sublayer at layer l (before feedforward)
WQ,WK ,WV Query, key, and value projection matrices
d Model hidden size
dk Dimensionality of key/query vectors (d/h)
h Number of attention heads
p Proportion of layers converted to shared-KV (e.g., 0.25 or 0.5)
SFF(X) SiLU-activated feed-forward module
Kshared, Vshared Shared global key and value matrices
WK

global,W
V
global Projection matrices for computing shared key and value

L Set of layers adapted into cross-decoders in incremental adaptation
Lm Block of layers updated in stage-m
θ(ℓ) Parameters of layer ℓ
Mθ Model parameterized by θ
D Training dataset
S Number of training steps per incremental stage
Bstage Token budget per adaptation stage
Bfinal Token budget for final fine-tuning

Table 10: Notation used throughout the paper.

2269


