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Abstract
In this work, we present the first embedding
model specifically designed for Industry 4.0
applications, targeting the semantics of indus-
trial asset operations. Given natural language
tasks related to specific assets, our model re-
trieves relevant items and generalizes to queries
involving similar assets, such as identifying
sensors relevant to an asset’s failure mode.
We systematically construct nine asset-specific
datasets using an expert-validated knowledge
base reflecting real operational scenarios. To
ensure contextually rich embeddings, we aug-
ment queries with Large Language Models,
generating concise entity descriptions that cap-
ture domain-specific nuances. Across five em-
bedding models ranging from BERT (110M)
to gte-Qwen (7B), we observe substantial in-
domain gains: HIT@1 +54.2%, MAP@100
+50.1%, NDCG@10 +54.7% on average. Ab-
lation studies reveal that (a) LLM-based query
augmentation significantly improves embed-
ding quality; (b) contrastive objectives without
in-batch negatives are more effective for tasks
with many relevant items; and (c) balancing
positives and negatives in batches is essential.
We evaluate on a new task and finally present a
case study wrapping them as tools and provid-
ing them to a planning agent. The code can be
found here.

1 Introduction

As Large Language Models (LLMs) advance, au-
tomating a wide range of tasks spanning from gen-
eral activities like reading emails to specialized,
domain-specific queries, has emerged as the next
frontier of innovation. For example, in industrial
settings, a plant operator may request optimal set-
points for critical control variables, or an industrial
data scientist might seek assistance in identifying
key sensor variables for predictive maintenance.
Increasingly, LLM agents adopting specialized per-
sonas aim to handle such tasks by combining LLM
reasoning with domain tools accessed via APIs.

Recent examples include MDAGENT (Kim et al.,
2024), a multi-agent system developed for medi-
cal decision support. While effective at guiding
users through predefined options, MDAGENT re-
lies solely on LLMs’ internal knowledge, limiting
its ability to address complex, real-world scenar-
ios requiring dynamic, context-sensitive reasoning.
This highlights a critical gap: the need for systems
capable of integrating domain knowledge flexibly
to support multifaceted decision-making.

Recommender systems offer a compelling solu-
tion, excelling at assisting users in navigating com-
plex decision spaces by leveraging historical data,
item properties, and user interactions. Embedding
models integrated into LLM-augmented recom-
menders have recently demonstrated promise, espe-
cially in domains such as entertainment (Gao et al.,
2023), by enhancing interactivity and explainabil-
ity. A key advancement driving this progress is the
emergence of instruction-driven, domain-specific
embeddings (Anderson et al., 2024; Xu et al., 2024;
Weller et al., 2024; Li et al., 2024), which tailor
embeddings using task-specific prompts to capture
nuanced semantics. These methods outperform
general-purpose embeddings by ensuring contextu-
ally relevant retrieval. Moreover, leveraging LLMs
as teacher models to generate synthetic data has
further improved domain-specific embedding train-
ing (Wang et al., 2024).

Collectively, these trends underscore the need for
domain-specialized embedding models that com-
bine LLM capabilities with targeted contextual un-
derstanding, enabling flexible, accurate decision
support in complex industrial environments.

1.1 Challenges in Industry 4.0
Despite the potential of domain-specific embed-
ding techniques as powerful tools within a LLM-
driven framework, their application in Industry 4.0
remains under-explored. Implementing embedders
in industrial settings presents unique challenges.
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One key challenge is the accessibility of special-
ized knowledge. Actionable, fine-grained infor-
mation is often embedded in technical documents,
such as International Standards Organization (ISO)
manuals, which are not structured for immediate
use and are difficult to access in practice.

A second challenge lies in task-specific instruc-
tion. Instruction-tuned embedders depend on well-
defined domain-relevant guidance, yet much of the
necessary instructional knowledge in industrial con-
texts is informal or remains partially formalized.

A third concern involves asset-related knowl-
edge. Industrial environments comprise a large
number of heterogeneous assets, but the amount of
information available per asset is often sparse. De-
veloping techniques to augment and cross-leverage
knowledge across assets is still an open problem.

To address these limitations, we propose a multi-
task, asset-specific fine-tuning strategy that aims to
bridge domain gaps and enable more context-aware,
robust intelligence in industrial decision making.

Our main contributions are as follows:

• We formalize tasks for the Industrial domain
and introduce the first embedding models
specialized for the industrial domain, de-
signed to assist SMEs with maintenance tasks.
We identify nine tasks from ISO documents
and train a multi-task embedder (Figure 2) to
retrieve the final answer rather than generat-
ing it. We demonstrate an average increase
of ACC@1 by 54% for our use case. To ad-
dress the data scarcity issue, we provide the
prepared dataset for future research work.

• We demonstrate through ablation studies that
popular representation learning methods that
use in-batch negatives are prone to false nega-
tives in certain data settings. Additionally, we
highlight the importance of maintaining a bal-
ance between positive and negative samples
within the batch.

• We investigate the use of our domain-specific
embedder on a new unseen task. Addition-
ally, as a case study (see Section 6), we show
how this multi-task embedder can serve as
a suite of tools (Figure 7) invoked by a Re-
Act agent (Yao et al., 2022) for planning and
reasoning on industrial queries.

2 Industrial Multi-Task Embedder

2.1 Foundational Concepts in Industry 4.0

This section introduces key terminology and foun-
dational concepts relevant to tasks and frameworks
in Industry 4.0 applications, particularly in the ar-
eas of predictive maintenance, asset management,
and sensor-based monitoring. We define six core
concepts which are referred here as items, that are
central to understanding and implementing indus-
trial AI systems.

Asset: A physical resource or piece of equip-
ment used in industrial operations or production
processes. Examples include electric generators,
transformers, and wind turbines.

Equipment Class: A grouping of assets based on
shared functional or operational characteristics. For
example, “combustion engines” form an equipment
class that includes subtypes like “diesel engines”
and “gas turbines”.

Equipment Type: A specific category within an
equipment class that characterizes the function or
configuration of an asset. A diesel power generator,
for instance, is an equipment type under the “diesel
engine” class.

Failure Mode: A particular way in which an
asset can fail, including forms of degradation or
malfunction. An example is “insulation deteriora-
tion” in electric motors.

Sensor: A device used to measure or monitor a
physical parameter such as temperature, vibration,
pressure, or rotational speed, often for the purpose
of detecting abnormal conditions.

Subunit: A defined functional component within
a larger system, typically responsible for a specific
task. An example is the “fuel feed system” in a
boiler, which manages the delivery of fuel to the
combustion chamber.

2.2 Data Collection

We collected documents from the International Or-
ganization for Standardization (ISO) containing
information on maintaining industrial assets (ISO,
2018, 2016). The data were originally in diverse
tabular formats. To illustrate the relationships be-
tween assets (e.g., motors, machines) and their as-
sociated sensors (e.g., temperature, environmental),
we constructed a sample bipartite graph. In Ap-
pendix Figure 9, assets are shown as purple nodes
and sensors as yellow nodes, with directed edges
representing their relationships. For a given asset,
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connected nodes denote positive documents, while
missing edges correspond to negative documents.

2.3 Tasks Definition
We identify nine distinct tasks that are integral
to our system, each targeting a specific aspect of
industrial asset understanding. The underlying data
used for generating tasks is extract from structured
tabular formats as discussed in Section 2.2.

Asset to Sensors (A2S): Identify relevant sensors
that can monitor the condition of a given asset.

Component to Failure Mode (C2FM): Possible
failures related with a given asset component.

Equipment Class Type to Category (E2CAT):
Determine the category corresponding to a given
equipment class type.

Equipment Category to Class Type (E2CLT):
Identify class types that fall under a given equip-
ment category.

Equipment Unit to Subunit (EU2SU): Identify
subunits belonging to a given equipment unit.

Failure Mode to Class (FM2CLS): Classify a
failure mode under its appropriate failure class.

Failure Mode to Components (FM2CMP): Com-
ponents related to a given failure and asset.

Failure Mode to Sensor (FM2S): Sensors capa-
ble of detecting given failure in a specific asset.

Sensor to Failure Mode (S2FM): List failure
modes that can be detected by a given sensor for a
specific asset.

For instance, the task Failure Mode to Sensor
(FM2S) focuses on identifying appropriate sensors
for detecting a given failure mode in a specific asset.
We have provided an example prompt and expected
response for the FM2S task in Figure 1, and rep-
resentative examples for each task are included in
Appendix Table 4.

3 Problem Formulation and Solution

In this section, we present our multi-task embedder
for the industrial domain, with for modeling the
the relationships between various entities such as
assets, components, sensors, failure modes, and
others. Our approach, as outlined in Figure 2,
leverages tabular information, which are subse-
quently enriched using LLMs for improved query
relevance and answer generation, to train an em-
bedding model.

3.1 Problem Formulation
Given a set of tasks T , where each task Ti ∈ T con-
sists of a set of queries Q, and each query q ∈ Q is

Instruct: What sensors can be applied to detect a fault
in an asset and its category?

Query: Asset: electric motor, Category: electric, Fault:
stator windings fault

Asset description: Converts electrical energy into me-
chanical energy to power various industrial machinery.

Fault description: A Stator windings fault is a type of
industrial failure mode where the electrical windings in
the stator of an electric motor or generator become dam-
aged or degraded, often due to overheating, insulation
breakdown, or physical stress, leading to reduced perfor-
mance, efficiency, or complete failure of the equipment.

Sensors: Current, Vibration, Temperature, Axial Flux,
Cooling Gas

Input , LLM augmented , Ground truth

Figure 1: Example query with LLM augmentation and
answer for the FM2S task.

associated with a set of relevant items I , the objec-
tive is to model the relationships between queries
and their corresponding items. Each task involves
queries grounded in various assets A, and semanti-
cally similar items may share similar relationships
across tasks.

For example, consider a task Ti focused on iden-
tifying relevant sensors. Each query includes an
asset from A (e.g., an electric generator) and a fail-
ure mode (e.g., misalignment). The relevant items
which are drawn from the set I , are sensors (e.g.,
vibration sensor) capable of detecting that failure
mode for the given asset.

The type of relevant items varies by task: depend-
ing on the context, items may represent sensors,
failure modes, components, or sub-components.

During training, the embedding model observes
queries from each task involving a subset of assets
and their associated items. The goal is to gener-
alize these relationships, enabling the system to
infer relevant items for unseen queries involving
different assets.

To this end, we learn a function f that maps both
queries and items into a shared latent space Rd,
such that embeddings of relevant query-item pairs
are positioned closer together. In inference, the
system retrieves the top-k most relevant items for a
given query based on proximity in this latent space.
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Figure 2: Overall data preparation and training flow for embedding models

3.2 Instruction Template

Given a relevant query-item pair (q+, i+) sampled
from Table 1 in Apendix, we construct training
examples using the following instruction-tuning
template:
q+inst = Instruct: {instruction} . Query: q+,

o+inst = {output-tag} : i+.

{instruction} is a natural-language sentence describ-
ing the task, and q+ is the query. For each task,
we generate multiple paraphrased versions of the
instruction using LLMs to promote generalization.

Figure 1 illustrates a complete prompt, showing
the Instruct and Query fields for a task involving
electric motors. Table 4 in Appendix provides one
representative instruction and query pair per task.

3.3 LLM Query Augmentation

From the tabular data in the ISO documents, the
information is not very descriptive to build a good
model. For instance, for the sensor to failure mode
task the query contains only the asset name, and its
sensor. This makes it difficult to learn semantics for
this asset and failure mode generalize on new assets.
For this reason, we augment the query using an
LLM with a one sentence description of its entities.
We augment with a probability p, which acts a type
of dropout to avoid overfitting. Figure 1 provides
an example augmentation (light blue color). We
provide further impacts of this design decision on
the ablation studies in Section 5.1.

We prompt the LLM to augment the query with
instructions shown in Appendix Table 5. The con-
cise generated descriptions help encode semantic
context and enable the embedding model to better
capture task-relevant relationships.

3.4 Data Splitting
To make the experiment unbiased and more realis-
tic, we split the train/validation/test set queries by
assets for the tasks that is possible, otherwise we
split randomly.

3.5 Query and Item Embeddings
Depending on the model used, we employ either
the mean pooling or last token pooling strategy
which are two common techniques for generating
fixed-size embeddings from variable-length token
sequences. A brief description is given in Appendix
Section G.1.

3.6 Loss Function and Batching
To learn the embedding function f , we use a con-
trastive learning framework (Hadsell et al., 2006).
Given a labeled triplet ⟨q, i, l⟩ where l = 1 indi-
cates a relevant query-item pair and l = 0 indicates
a negative pair, we minimize the margin loss:

L = l · d(q, i)2 + (1− l) ·max(ϵ− d(q, i), 0)2

Here, d(q, i) denotes the Euclidean distance be-
tween the query and item embeddings, and ϵ is a
margin parameter.

During training, for each task, we use all avail-
able positive (q+, i+) and negative (q+, i−) pairs.
Since the number of negative pairs significantly
exceeds the number of positive ones, we balance
each training batch to include an equal number of
positives and negatives. Additional analysis on this
design choice is presented in the ablation study
(Section 5.3).

We avoid loss functions that rely on in-batch
negatives due to the high risk of false negatives
caused by the relatively small item set and the fact
that each query can be associated with multiple
valid items (see Appendix Figure 10).
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4 Experimental Setup

In this section we present the comparison before
and after fine-tuning several embedding models on
the 9 industrial tasks we prepared.

4.1 Embedding Models

We compare different models in retrieving the cor-
rect answer from a set of candidate items. The
models used are: BERT (Kenton and Toutanova,
2019), MPNet (Song et al., 2020), BGE-large-
v1.5 (Xiao et al., 2023), gte-Qwen2-7B-instruct
(Li et al., 2023), and E5-Mistral-7B-Instruct (Wang
et al., 2023) which have varying sizes. We also
compare against BM25 retriever (Robertson et al.,
2009), which is a bag-of-words retrieval function.

4.2 Training Settings

For all the models we use 4 A100 80GB GPUs with
a training batch size of 32 per device. We do a full
fine-tuning for BERT, MPNet, and BGE-large-v1.5,
while for gte-Qwen2-7B-instruct and E5-Mistral-
7B-Instruct we use LoRA (Hu et al., 2021) to fit
them into the memory. We use mean pooling for all
the models to generate the embeddings, apart from
Qwen-7B for which we use last token pooling since
it is how it was trained and has better results. We
train a single model on all the different tasks for 3
epochs. We apply query augmentation as described
in section 3.3 with 50% probability using Llama-
3.1-70B-Instruct.

Figure 3: MAP@100 before and after finetuning E5
Mistral 7B for each task.

Figure 4: Validation performance during training for
every task (MAP@100).

4.3 Fine-Tuning Results

Figure 3 provides a result using fine-tuned model
for all the task. We observe consistent performance
improvements across all tasks after fine-tuning. As
shown in Figure 4, MAP@100 increases steadily
on the validation set during training, demonstrating
the effectiveness of our fine-tuning approach. The
best-performing model varies by task, highlight-
ing the diverse nature of the task set. Even prior
to fine-tuning, the E5 Mistral model demonstrates
strong zero-shot capabilities on several tasks, sug-
gesting that it already captures some aspects of
instruction semantics. A detailed breakdown of
task-level performance before and after fine-tuning
is provided in Appendix Table 6. More discussion
on the generalizability in Appendix Section D.

5 Ablation study

5.1 Effects of LLM-generated description

We investigate what are the effects of adding LLM-
generated description on the model’s performance.
We vary the probability of adding one sentence of
LLM-generated description from 0 to 1 with 0.2
strides and see the effects on the test performance
for each task (Figure 5). For this experiment we
fixed the model to Mistral E5. For some tasks we
can see performance boost (A2S, E2CLT, S2FM).
It is notable that augmenting the query with a single
sentence boosts performance when the probability
of augmenting is not 0 or 1. This can be thought as
some type of dropout. We believe that the rest of
the tasks could also be benefited if the dataset was
larger with more queries.
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Figure 5: Loss comparison and effects of varying prob-
ability of augmenting the query using an LLM on the
model’s performance (MAP@100) per task.

Figure 6: Effects of varying in-batch positives to nega-
tives ratio per task (MAP@100).

5.2 Effects of loss function
We compare contrastive loss that we adopted in
our system (Section 3.6) against multi-negatives
ranking loss (Henderson et al., 2017). One big
difference between the two losses, is that multi-
negatives ranking loss uses in-batch negatives. The
loss function is defined as:

L = − log
ϕ(q+inst, i

+)

ϕ(q+inst, i
+) +

∑
ni∈N

ϕ(q+inst, ni)

where N denotes the set of all in-batch negatives,
and ϕ(·) is the cosine similarity. For this loss func-
tion we only provide the query and positive exam-
ples, and for the kth query qk in the batch, all the
positives from the rest of the in-batch samples are

used as in-batch negatives il where k ̸= l. Figure 6
performance of contrastive against multi-negatives
ranking loss. The results indicate that the in-batch
negatives hurt the performance due to the high
chance of false negatives.

5.3 Effects of in-batch pos. to neg. samples
ratio

Using Contrastive Loss, we vary the ratio of in-
batch positives to negatives and study its impact.
The batch size is fixed to 32, and the ratio is varied
from 0 to 1 with 0.125 strides. The experiment
is repeated 5 times with a different random seed.
We chose to not apply any augmentation on the
queries to avoid interference with this experiment.
Figure 6 shows MAP@100 broken down by task
for varying positives to negatives ratio. When the
batch consists of only positive or only negative
samples, the performance is very poor. Overall,
a batch with balanced positives and negatives is
performing the best.

5.4 Generalizability on a New Task

We evaluate the adaptability of our model fine-
tuned on nine Industry 4.0 tasks by testing on a
new task, namely Multiple-Choice Question An-
swering (MCQA). Using a RAG pipeline we as-
sess performance on FAILURESENSORIQ (Con-
stantinides et al., 2025), an MCQA dataset on asset
failure modes and sensors. For each question, we
retrieve the closest semantically option using the
base model and our fine-tuned embedding models.

Answering accuracy on 2667 questions be-
fore/after finetuning is: BERT 57.48%/58.38%,
MPNet-base-v2 58.46%/57.77%, and BGE-Large-
v1.5 58.71%/58.31%.

Overall, there is no clear improvement on this
task, and more work towards this direction is
needed. This is a particularly challenging and
highly ambitious experiment because we train the
embedding models on highly structured prompts
following a specific distribution (Example in Fig-
ure 1), and test it on a completely different task and
format (MCQA).

6 Case Study

We present a real case study on how the agent in-
teracts with our tools for a given user query. We do
a qualitative analysis on the planning of the agent
to solve industrial tasks given our industrial tools.
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Figure 7: Integration of industrial tools with a reasoning
agent.

Figure 8: Interaction between user and agent.

6.1 Setup

We wrap our multi-task, domain-adapted, embed-
ding models as langchain1 tools, which accept dif-
ferent arguments. We provide a description for
each tool, its arguments, what they return, the data
types, and state which arguments are optional. In
some of the tools we make calls to an LLM to
get a one sentence description of the input enti-
ties (e.g. sensor, failure mode) which can help for
more meaningful embeddings. We also provide
an optional argument for candidate items in case
the agent has some candidate items which it wants
to pass to the tool to keep the most relevant. We
provide as context 3 examples to the agent on how
to call the tools to solve a simple question. We pur-
posely use examples that are unrelated with each
other, so that the agent can brainstorm on new ideas
and not follow the same trajectory as the examples
in context.

1https://www.langchain.com/

6.2 Interaction
Figure 8 presents the interaction between user,
agent, and our designed industrial tools described
in section 2. The reliability engineer is querying
the system that he is observing high temperature
in their compressor. Then the agent constructs
a plan and invokes several of our tools to finally
return the relevant sensors, along with generated
information around the affected components.

1. The reliability engineer is observing high tem-
perature in his compressor.

2. The agent invokes the Failure Mode to Com-
ponent (FM2C) tool with the failure mode as
argument to discover which components can
experience this failure, and goes on and on.

6.3 Discussion
The agent seems to follow an interesting pattern. It
first finds the components that can experience the
given fault with tool calling. Then, given all the
components, it provides some candidate sensors
that it thinks are used to monitor these components
(probably from prior knowledge) and asks the tool
to narrow them down to only the relevant ones,
getting 2 out of 3 correct in the final response. One
thing that is notable is that none of these tools were
given as in-context examples to the model, so these
decisions from the model seem rather unbiased.

7 Conclusion

We show that fine-tuned embeddings improve per-
formance on the nine defined tasks and generalize
well to questions about related industrial assets,
achieving comparable results on new unseen as-
sets. However, the generalizability on the unseen
FailureSensorIQ MCQA task still needs improve-
ment and we leave this as a future work. We finally
present a case study where we deploy the model as
a tool within an agentic system.

8 Limitations

We currently fix k when retrieving top-k relevant
items, which may not match the actual number of
relevant results. In the future, we plan to adopt
dynamic thresholds (e.g., distance-based or cross-
encoder filtering) to improve precision and recall.

Another limitation is that the LLM-generated
entity descriptions (Section 3.3) can hallucinate
details. We have made some analysis in section I.
Future work will automate this process. We plan
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to explore attention maps (Rateike et al., 2023; Sri-
ramanan et al., 2024), activation analysis (Yehuda
et al., 2024), and perplexity-based methods (Srira-
manan et al., 2024) to better understand and reduce
hallucinations and their impact on embedding qual-
ity.
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A Industrial relational graph example

Transformer

Pump

Fan

Vibration

Temperature

Resistance

Figure 9: Bipartite graph showing relationship “is mon-
itored” between assets and sensors.

B In-batch negatives is prone to false
negatives

Figure 10: An example of how in-batch negatives is
prone to false negatives. Both Fan and Compressor
are related to both Oil Leakage and Oil Debris. In
the selected batch, the positive items will be used as
negatives and this will result in in-batch false negatives.
In our dataset there is a high chance of this happening,
since for each query there is a high number of related
items when compared to the total unique items.

C Task Distribution

From a quantitative perspective, Table 1 presents
a distribution across various tasks, focusing on the
number of queries, the number of items, and the
average number of related items per query. There is
significant variability in both the number of items
and the average related items per query across tasks,
indicating diverse levels of complexity in task struc-
ture.

Task Query
Count

Item
Count

Avg. Items
per Query

A2S 10 53 12.6
C2FM 44 6 1.0
E2CAT 10 107 10.7
E2CLT 42 156 4.5
EU2SU 43 1191 33.1
FM2CLS 140 62 1.0
FM2CMP 254 44 2.7
FM2S 111 53 4.5
S2FM 485 55 1.0

Table 1: Distribution of raw data points across tasks.

D Out-Of-Distribution Asset
Generalizability

As mentioned in the Data Splitting Section 3.4,
for the tasks applicable we split the dataset into
train/validation/test sets stratified by assets, which
represent a diverse set of industries. The assets
are: Electric Motor, Steam Turbine, Aero Gas Tur-
bine, Compressor, Power Transformer, Fan, Re-
ciprocating Internal Combustion Engine, Indus-
trial Gas Turbine, Electric Generator. For instance,
power transformers have use in energy transmis-
sion and utilities, whereas Compressors are used
in Oil & Gas. This can be thought as an Out-Of-
Distribution (OOD) experiment. Even though these
assets come from different domains, they still share
some similar characteristics (components/failure
modes/sensors) which can explain why there is im-
provement when training/testing between different
assets. Other works have explored the generaliz-
ability of LLMs on OOD tasks (Lei et al., 2024).

E LLM Augmentation Costs

With today’s service-oriented LLMs, costs are usu-
ally calculated in terms of the number of tokens
generated. In our case, for each prompt, we gen-
erate a concise one-sentence description for each
entity, which would yield around 20-30 tokens per
prompt. Example generated descriptions can be
found in Appendix 4.
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F Error Case Analysis

Entity Name Frequency
Sensor Vibration 36
Failure Bearing

Wear
34

Component Electrical
Sub-
mersible
Pump

14

Failure Class Abnormal
Instrument
Reading
(AIR)

4

Equipment Class Snubbing,
surface
well control
equipment

2

Equipment Type Centrifugal 2

Table 2: Most frequent False Negative retrieved items
per task/entity.

Entity Name Frequency
Equipment Type Rigid 30
Component Wiring 24
Sensor Compressor

Tempera-
ture

16

Equipment Class Snubbing,
Surface
Equipment

6

Failure Damaged
Labyrinth

7

Failure Class Spurious
Operation
(SPO)

4

Table 3: Most frequent False Positive retrieved items
per task/entity.

G Experiments Details and Results

In this section, we present details for each task
including example queries, LLM augmentation,
and answer. Table 4 presents representative exam-
ples for each task type covered in our framework.
For each task, we show the input query, the aug-
mentation applied by the LLM (if any), and the
corresponding answer. Tasks span a range of re-
liability and maintenance reasoning types—from

sensor selection (A2S, FM2S) to failure mode
identification (C2FM, FM2CMP, FM2CLS) and
equipment/component mapping (E2CAT, E2CLT,
EU2SU). Where applicable, LLMs are prompted to
enhance the query context with domain-specific de-
scriptions to improve relevance and answer quality.
In some cases (marked with an asterisk), no aug-
mentation is applied as the original query contained
sufficient detail.

Next, we provide MAP@100 retrieval perfor-
mance before and after fine-tuning each model (Fig-
ure 11). Table 6 compares retrieval performance
across several industrial domain tasks before and
after fine-tuning for a range of embedding mod-
els, including BM25, BERT, MPNet, BGE, Qwen2,
and E5-Mistral. Metrics reported include HIT@1,
MAP@100, and NDCG@10. Across all tasks, fine-
tuning significantly boosts performance, especially
for HIT@1, where models like E5-Mistral-7B and
MPNet-base-v2 often outperform others. Notably,
E5-Mistral-7B consistently achieves the highest
post-tuning scores across most tasks, indicating
strong alignment between embedding quality and
domain-specific retrieval needs.

Traditional lexical methods like BM25 perform
poorly, especially on HIT@1, highlighting the lim-
itations of non-semantic approaches in complex
technical domains. Fine-tuned dense retrievers
(e.g., MPNet and BGE) show marked improve-
ments. Even though smaller models like BERT
(100M) still lag behind, they still have a decent
performance, making the system suitable to be de-
ployed on the edge. These results emphasize the
importance of model scale, architecture, and task-
aware fine-tuning in enhancing semantic retrieval
for industrial applications.

G.1 Pooling methods
Last Token Pooling. Given a relevant query q+

and item i+, we concatenate them with an [EOS]
token. The resulting sequence is passed through the
transformer model f , and we extract the embedding
corresponding to the final [EOS] token from the last
hidden layer.

Mean Pooling. Let T1, . . . , Tn be the tokens of
the instruction-formatted query q+inst. These tokens
are input to the model f , and we compute the aver-
age of the last-layer activations to obtain the final
embedding. The same procedure is applied to the
instruction-formatted item i+inst.
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Task Example question Example augmentation Example answer
A2S Instruct: What sensors are rele-

vant for the given asset and its
category? Query: Asset: aero
gas turbine, Category: rotating

Asset description: A rotary machine that ex-
tracts energy from steam and converts it into
mechanical work

Sensor: amps

C2FM Instruct: Given an asset com-
ponent, what are the possible
failure modes it could expe-
rience? Query: Component:
Turbo-expanders

Component Description: Turbo-expanders are
industrial components that convert the pres-
sure energy of a high-pressure gas into me-
chanical energy, often used in power gen-
eration, refrigeration, and other applications
where gas expansion can be harnessed to drive
turbines or other machinery.

Failure mode: Fail-
ure to set/retrieve
(SET)

E2CAT Instruct: In the context of a given
equipment category, what equip-
ment is the most relevant? Query:
Equipment category: Electrical

Equipment Category Description: The Electri-
cal equipment category includes a wide range
of devices and systems that generate, transmit,
distribute, and utilize electrical energy, such as
generators, transformers, circuit breakers, and
lighting fixtures

Equipment: Coiled
tubing, work strings

E2CLT Instruct: For a given equip-
ment class, which types of equip-
ment are most essential? Query:
Equipment Class: Swivels

Equipment Class Description: Swivels are in-
dustrial components that allow for rotational
movement, enabling hoses, pipes, or other
equipment to pivot freely while maintaining a
secure connection.

Equipment Type:
Toxic gases

EU2SU Instruct: What components and
their groups are part of a specific
equipment unit? Query: Equip-
ment unit: Subsea pipelines

(No augmentation was done∗) Component group:
Mounting assembly,
Component name:
Mounting connec-
tor

FM2CMP Instruct: Given the asset name
and failure mode class, what
components are involved? Query:
Asset name: well completion,
failure mode class: Low output

(No augmentation was done∗) Component: Top
drives

FM2CLS Instruct: For the given failure
description, which failure mode
class applies? Query: Failure De-
scription: Failed set/retrieve op-
erations

(No augmentation was done∗) Failure class:
Power/signal trans-
mission failure

FM2S Instruct: What sensors can be ap-
plied to detect a fault in an asset
and its category? Query: Asset:
electric motor, Category: electric,
Fault: stator windings fault

Asset description: Converts electrical energy
into mechanical energy to power various in-
dustrial machinery.
Fault description: A Stator windings fault is
a type of industrial failure mode where the
electrical windings in the stator of an electric
motor or generator become damaged or de-
graded, often due to overheating, insulation
breakdown, or physical stress, leading to re-
duced performance, efficiency, or complete
failure of the equipment.

Sensor: output
power

S2FM Instruct: What failure modes can
be detected by reading a sensor in
an asset and its category? Query:
Asset: electric motor, Category:
electric, Sensor: current

Asset description: Converts electrical energy
into mechanical energy to power various in-
dustrial machinery.
Sensor Description: Sensor that measures
electrical current in various systems to detect
anomalies and prevent overloads or system
failures

Failure mode: Ro-
tor Windings Fault

Table 4: Example queries, LLM augmentation, and answers for each task. No augmentation was done for queries
that we determined that has already enough information to be answered and the performance was already good.
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Provide a one sentence description for the equipment category.
Provide a one sentence description for the equipment type.
Provide a one sentence description for the industrial component.
Provide a one sentence description for the industrial failure mode.

Table 5: Examples of instruction prompts for LLM query augmentation

Figure 11: MAP@100 retrieval performance before and after fine-tuning each model and task.
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Task Model Size HIT@1 MAP@100 NDCG@10
before after before after before after

Asset to
Sensor
(A2S)

BM25 - 0.00 0.76 2.42
BERT 110M 0.00 80.7 0.00 76.87 0.00 80.66

MPNet-base-v2 110M 5.26 91.23 1.69 80.94 2.47 85.19
BGE-Large-v1.5 335M 0.00 84.21 5.20 63.81 2.77 69.05

Qwen2-7B-Instruct 7B 0.00 84.21 0.16 73.40 0.00 78.27
E5-Mistral-7B 7B 15.79 91.23 14.43 84.62 18.46 87.03

Component
to Failure
Mode
(C2FM)

BM25 - 0.00 0.30 0.73
BERT 110M 0.00 4.22 0.00 10.89 0.00 13.46

MPNet-base-v2 110M 0.00 9.64 1.48 17.6 1.87 21.54
BGE-Large-v1.5 335M 0.00 3.61 1.71 10.91 0.95 13.96

Qwen2-7B-Instruct 7B 0.00 8.43 0.02 14.33 0.00 18.79
E5-Mistral-7B 7B 0.00 9.64 2.18 26.20 1.83 32.50

Equipment
to Category
(E2CAT)

BM25 - 14.29 4.61 12.53
BERT 110M 0.00 77.78 0.00 76.17 0.00 86.78

MPNet-base-v2 110M 0.00 100.0 2.82 81.83 6.99 88.95
BGE-Large-v1.5 335M 22.22 88.89 4.59 83.46 9.80 90.90

Qwen2-7B-Instruct 7B 0.00 88.89 5.37 68.82 3.56 74.38
E5-Mistral-7B 7B 44.44 77.78 41.87 70.80 54.70 83.61

Equipment
to Class
Type
(E2CLT)

BM25 - 0.00 1.08 00.00
BERT 110M 0.00 85.71 0.00 82.22 0.00 83.30

MPNet-base-v2 110M 2.38 73.81 15.48 75.07 18.83 78.39
BGE-Large-v1.5 335M 7.14 85.71 14.12 82.89 16.2 83.99

Qwen2-7B-Instruct 7B 0.00 66.67 6.33 61.19 9.25 64.54
E5-Mistral-7B 7B 0.00 73.81 12.76 70.41 16.43 69.61

Equipment
Unit to
Subunit
(EU2SU)

BM25 - 0.00 0.53 0.55
BERT 110M 0.00 100.0 1.35 91.56 1.53 95.91

MPNet-base-v2 110M 14.63 100.0 7.34 88.43 14.95 92.84
BGE-Large-v1.5 335M 7.32 92.68 8.03 90.79 16.24 91.43

Qwen2-7B-Instruct 7B 0.00 95.12 1.52 88.06 4.15 93.94
E5-Mistral-7B 7B 0.00 92.68 8.88 84.63 13.85 88.74

Failure
Mode to
Components
(FM2CMP)

BM25 - 0.00 0.00 0.00
BERT 110M 0.00 48.42 0.00 60.89 0.00 69.04

MPNet-base-v2 110M 0.00 61.99 0.86 64.43 0.93 70.40
BGE-Large-v1.5 335M 0.00 54.75 0.23 63.28 0.00 69.82

Qwen2-7B-Instruct 7B 0.00 70.59 0.57 74.86 0.94 78.51
E5-Mistral-7B 7B 4.07 59.73 10.94 69.62 13.69 74.26

Failure
Mode to
Class
(FM2CLS)

BM25 - 8.14 12.78 14.55
BERT 110M 3.23 82.26 4.62 84.41 4.57 84.97

MPNet-base-v2 110M 20.43 82.8 29.31 84.68 31.94 85.17
BGE-Large-v1.5 335M 34.41 81.72 45.07 84.20 50.04 84.85

Qwen2-7B-Instruct 7B 2.15 77.96 9.96 82.13 12.69 83.18
E5-Mistral-7B 7B 5.91 82.8 30.08 83.14 39.3 83.98

Failure
Mode to
Sensor
(FM2S)

BM25 - 0.00 2.84 4.45
BERT 110M 0.00 38.38 0.00 41.71 0.00 50.70

MPNet-base-v2 110M 0.00 49.49 0.70 47.81 0.63 59.48
BGE-Large-v1.5 335M 0.00 48.48 2.77 40.03 2.77 48.45

Qwen2-7B-Instruct 7B 0.00 42.42 2.10 39.39 4.10 46.87
E5-Mistral-7B 7B 3.03 48.48 5.38 54.27 7.73 61.69

Sensor to
Failure
Modes
(S2FM)

BM25 - 00.00 0.46 0.00
BERT 110M 0.00 11.48 0.00 20.76 0.00 25.04

MPNet-base-v2 110M 0.00 19.34 0.03 36.76 0.00 44.36
BGE-Large-v1.5 335M 0.00 27.54 0.66 38.12 0.85 42.52

Qwen2-7B-Instruct 7B 0.00 20.33 0.36 32.41 0.27 37.32
E5-Mistral-7B 7B 0.00 33.77 1.57 39.07 1.55 43.81

Table 6: Retrieval performance before and after fine-tuning. For tasks with a high average number of related items
per query, the HIT score is naturally higher.
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H Towards a more Robust Baseline
Domain Embedder from Web Data

The pre-trained embedders didn’t show a satisfac-
tory performance (Table 6). In our effort to build
a more robust baseline, we use an agent-driven do-
main web data collection approach and fine-tune
using Masked Language Modeling (MLM).

H.1 Dataset Preparation

We set up a ReAct agent (Yao et al., 2022)
equipped with two tools that connect to external
knowledge sources: ArXiv (LangChain, 2024a)
and Wikipedia (LangChain, 2024b). We then
use a series of multiple-choice industrial ques-
tions from the FailureSensorIQ dataset (Constan-
tinides et al., 2025) and employ the ReAct agent
to generate answers by leveraging information re-
trieved from these external knowledge bases. Dur-
ing execution, all interactions between the ReAct
agent and the external tools are stored as key-value
pairs. Table 7 provides an example of the key-
value store for Wikipedia, focusing on a particular
key named “Rotor windings fault in electric mo-
tors”. We treat the values as unique passages for
fine-tuning an embedding model tailored to our do-
main. Overall, we collected 10552 passages from
Wikipedia and 11515 passages from ArXiv.

H.2 Model Training and Experimental
Results

We train different models using Masked Language
Modeling (MLM) on the collected passages and re-
port the results in Table 8. We train for 100 epochs
on a machine with 1 Nvidia A100 (80GB), using
a batch size of 32 and learning rate of 2 ∗ 10−5,
weight decay of 0.01, and token masking proba-
bility of 15%. Overall, the performance is still
unsatisfactory. The key takeaways are: (a) care-
fully curated datasets with domain-specific instruc-
tions based on day-to-day operations are crucial
for learning good embeddings, and (b) publicly
available web documents lack sufficient details on
the relationships necessary to model interactions
between different industrial entities (e.g., sensors,
failure modes, components).

I Hallucination Analysis on the LLM
Augmentation

As discussed in Section 3.3, our approach leverages
an LLM to augment queries, making it crucial to
assess the quality of the generated text by LLM.

Motor Type
(Wikipedia)

Rotor Windings Fault Rel-
evance Summary

Reluctance Mo-
tor (Reluctance
motor)

Rotor does not have wind-
ings; torque is generated via
magnetic reluctance. Not
relevant to rotor winding
faults.

Brushed DC
Motor (Brushed
DC electric
motor)

Rotor includes windings
and uses brushes for com-
mutation. Wear and tear
may impact windings. Rel-
evant to rotor winding fault
scenarios.

Doubly Fed
Induction Gen-
erator (Doubly
fed electric
machine)

Rotor has field windings
connected to external cir-
cuits; faults in rotor wind-
ings can affect performance.
Highly relevant to rotor
winding fault analysis.

Table 7: Summary of rotor windings fault relevance for
different electric motor types from Wikipedia pages

We extract all the LLM generated text to con-
duct deeper study. All together, the dataset includes
255 unique entities spanning assets, sensors, failure
modes, equipment components, categories, class
types, subunits, and units and we have 225 sum-
mary in a form of single sentence is extracted. We
analyze the distribution of token lengths and per-
plexity scores for entity descriptions generated us-
ing LLaMA-3.3-70B-Instruct (Figures 12 and 13).
The token counts follow an approximately bimodal
normal distribution, while perplexity exhibits a
heavy right-tailed distribution.

Figure 12: Perplexity Distribution of the augmented
entity descriptions using Llama-3.3-70B-Instruct.
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Task Model
ACC@1 MAP@100 NDCG@10

Before After Before After Before After

Asset to Sensor (A2S)
BERT 0.00 0.00 0.00 0.00 0.00 0.00

MPNET 0.00 0.00 1.51 0.00 0.71 0.00
BGE 0.00 0.00 6.36 0.00 0.00 0.00

Component to
Failure Mode
(C2FM)

BERT 0.00 0.00 0.00 0.16 0.00 1.49
MPNET 0.00 0.00 0.00 0.00 0.00 0.00

BGE 0.00 0.00 0.31 0.00 0.00 0.00

Equipment to
Category (E2CAT)

BERT 0.00 16.67 1.38 3.18 3.52 9.32
MPNET 0.00 0.00 0.41 2.13 5.77 6.22

BGE 16.7 0.00 6.80 0.75 12.2 0.00

Equipment to Class
Type (E2CLT)

BERT 4.88 0.00 1.74 1.99 3.67 1.14
MPNET 0.00 0.00 7.13 12.5 11.80 4.58

BGE 2.44 19.5 4.88 6.86 4.99 9.43

Equipment Unit to
Subunit (EU2SU)

BERT 2.63 10.53 1.97 4.96 5.67 13.57
MPNET 15.79 0.00 8.92 4.58 22.68 12.47

BGE 18.4 31.58 10.96 11.94 24.11 31.18

Failure Mode to
Components
(FM2CMP)

BERT 0.00 0.00 0.28 0.00 0.31 0.00
MPNET 0.45 0.00 2.70 0.27 3.34 0.53

BGE 0.00 0.00 0.92 0.00 10.57 0.00

Failure Mode to
Class (FM2CLS)

BERT 0.00 5.08 1.15 12.7 0.60 16.5
MPNET 20.34 20.34 30.80 33.37 34.68 37.52

BGE 29.66 28.81 37.85 35.85 41.31 38.22

Failure Mode to
Sensor (FM2S)

BERT 0.00 0.00 0.00 2.1 0.00 0.8
MPNET 0.00 0.00 0.23 0.83 0.00 0.13

BGE 0.00 0.00 4.25 0.00 2.27 0.00

Sensor to Failure
Modes (S2FM)

BERT 0.00 2.13 0.82 3.46 0.78 3.31
MPNET 2.13 0.00 0.36 0.00 0.66 0.00

BGE 0.71 0.00 3.65 0.00 4.05 0.00

Table 8: Performance before and after Masked Language Modeling (MLM) on industrial web documents. Overall,
performance remains poor and improvements are inconsistent. This underscores the importance of carefully curating
instruction-based datasets tailored to specific industrial tasks, as demonstrated in our methodology.
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To further evaluate quality, we manually inspect
generated descriptions in the top 5% percentile of
perplexity scores for factual accuracy (Example
descriptions in Table 4 as an example). Although
these prompts are found to be factually correct,
token count and perplexity may still serve as useful
signals for identifying potential hallucinations and
warrant further investigation.

Figure 13: Number of Tokens Distribution with the
augmented entity descriptions using Llama-3.3-70B-
Instruct.

Metric Value

Total Evaluations 222
Mean Score 0.874
Median Score 0.800
Standard Deviation 0.101
Minimum Score 0.5
Maximum Score 1.0

Distribution (Score Range → Count)

0.0 – 0.2 0
0.2 – 0.4 0
0.4 – 0.6 2
0.6 – 0.8 5
0.8 – 1.0 215

Table 9: Summary Statistics and Distribution of Ground-
edness Scores

I.1 FactChecker Agent

To validate the factual consistency of textual sum-
mary, we develop a ReAct-based fact-checking
agent that performs retrieval-augmented verifica-
tion. For each summary, the agent queries au-
thoritative sources such as Wikipedia and arXiv to

gather evidence that either supports or contradicts
the claim. As specified in Table 14, the protocol
enables fine-grained evaluation by aggregating ev-
idence across steps, assigning confidence scores,
and detecting contradictions. This dual-source vali-
dation strategy culminates in a groundedness score
for the overall rationale, offering a robust assess-
ment of factuality in generated explanations.

We evaluate the factual grounding of 222 agent-
generated summary using a groundedness scoring
metric ranging from 0.0 (no support) to 1.0 (strong
support). Table 9 show the outcome of our exper-
iment. The analysis reveals a high overall factual
accuracy, with a mean score of 0.874 and a me-
dian of 0.800, indicating that most rationales are
well-supported by reliable technical sources. The
standard deviation of 0.101 reflects moderate vari-
ability, while the minimum and maximum scores
were 0.5 and 1.0, respectively. Distribution analy-
sis shows that the vast majority (215 out of 222) of
scores fall within the 0.8 to 1.0 range, confirming
strong evidence backing the agents’ conclusions.
Only a small fraction exhibits weaker grounding,
highlighting areas for potential improvement.
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Task: Assess whether the following step-by-step rationale about an industrial
asset and its associated sensor-based failure mode identification is factually
grounded in reliable technical or scientific sources.
Your role is that of a Reliability Engineering Expert specializing in
sensor-based condition monitoring and failure diagnostics across a wide range
of industrial assets (e.g., turbines, pumps, motors, HVAC systems, rotating
machinery, etc.).
Context:
- Asset Type: "{asset_type}"
- Sensor Type: "{sensor_type}"
- Rationale: "{rationale_text}"
Instructions:
1. Search reliable sources such as Wikipedia, arXiv, and other authoritative
engineering or maintenance references to find passages that either support or
contradict the claims made in each step of the rationale.
2. For each reasoning step, assess whether the technical claim is:
- correct: factually grounded and logically sound.
- partially_correct: partially grounded but includes gaps or weak assumptions.
- incorrect: not supported or contradicted by reliable sources.
3. For each step:
- Provide a confidence score (0.0–1.0) reflecting your certainty.
- Provide a brief comment justifying your assessment.
- Include any relevant supporting or contradicting passages you find from external
sources with citations.
... 5. Assign a groundedness score to the entire rationale, from 0.0 (no support
or contradicted) to 1.0 (strongly supported).
6. You must conclude with a Finish action that returns a fully filled, valid,
and parseable JSON object matching the exact structure below.
- Do not use placeholders.
- The process is not complete unless a proper JSON is returned.
Output Format (JSON):
{
"asset_type": "{asset_type}",
"sensor_type": "{sensor_type}",
"rationale": "{rationale_text}",
"evaluation": [
{
"step": 1,
"status": "correct" | "partially_correct" | "incorrect",
"comment": "...",
],
"contradicting_passages": [
.....suppressed.... "justification": "...",
"groundedness_score": 0.0
}
}

Figure 14: Sensor-Groundedness Evaluation Prompt
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