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Abstract

We introduce DispatchQA, a benchmark to
evaluate how well small language models
(SLMs) translate open-ended search queries
into executable API calls via explicit func-
tion calling. Our benchmark focuses on the
latency-sensitive e-commerce setting and mea-
sures SLMs’ impact on both search relevance
and search latency. We provide strong, replica-
ble baselines based on Llama 3.1 8B Instruct'
fine-tuned on synthetically generated data and
find that fine-tuned SLMs produce search qual-
ity comparable or better than large language
models such as GPT-40 while achieving up to
3x faster inference. All data, code, and train-
ing checkpoints are publicly released to spur
further research on resource-efficient query un-
derstanding.”

1 Introduction

Natural language search is a cornerstone of modern
e-commerce, yet understanding the nuances of user
queries remains a significant challenge. Users often
use conversational, open-ended language, which
may not be well supported by traditional search
systems. The recent success of large language mod-
els (LLMs) in natural language understanding has
opened up new possibilities for interpreting user
intent and translating it into precise executable ac-
tions. One of the most promising paradigms for
this is function calling, where a model converts a
natural language query into a structured API call
that a downstream system can execute.

However, deploying state-of-the-art LLMs in
production e-commerce environments presents
practical challenges, including latency and cost.
Such systems are sensitive to latency (Arapakis
etal., 2021), often requiring < 500 ms responses to
maintain user engagement (Bai et al., 2017). Small

'https://huggingface.co/meta-1lama/Llama-3.
1-8B-Instruct
Zhttps://github. com/upwork/dispatchqa

language models (SLMs), typically < 10B parame-
ters (Zhou et al., 2024), offer a potential solution,
but the trade-offs between their capabilities for call-
ing domain-specific functions and their latency are
not yet well understood.

To address this gap, we introduce DispatchQA,
a new benchmark designed to evaluate SLMs
on their ability to translate natural language e-
commerce queries into structured API calls. Unlike
existing benchmarks that focus on general-purpose
tool use or complex agentic behavior, DispatchQA
is tailored to the practical task of query understand-
ing in an e-commerce search context and explicitly
includes latency as a core metric. The benchmark
comprises:

1. A realistic simulation of search within an e-
commerce marketplace based on WebShop
(Yao et al., 2022a).

2. A comprehensive evaluation methodology
which measures not only the quality of search
results (using standard information retrieval
metrics and a validated LLLM-as-a-judge sys-
tem) but also the end-to-end latency of the
query understanding process.

3. A set of strong, replicable baseline models
as well as finetuning recipes for Llama 3.1
8B Instruct (Dubey et al., 2024) to facilitate
standardized comparisons.

We advocate for a holistic view of model per-
formance in the marketplace search setting, explic-
itly including inference latency. For instance, our
fine-tuned Llama 3.1 8B Instruct model achieves
comparable or superior search relevance to top API-
based models, such as OpenAl GPT-40, while pro-
viding better latency and cost trade-offs. These
findings demonstrate that specialized SLMs are a
good fit for production e-commerce query under-
standing. By releasing DispatchQA, consisting of
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a validated evaluation bench & training code, as
well as trained model checkpoints, we aim to pro-
vide a standardized methodology for developing
and testing resource-efficient language models in
search.

2 Related Work

Function calling has emerged as a common for-
mulation for enabling LLMs to interact with ex-
ternal tools and APIs. Toolformer (Schick et al.,
2023) demonstrated that LLMs can self-supervise
the learning of tool usage by annotating data with
function calls during training. Similarly, ReAct
(Yao et al., 2022b) introduced a framework that in-
terleaves reasoning and acting to enable models to
perform complex tasks through iterative decision-
making and tool use. However, many of these
approaches largely rely on larger models, making
them impractical for latency- or cost-sensitive de-
ployment scenarios like search and e-commerce.
Recent work has investigated the viability of SLMs
for tool use. TinyAgent (Eldan and Li, 2023) and
OpenELM (Mehta et al., 2024) demonstrated that
fine-tuned SLMs can match or outperform larger
models in specific function-calling tasks, particu-
larly when paired with curated datasets and exter-
nal orchestration frameworks. Concurrently, Go-
rilla (Patil et al., 2023) and HuggingGPT (Shen
et al., 2023) explored mapping user queries to large
sets of APIs, showing that language models can be
trained to select and invoke tools with high accu-
racy.

Our work complements and extends this line
of research by focusing specifically on query un-
derstanding for search and marketplace actions
through function calling in SLMs. Unlike prior
benchmarks such as WebShop (Yao et al., 2022a)
or ToolLLM (Qin et al., 2024), which target agent
interaction or general API coverage, we propose
a practical domain-specific benchmark aimed at
interpreting short, real-world search queries and
mapping them to structured API calls.

This domain-specific focus contrasts with
general-purpose tool-use evaluations by providing
targeted assessment of models’ ability to under-
stand and execute e-commerce search tasks, which
have distinct characteristics in terms of query pat-
terns, filter requirements, and latency constraints
(Ren et al., 2025).

‘blue t-shirts under $25’

[ Query Understanding LM ]

search(
query=‘t-shirts’,
color=‘blue’,
price_max=25

’¢

[ Search System ]

Figure 1: Query understanding as function calling: nat-
ural language queries are transformed into structured
JSON function calls, which are then executed by the
search system.

3 Search Query Understanding as
Function Calling

The task formulation of search query understand-
ing as function calling is illustrated in Figure 1. A
user’s natural language query and optional addi-
tional context are fed into a query understanding
(QU) model. The model translates the unstruc-
tured text into a structured search call, specifying a
search query and any other applicable parameters
using a structured function schema. The search sys-
tem then executes this API call to retrieve a ranked
list of products. Although the function calling for-
mulation enables the use of multiple tools,’ in this
paper we focus on a single search tool, since this is
the most salient use case in real-world e-commerce
marketplaces.

This approach generalizes beyond e-commerce
to any domain requiring structured search with fil-
ters, such as job search platforms (location, salary,
skills), real estate (price, location, property type),
or academic literature search (field, publication
date, author).

4 Evaluation

To evaluate small language model’s query un-
derstanding abilities, we propose an application-
based evaluation methodology. The small language
model answers a set of predefined search queries
by invoking a standardized search system via a tool

3In an e-commerce context, other tools could include
searching through FAQs or support articles, or performing
various actions on the marketplace.

4Product images retrieved from Amazon.com.
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‘i would like to buy computer desk which has steel
frame and is in black color while it's size is large’

‘i would like to buy computer desk which has steel
frame and is in black color while it’s size is large’

[ Search System ]

Folding Desk 39.37” Small Foldable X
Computer Desk...
home & kitchen

©

0w,

Celestron - NexStar 90SLT Comput- X
erized Telescope...
. electronics

Seaweed Laver Nori Tsukudani Paste X
for rice sushi...
grocery & gourmet food

search(
query="‘computer desk steel frame large’,
category=‘home & kitchen’,
color=‘black’,
material=‘steel’

[> '

Search System ]

Titan Fitness A6 Adjustable Sit/S- /
tand Desk 60" x 30”...
home & kitchen

Stand Up Desk Store Manual Height- /
Adjustable...
home & kitchen

ﬁ Rise UP Dual Motor Electric Stand- /

ing Desk 60x30...
home & kitchen

Figure 2: A side-by-side comparison of a direct search versus a search with a query understanding model.*

call for each query. We then use a LLM-as-a-judge
system to evaluate search quality. See Figure 2
for an example of the full evaluation process for
a single query, showing a baseline search without
query understanding on the left and a search using
tool calling on the right. LLM-as-a-judge grades
are shown next to each search result.

The remainder of this section is structured as
follows: First, we will establish that for our task,
the LL.M-as-a-judge paradigm produces results at
comparable reliability to traditional grading per-
formed by trained human judges. Secondly, we
provide details on our dataset and evaluation setup.
Finally, we present a baseline training recipe for
small language models for query understanding.

4.1 Validating the Evaluation

Can we trust the LLM-as-a-judge system to provide
a realistic proxy for user experience? While the
method is widely used in industry, there are few
studies on its reliability in search evaluation (Gu
et al., 2025). As itis a core building block of our
benchmark, we provide additional validation of the
method’s reliability for search in this section.

Human-LLM Judge Agreement

WANDS dataset The WANDS dataset (Chen
et al., 2022) is aimed at evaluating e-commerce

search systems via a collection of expert hu-
man judgments. We use a standard LLM-
as-a-judge setup in which an LLM (OpenAl
gpt-40-2024-08-06) receives each query and
product text plus a system prompt instructing
it to produce a relevance label (Relevant or
Irrelevant), as well as an explanation for its
decision. We use Cohen’s k¥ (Landis and Koch,
1977) to measure the chance-corrected agreement
between the LLLM-as-a-judge system and human
judgments from WANDS. Graders followed anno-
tation guidelines to produce three labels: Exact
Match, Partial Match, Irrelevant. As most standard
retrieval metrics such as NDCG require binary judg-
ments and in order to simplify the task, we choose
to use only the two labels Relevant and Irrelevant.
These grading guidelines instruct the graders to
grade results that are in the correct general space
but miss certain details as Partial Match.®> For ex-
ample, for a query green sofa, red and blue sofas
should be labeled as Partial Match. For this pa-
per, we are particularly focused on scenarios where
the exactness of the results retrieved is important.
Hence, we prefer an evaluation in which the judge

SSpecifically, the WANDS grading guidelines instruct the
grader to rate products as a partial match if the “product
matches the target entity in the query, but not one or more
modifiers.”
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is as strict as possible.

We sample 5000 (query,result, grade) triples
and filter out Partial Match labels (leaving 1891
triples). According to the widely-used Landis and
Koch interpretation, k values above 0.61 indicate
substantial agreement (Landis and Koch, 1977).
On this subset, we calculated agreement between
machine and human judges at kK = 0.71, demon-
strating that our LLM judge is a reliable proxy for
human evaluation.

WebShop In addition to the WANDS dataset, we
perform blind grading on the WebShop dataset.
Two human judges each independently graded the
same 100 results from the baseline search system.
We then compare these grades against our LLM
judge’s grades and find that the two human judges
have a higher agreement of k¥ = 0.65 with the LLM
judge than with each other (x = 0.39).

Takeaways for DISPATCHQA

An off-the-shelf LLM reaches a substantial agree-
ment of k¥ = 0.71 on the WANDS dataset and
Kk = 0.65 on WebShop. Hence, we posit that we
can safely use this method as an automated judge
for large-scale experiments where binary relevance
is sufficient. Hence, in the remainder of this paper,
we use this binary LLM-as-a-judge system. We
provide complete details on the LL.M-as-a-judge
system in Appendix A.

4.2 Dataset

We base our benchmark on the WebShop dataset
(Yao et al., 2022a), which is a collection of products
in various categories from Amazon.com along with
a set of complex instructions. We perform a manual
inspection of the product attributes and their value
distributions in the dataset and select a subset of
attributes to focus on in this paper: price, average
product rating, category, country of origin, brand,
manufacturer, color, material and style. We normal-
ize (lowercase, remove non-ASCII characters and
whitespace) and index the resulting attributes. The
resulting search function call schema (see Figure 6)
is used for all subsequent experiments in this paper.

4.3 Evaluation Procedure

We use the binary judgments provided by the LLM-
as-a-judge system to compute a suite of standard
information retrieval metrics (i.e., NDCG, MAP,
MRR, Precision and Recall). Appendix A provides
definitions for all metrics used. For evaluating
latency, our goal is to ensure that results from all

models are comparable. Hence, we run evaluations
on a single node with a Nvidia A100-80GB GPU.
To ensure models are ready to receive traffic, a set
of warm-up queries is executed against each model,
and the timings from these requests are discarded
during evaluation.

We measure network round-trip latency for the
API-based models to be around 15ms (measured
via TCP connection establishment time, see Ap-
pendix D). For both local open and remote closed
models, it is challenging to fully account for side
effects such as caching in various components. We
attempt to mitigate this issue as follows. For closed
models, we re-ran API experiments several weeks
apart and found no significant variance. For local
open models, all experiments reported in this paper
were executed on a freshly provisioned Kubernetes
node.

4.4 Search System & Baseline Models

To simulate realistic search systems, we use the
Pyserini toolkit (Lin et al., 2021), which provides
the ability to create search systems using repeat-
able explicit recipes. For our experiments, we use
a traditional BM25 search system based on Apache
Lucene. The search system indexes all 1.18M docu-
ments from the WebShop dataset including our nor-
malized product attributes defined in Section 4.2.

We fine-tune a small language model (Llama
3.1 8B Instruct) both via LoRA and via direct fine-
tuning. As training data for this model, we use
a synthetic, task-specific training dataset of 1000
examples. The data generation process, detailed
in Appendix A, uses a large teacher model (Ope-
nAl gpt-40-2024-08-06) in a two-step process.
First, for a given product sampled from the Web-
Shop dataset, the teacher model generates a re-
alistic, natural language search query. Next, the
model generates the corresponding structured func-
tion call with its parameters. This process yields a
high-quality dataset of (query,function call) pairs
tailored to e-commerce search. Note that while
our evaluation uses WebShop for consistency with
prior work, the synthetic training data generation
approach can be adapted to other product catalogs
such as WANDS for domain-specific applications.

5Local models use SGLang with Outlines grammar and
do not repeat the schema in the prompt while closed models
repeat the schema in the prompt; see following tables for
discussion of these hyperparamters. Best values in bold.
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System

NDCG@10 MAP@10 MRR@10 R@10 P@10 P50 Latency (ms)

Baseline 0.24 0.18 0.19 0.38 0.13 8
Closed models (GPT-4 family)

GPT-40 0.32 0.24 0.27 049 0.18 593
GPT-40 mini 0.32 0.25 0.26 0.51 0.19 672
GPT-4.1 nano 0.37 0.30 0.31 0.54 0.22 496
Closed reasoning models (GPT-5 family)

GPT-5 0.37 0.29 0.31 0.55 0.24 11470
GPT-5 mini 0.35 0.28 0.31 0.50 0.22 6836
GPT-5 nano 0.36 0.29 0.31 0.55 0.21 5576
Small local models

Llama 3.1 8B Instruct (SGLang) 0.32 0.24 0.27 0.50 0.20 284
Llama 3.1 8B Instruct Fine-tune (SGLang) 0.33 0.25 0.26 0.51 0.21 313
Llama 3.1 8B Instruct LoRA (SGLang) 0.35 0.26 0.27 0.57 0.20 321
DeepSeek R1 Distill Qwen 1.5B (SGLang) 0.24 0.18 0.20 040 0.13 694
Qwen3 0.6B (SGLang) 0.25 0.19 0.20 041 0.14 586
Gemma 3 4B IT (SGLang) 0.33 0.26 0.28 0.52 0.21 495

Table 1: DispatchQA comparison of closed LLMs and smaller, specialized models. “Baseline” means the system
performs no query understanding (raw query sent directly to BM25 search system).®

5 Results

Table 1 presents evaluation results for a set of com-
mercial LLM APIs as well as smaller, fine-tuned
language models. The results show that SLMs pro-
vide a valuable alternative to LLM APIs for this
task. GPT-4o although supposedly much larger
than GPT-40 mini does not provide quality advan-
tages for this task. GPT-4.1 nano (with 128K con-
text) offers the highest quality but at similar latency
to other API models. Overall, we find that SLMs
(specifically, Llama 3.1 8B Instruct), especially
with task-specific finetuning, perform on par with
GPT-40 in terms of quality, with latency improve-
ments of up to 2x. While we found Gemma 4B to
produce results on par with the Llama 8B instruct
model, we found both Gemma and Qwen-based
models to exhibit high latency in SGLang. The sig-
nificant latency improvements possible with local
Llama models over closed model API calls high-
light the importance of considering both model size
and deployment infrastructure when optimizing for
production use cases.

Our benchmark enables us to perform detailed

comparisons of the various choices required when
training and deploying SLMs. Hence, in the re-
mainder of this section, we will discuss the key
variables impacting latency and model quality in
more detail. We found the following dimensions
to be most impactful: (1) The structured decoding
strategy (i.e., how to enforce the function schema
on the LM), including various implementations of
structured decoding, (2) subtle usage differences,
for instance, the inclusion of the JSON schema
within the prompt.

5.1 Structured Decoding Strategies

Large language models generate text autoregres-
sively, producing one token at a time, and can
be decoded with deterministic methods such as
greedy or beam search (Vaswani et al., 2017; Bah-
danau et al., 2015), or with stochastic sampling
approaches like top-k, nucleus (top-p), or con-
trastive search (Holtzman et al., 2019; Su and Col-
lier, 2022). Because autoregressive token-by-token
generation provides no built-in guarantee that the
output will obey a required structure (e.g., a func-
tion name and its arguments in JSON format), we

System NDCG@10 MAP@10 MRR@10 R@10 P@10 P50 Latency (ms)
Baseline 0.24 0.18 0.19 0.38 0.13 7
SGLang (XGrammar) 0.33 0.25 0.26 0.51 0.21 206
SGLang (Outlines) 0.33 0.25 0.26 0.51  0.21 313
SGLang (LLGuidance) 0.30 0.24 0.24 047 0.20 210
JSONformer 0.26 0.21 0.23 0.38 0.17 5221

Table 2: Structured decoding for Llama 3.1 Finetune, executed locally without schema in prompt.
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System NDCG@10 MAP@10 MRR@10 R@10 P@10 P50 Latency (ms)
Baseline 0.24 0.18 0.19 038 0.13 7
GPT-40 mini, schema in prompt 0.32 0.25 0.26 0.51 0.19 672
GPT-40 mini, no schema in prompt 0.29 0.23 0.24 047 0.18 817
Llama 3.1 8B Instruct, schema in prompt 0.29 0.23 0.24 044 0.18 421
Llama 3.1 8B Instruct, no schema in prompt 0.32 0.24 0.27 0.50  0.20 284
Llama 3.1 8B LoRA, schema in prompt 0.23 0.18 0.21 034 0.15 447
Llama 3.1 8B LoRA, no schema in prompt 0.35 0.26 0.27 0.57 0.20 321

Table 3: Comparison of system performance with and without JSON schema included in the prompt. Local models

run on SGLang with Outlines grammar.

evaluate schema-guided decoding frameworks such
as SGLang (Zheng et al., 2024) and JSONformer,’
which each add their own constrained-decoding
layer to keep every token inside a user-supplied
schema (see Table 2). We found JSONformer to be
slow and produce low relevance results, most likely
due to the complexity of our search schema in com-
bination with JSONformer’s approach to constrain-
ing generation at each token. We observed a me-
dian latency of 5221ms—25x% slower than SGLang
implementations—while also degrading search qual-
ity (0.26 NDCG@10 vs. 0.33 for SGLang vari-
ants). SGLang provides efficient implementations
of three structured decoding algorithms: XGram-
mar (Dong et al., 2024), Outlines® and LLguid-
ance.” We found SGLang to consistently provide
high-quality, low latency local structured decoding.

5.2 Structured Decoding Instructions

We also observed that seemingly subtle usage dif-
ferences can have a significant impact on both la-
tency and prediction quality. The most salient vari-
able we found was whether or not to repeat the full
JSON schema in the prompt in addition to its us-
age in delimiting the model’s search space. Table 3
shows how results from three systems change based
on this parameter. All Llama models are served
locally via SGLang using Outlines for structured
decoding. We found that while including the full
schema in the prompt increases search latency, it
provides minor improvements in search quality for
closed models. For small local models, repeating
the full search schema in the prompt has detrimen-
tal effects on quality and latency. Task-specific
fine-tuning may serve as a way to internalize this
knowledge within the model without incurring ad-
ditional inference latency.

"https://github.com/1rgs/jsonformer
$https://dottxt-ai.github.io/outlines/
‘https://github.com/guidance-ai/llguidance

6 Conclusion

We introduced DispatchQA, a targeted bench-
mark that jointly measures search relevance and
end-to-end latency for small function-calling lan-
guage models in search applications. By pair-
ing this self-contained evaluation tool with a val-
idated LLM-as-a-judge protocol, DispatchQA of-
fers a repeatable methodology for research in
resource-efficient query understanding. Experi-
ments show that fine-tuned small language models
models rival or surpass commercial GPT-4-class
APIs on relevance while cutting median latency by
2-4x. We also quantify the impact of constrained
decoding, as well as other training and inference
choices on the quality—speed tradeoff of such mod-
els. We release data, code, and checkpoints to
encourage future work on faster, schema-aware
function calling for search.

Limitations

The work presented in this paper has several limi-
tations:

* To keep this paper focused, we only fine-tuned
one base SLM and compared a limited number
of closed LLM APIs. We aim to evaluate more
systems in future work.

* We are focused particularly on the narrow do-
main of e-commerce. Our dataset is based on
the WebShop dataset, which in turn is based
on Amazon.com. Hence, without further eval-
uation, results and learnings should not be
transferred to other domains.

* While no models in our benchmark are
language-specific, since we use the queries
from the WebShop dataset, which are in En-
glish, all results in this paper and the Dis-
patchQA benchmark itself should not be gen-
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eralized to other languages without further
evaluation.

* Our benchmark relies on data from the Web-
Shop dataset, which exhibits a degree of noise
and variability due to its collection process.
Although we believe this does not negate our
benchmark’s utility for evaluating model per-
formance, this limitation constrains the bench-
mark’s reliability to some extent. Future iter-
ations will include additional datasets to im-
prove coverage and data quality.

* We replicated latency measurements multiple
times to ensure stability; nevertheless, achiev-
ing fully consistent and reproducible latency
estimates remains inherently challenging due
to fluctuations in hardware performance, net-
work conditions, and system-level caching ef-
fects and some residual variance may there-
fore persist.
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Appendix A: LL.M-as-a-Judge

For automated evaluation of search result relevance,
an LLM-as-a-judge system is employed. This sys-
tem uses a large language model to provide repro-
ducible binary relevance assessments (“Relevant”
or “Irrelevant”) for a given query and product pair.

The system takes a user query and product infor-
mation as input. The LLM is guided by a specific
system prompt describing criteria to evaluate the
candidate products and the original query. We then
restrict the model to return its assessment in a struc-
tured JSON format.

System Prompt The LLM is provided with the
following system prompt to instruct it on its task
and the expected behavior used in this paper (Fig-
ure 3).

This prompt clearly defines the LLM’s role, the
classification task, the required output format, and
the definitions for “Relevant” and “Irrelevant” to
guide its decision-making process.

Output JSON Schema The LLM is required to
output its assessment in a JSON object that adheres
to the structure in Figure 4.

This schema ensures that the output is machine-
readable and contains both the categorical judg-
ment and a human-readable explanation. The
judgment field must be one of the two specified
string literals, and the explanation field provides
context for the judgment.

To ensure consistent and deterministic output,
the LLM generation process is configured with min-
imal randomness (i.e., setting a low temperature, T
=0).

Metrics From the binary relevance labels (where
rel; = 1 if item i is relevant, 0 otherwise), we calcu-
late standard information retrieval metrics for the
top k = 10 results over a set of queries Q. Let r
be the rank of a retrieved document, R be the set
of all relevant documents for a query, and r; be the
number of relevant documents at rank i.

« NDCG @k (Normalized Discounted Cumu-

You are an expert relevance judge for an e-commerce search engine.

Your task is to assess whether the given product is relevant to the
user’s query. Classify the product’s relevance into one of two categories:
Relevant or Irrelevant. Provide a brief explanation for your judgment.

You MUST respond in JSON format. The JSON object should have two keys:
1. "judgment": A string, which must be one of "Relevant", or "Irrelevant".

2. "explanation": A string, containing a concise reason for your judgment.

Example response:
{
"judgment": "Relevant",

"explanation": "The product is a good match for the user’s needs."

}

Relevance Categories:

- Relevant: The product addresses the user’s query and would likely be useful.
This includes perfect matches and also items that are related and might be

useful even if not a perfect match.

- Irrelevant: The product is not relevant to the user’s query.

Figure 3: LLM judge system prompt.

"judgment": "<string:
"explanation":

‘Relevant’ or ‘Irrelevant’>",
"<string: textual explanation for the judgment>"

Figure 4: LLM judge response format.
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lative Gain): Measures ranking quality, giv-
ing more weight to relevant items at higher
ranks (Jarvelin and Kekildinen, 2002).

rel;
(logy(i+1)
DCG@k
IDCG@k

where IDCG @k is the DCG score of an ideal
ranking.

DCG@k = Z

NDCG@k =

« MAP@Kk (Mean Average Precision): The
mean of Average Precision (AP) scores over
all queries. AP is the average of precision
scores computed after each relevant document
is retrieved.

Y5 | P(i) x rel;

AP@k =
R

MAP@k = — )" (AP@k),

|Q| qu

where P(i) is the precision at rank i.

* MRR@k (Mean Reciprocal Rank): The av-
erage of the reciprocal of the rank of the first
relevant item.

MRR @k =
10| qg’Qrank

where rank, is the rank of the first relevant
result for query q.

¢ Precision@k: The fraction of retrieved items
in the top k that are relevant.

. 1
Precision@k = z ; rel;
¢ Recall@k: The fraction of all relevant items
that are retrieved in the top k.
IR|
Appendix B: Small Function Calling LLM
Baselines

Recall@k =

A Synthetic Training Data Generation

We distill task-specific supervision from a large
teacher model (OpenAl gpt-40-2024-08-06)
into compact student models. This process is de-
signed to generate high-quality, realistic (query,
function-call) pairs for fine-tuning. This section
outlines the end-to-end data generation pipeline
and provides the exact prompts used.

Neighborhood-based sampling Instead of gen-
erating a query for a single product in isolation,
we use a neighborhood-based sampling strategy to
create more contextually rich and diverse training
data. This method encourages the teacher model
to generate queries that target a coherent group of
similar items. The process is as follows:

1. Product Loading and Embedding: Prod-
ucts are loaded from the WEBSHOP dataset
(1.18M items). We compute semantic embed-
dings for each product’s textual description
using the al1-MiniLM-L6-v2 sentence trans-
former model.

2. Neighborhood Sampling: For each training
example, we randomly select a seed product
for the k-Nearest Neighbors search. We then
find its 10 nearest neighbors using cosine sim-
ilarity in their embeddings. This group of 11
related products forms a “’neighborhood.”

3. Neighborhood Analysis: For the group of
11 products, we perform a statistical analysis
of their metadata. Counting the frequency of
each explicit product attribute (e.g., ~water-
proof”, ”organic”) and each product option
(e.g., for the ”Color” option, it counts occur-
rences of "Red”, ”Blue”, etc.). This produces
a summary of the neighborhood’s most com-
mon characteristics.

4. Teacher Query and Function-Call Synthe-
sis: An analysis summary of the neighbor-
hood, including its most common attributes
and sample product descriptions, is provided
to the teacher model. The model is prompted
to generate both a natural-language query and
a structured JSON object containing relevant
search parameters (facets) that a user might
implicitly intend. This yields a complete pair
(query, function-call). We set the teacher
model at temperature 0.7 and constrain its
generation to a reasonable length, yielding
queries such as “looking for a compact drip
coffee maker for one person”.

The full prompt is provided in Figure 5. Long
product descriptions are truncated and any fields
not required for fine-tuning are omitted. This entire
process is repeated with a fixed random seed, to
ensure reproducibility and 1000 unique training
instances are generated.
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[System Prompt]

You are generating realistic e-commerce search queries with appropriate

search parameters based on product neighborhoods.

Available search schema facets:
{schema_info}

Your task:

1. Generate a natural, conversational search query (5-15 words)
2. Select appropriate search parameters from the schema that match the

query intent

Guidelines for queries:

- Use everyday language ("I need", "looking for", "want")

- Focus on customer needs and use cases
- Sound like real customer searches

- Avoid technical jargon unless commonly searched

Guidelines for search parameters:

- Only include search_params fields that are relevant to the query.

Respond with JSON in this format:

{
"query": "natural search query here",
"search_params": {
"color": "color if mentioned/relevant",
"price_min": number,
"price_max": number,
"material": "material if relevant",
"style": "style if relevant"
}
}

Only include search_params fields that are actually relevant to the query.

Most queries should have 1-2 facets at most.

[User Prompt]
Product neighborhood analysis:
{{NEIGHBORHOOD_SUMMARY}}

Generate a natural search query and appropriate search parameters:

Figure 5: System and user prompt structure for the teacher model using neighborhood-based sampling. The
{{NEIGHBORHOOD_SUMMARY } } placeholder is replaced with an analysis of the sampled product group.

B Model Training

Fine-tuning procedure Training uses standard
next-token cross-entropy on 1000 chat-formatted
synthetically generated (query, function-call) pairs.
We update either all parameters or rank—8 LoRA
adapters (r=8, =32, dropout 0.05) for 500 steps
with the AdamW optimizer and a linear learning-
rate decay. Batches are padded to the longest se-
quence within the model’s context window.

Appendix C: Dataset Schema

Figure 6 shows the JSON schema used in Dis-
patchQA.

Appendix D: API Network Latency
Measurement

To provide a comprehensive understanding of the
latency characteristics of the evaluated systems, we
conducted a systematic measurement of network la-
tency to the API endpoints used in our experiments.
This measurement isolates the pure network con-
nectivity latency from the overall inference latency
reported in the main results.

Measurement Methodology Network latency
was measured using TCP connection establishment
time to the API endpoints. All measurements were
timed in the same instance where the experiments
were executed, located at AWS’s us-west-2 re-
gion. For each API endpoint, we established 100
independent TCP connections and measured the
time from socket creation to successful connection
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Mean P50 P95 P99 Min  Max
API

OpenAl 15.1 14.9 173 234 120 263

Table 4: Network Latency Comparison (in milliseconds)

establishment. This approach captures the funda-
mental network round-trip time plus connection
overhead, providing the minimum possible latency
for any API request.

This methodology provides a lower bound on
API request latency, as it excludes HTTP protocol
overhead, request/response serialization, and actual
model inference time. The results represent the
irreducible network latency component that affects
all API-based experiments.
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"$schema": "http://json-schema.org/draft-07/schema#",

"title": "E-commerce Product Search",
"name": "product_search",
"description": "A schema for searching products using a free-text query and a set of filters.",

"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The free-form text query to search for products."
},
"price_min": {
"type": "number",
"description": "The minimum price."
},
"price_max": {
"type": "number",
"description": "The maximum price."
s
"average_rating_min": {
"type": "number",
"minimum": O,
"maximum": 5,
"description": "The minimum average rating (0-5)."
s
"average_rating_max": {
"type": "number",
"minimum": O,
"maximum": 5,
"description": "The maximum average rating (0-5)."
},
"category": {
"type": "string",
"description": "The top-level category of the product.",
"enum": [
"amazon devices & accessories",

"toys & games",
"video games"
]
T,
"country_of_origin": {
"type": "string",
"description": "The country of origin of the product.",
"enum": [
"afghanistan",

"yemen",
"zimbabwe"
]
},
"brand": {
"type": "string",
"description": "A search query for the product’s brand."
},
"manufacturer": {
"type": "string",
"description": "A search query for the product’s manufacturer."
},
"color": {
"type": "string",
"description": "The color of the product. Constrained to a list of known, common colors.",
"enum": [
"amber",

"wine red",
"yellow"
]
1,
"material": {
"type": "string",

"description": "A search query for the product’s material."
s
"style": {
"type": "string",
"description": "A search query for the product’s style."
}
},
"required": [
"query"

B
"additionalProperties": false

Figure 6: Search tool JSON schema for DispatchQA.
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