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Abstract

Telemarketing towards merchants is consider-
ably more complex than traditional dialogue
systems. Given a user utterance, the response
must not only follow the context but also strate-
gically and naturally guide the conversation
toward marketing objectives. A common ap-
proach is to fine-tune LLMs using high-quality
dialogue data from top sales. However, we
find that even after careful data cleaning, these
data cannot be used directly due to two issues:
(1) Poor strategy-following: Real-world con-
versations are highly random with much chit-
chat topics, easily leading deviation from in-
tended strategy. (2) Insufficient expert knowl-
edge learning: Expert knowledge appears infre-
quently or not at all in limited collected corpus.
To this end, we introduce a hybrid data synthe-
sis framework with two main innovations. First,
we unify the input schema with profile and strat-
egy designed by top sales, and extract them via
a Multi-task paradigm. In addition, we pro-
pose Role-playing Simulation and Session Pre-
fix Completion to complementarily improve the
strategy-following and inject long-tail expert
knowledge into our fine-tuned model — TeleBot.
Comprehensive online and offline evaluations
demonstrate its effectiveness. In particular, in
terms of the final marketing results — High In-
tention Rate, TeleBot reaches the performance
level of the top 25% of human sales.

1 Introduction

Large Language Models (LLMs) are proving
broadly applicable across diverse industries, includ-
ing e-commerce (Peng et al., 2024; Palen-Michel
et al., 2024). In this domain, merchant telemarket-
ing is an important channel to enrich the supply
capacity of e-commerce platforms. Unlike tradi-
tional multi-turn dialogue systems, which is di-
vided into task-oriented (Budzianowski et al., 2018)
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@ ...(omitted for space)

This is [Platform Name]. Are you interested in exploring @
export trade opportunities recently?

@ Sure.

May | ask what products your factory primarily produces? @

@ Office chairs.

Recently, there has been a high demand in [Country/Region
Name] for such products. A buyer wants to order 1,000 black @
office chairs. Are you interested in learning more?

@ Looks good so far. But I'm not sure we can handle it.

Got it. There's a furniture exhibition next month at [Location]. Q
If you attend, we can chat more in person.

@ Is it being held at that venue near [Building Name]?
Sounds good.

No problem. Could | have your [Contact Information] to send Q
you the detailed materials we talked about?

@ ...(omitted for space)

Figure 1: A generated example of telemarketing. Based
on a pre-designed strategy, the TeleBot introduces rele-
vant order information to encourage merchant to engage
in further collaboration. If it does not work, the con-
versation shifts to an offline campaign — a furniture
exhibition — to draw the merchant again with the chit-
chat topic.

and open-domain (chit-chat) categories (Yi et al.,
2024), telemarketing requires a sophisticated blend
of both conversational capabilities (Cheng et al.,
2025; Tiwari et al., 2022). In short, telemarketing
needs to have a top-level goal, but each round of
conversation is not strictly goal-driven and may
be filled with open-domain content. Recent re-
searchers proposed a novel chat flow that starts with
social chit-chat and then seamlessly transitions to
task-oriented dialogues (Chiu et al., 2022; Chang
and Chen, 2024). These integrated methods have
demonstrated impressive salesperson-customer in-
teractions in specific scenarios, outperforming sys-
tems confined to a single mode.

Inspired by recent synthetic data advancements,
this paper explores utilizing online telemarketing
scripts (sales and merchant conversations) from top
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sales to generate a high-quality synthetic dataset.
Extracting training data from real scripts contains
several aspects, including noises from Automatic
Speech Recognition (ASR), Speaker Diarization,
hallucinations, and numerous chit-chat exchanges.
With the strong capabilities of LLMs, many of
these issues can be resolved or filtered out. How-
ever, the inherent complexity of real-world telemar-
keting means that models trained directly on such
data remain insufficient, primarily due to two key
challenges: 1) Lack of Communication Strategy-
Following: the scripts exhibit a high density of
chit-chat turns, which leads the model to over-learn
chit-chat abilities. Testing has revealed that this
results in the model lacking the diverse strategy to
attract different users, instead continually engaging
in prolonged chit-chat. 2) Insufficient Comprehen-
sive Expert Knowledge: Acquiring expert knowl-
edge systematically from general online corpora is
challenging because not all knowledge appears in
the collected scripts, particularly the more nuanced
or specialized areas. While these knowledge is
usually embedded in sales guidelines, or FQA (Fre-
quent Question Answering), which are presented
as single-turn dialogues, contrasting with the multi-
turn nature of the scripts.

To tackle the aforementioned issues, this study
proposes a data synthesis framework based on on-
line noised scripts. First, a multi-task extraction
method is employed to generate a basic synthe-
sis dataset. Specifically, we create profile tem-
plates and common strategies based on the ex-
perience of top sales, forming the output as a
triplet: {Profile, Strategy, Session}. Secondly, we
proposed two methods to enhance the strategy-
following capability and systematically expert
knowledge learning. One is a role-playing sim-
ulation method. Given a script and its correspond-
ing strategy, two LLM agents are used to play the
roles of the salesperson and the merchant, generat-
ing high-quality, strategy-following multi-turn dia-
logues. Another is a dialogue history completion
method to incorporate more comprehensive, single-
turn expert knowledge. By setting expert-annotated
QA pair as the final dialogue turn and providing a
profile and strategy, we employ a out-of-the-box
LLM:s to complete the preceding dialogue history.
After direct supervised fine-tuning on the combi-
nation of these three datasets, we achieve our final
model, TeleBot. Offline evaluations, using both hu-
man and LLM-based judges, consistently demon-
strated TeleBot’s superior performance. These eval-

uations showed clear advantages over meticulously
designed prompt engineering (PE) agents and mod-
els trained on solely datasets. Furthermore, in ex-
tensive online A/B testing, where TeleBot and PE
agents each handled over 20k+- calls, the result un-
equivocally demonstrates TeleBot’s statistically sig-
nificant superiority in telemarketing performance.
Our contributions can be summarized as follows:

1. We propose a novel, yet simple and effec-
tive, mixed-pattern data synthesis framework.
This framework synergistically leverages ex-
pert knowledge and powerful LLMs to trans-
form noisy, real-world online scripts into high-
quality, directly-trainable datasets.

2. This study introduces a comprehensive evalu-
ation framework for telemarketing multi-turn
dialogue. It contains both offline and online
metrics, session generation, and evaluation
methods.

3. We conducted large-scale online A/B testing.
The result demonstrated its significant supe-
riority over traditional Prompt Engineering
agents. More notably, it also shows that Tele-
Bot achieves performance comparable to the
top 25% of real sales in terms of intention
rate.

2 Related Work

Conversational Recommendation From the ap-
plication perspective, conversational recommen-
dation is highly relevant to this work. For in-
stance, Li et al. (2018) constructed a dataset of over
10k movie recommendations via the Wizard-of-Oz
(WoZ) method (Zang et al., 2020), where one par-
ticipant acted as the recommendation seeker and
the other as the recommender. Zhou et al. (2020);
Xu et al. (2020); Wu et al. (2019); Liu et al. (2020)
employed node paths to control the conversational
flow and topic progression, like the ’strategy’ in
this study. Notably, as these nodes typically rep-
resent specific entities (e.g., movie names), Chiu
et al. (2022); Chang and Chen (2024) proposed a
more general framework — starting with chit-chat
dialogues and then smoothly transitioning to task-
oriented dialogues. It is no longer limited to a
specific entity, but is a more general task-oriented
content.

Our work distinguishes from these prior ap-
proaches in two key aspects: 1) Granularity and
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Integration of Strategy. Our strategy is expert-
designed and multi-granular, encompassing various
levels of detail such as rapport-building techniques,
ultimate conversion goals, and the overall conver-
sational flow. With merchant profiles, it could ef-
fectively guides the merchant towards marketing-
specific topics. 2) Realistic Conversational Pro-
gression. In real-world settings, conversational
turns do not strictly follow a sequential progres-
sion from purely chit-chat to purely task-oriented
interactions. Instead, they frequently interleave or
blend. Our approach, utilizing synthetic data gen-
erated from real-world online scripts as seed data,
inherently mitigates this issue.

Synthetic Data plays a crucial role across the en-
tire lifecycle of LLMs, encompassing stages from
data preparation, pre-training, post-training and
so on (Tan et al., 2024; Wang et al., 2024a; Gou
and Nguyen, 2024). The practice of processing
seed data with LLMs for use as fine-tuning train-
ing data is quite common across many tasks (Gou
et al., 2023b; Xia et al., 2023). E5-mistal uses GPT-
generated (query, positive, hard negative) triplets
and achieves strong performance with them (Wang
et al., 2024b). MoPo innovative approach to inte-
grating learned posterior information seamlessly
into multi-hop retrieval without significant disrup-
tion in training efficiency (Xia et al., 2025). As
dialogue systems, Mehri et al. (2022); Bae et al.
(2022); Chen et al. (2023); King and Flanigan
(2023); Gou et al. (2023a) leveraged LLMs to as-
sist in generating training data for different usage.
However, the limitation is that human supervision
is still required. With effective inference techniques
such as CoT (Chain of Thought) (Wei et al., 2022)
and few-shot learning (Brown et al., 2020), Kulka-
rni et al. (2024); Chang and Chen (2024) produce
higher-quality training data without human inter-
vention. In this study, we further explore how to
utilize expert knowledge for synthetic data genera-
tion in telemarketing scenario.

3 Problem Formulation

Sales always devise specific communication strate-
gies for different users. Profile comprises struc-
tured information about a merchant, typically rep-
resented via pre-designed templates and associated
tags that capture publicly available data. Strategy
refers to expert-annotated, fine-grained telemarket-
ing tips, guiding the merchant towards telemarket-
ing targets throughout the call. During both training

and inference, the format is represented as:
{System Prompt } { Profile } { Strategy } { Session} (1)

Here, Session means the structured conversation
history between salespersons and merchants, math-
ematically expressed as an alternating sequence
of utterances { A1, Us, ..., A, }. In this sequence,
A; and U; represent an utterance made by the sale
(Agent) and merchant (User), respectively. And n
represents the total number of messages.

Since the collected online scripts are noisy,
the subsequent section will thoroughly describe
how we utilize them to generate high-quality syn-
thetic triplet { Profile, Strategy, Session} as shown
in Eq.1.

4 Synthetic Data Generation

Drawing upon expert knowledge from top sales,
collected telemarketing scripts, and a curated set
of expert-labeled QA pairs, we develop three com-
plementary data synthesis methodologies. Each
approach systematically constructs synthetic pro-
files, strategies, and corresponding dialogue ses-
sions while preserving domain-specific constraints.

4.1 Multi-task Extraction

Given a script, we simultaneously extract (1) a user
profile, (2) a communication strategy, and (3) clear,
coherent turn-by-turn utterances. The input-output
schema is shown in the left part of Figure 2.

Leveraging predefined templates within the plat-
form and top sales, it is simple to generate the user
profile. Equally, we developed a set of fine-grained
candidates for communication strategy. Session ex-
traction is a complex process that involves compre-
hensive cleaning, including vocabulary correction,
turn merging, and removing irrelevant or privacy-
sensitive content. During session extraction, we
incorporate a brief descriptive reasoning sentence
for each turn, such as a topic or dialogue summary,
which significantly improves the consistency.

Utilizing their expert knowledge, the extraction
of profiles and strategies becomes easier. Dia-
logue session, on the other hand, is akin to con-
tent rewriting. While individually straightforward,
these three tasks are semantically interconnected.
Consequently, we designed them as a multi-task
paradigm for generating synthetic datasets.

The empirical evaluation revealed that the gen-
erated sessions exhibited strong conversationality
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Figure 2: Illustration of three data synthesis methods. Pink blocks represent the outputs of each module, while blue
blocks indicate the input content. To maintain conciseness, certain preliminary processing steps have been omitted.
For example, in the Role-playing Simulation, the profile and strategy are pre-extracted and shown in blue.

and closely matched real-world telemarketing sce-
narios. However, irrelevant yet factually correct
conversational fillers are still retained. As a result,
the trained model exhibits limitations in topic guid-
ance and proactive questioning, indicating a lack of
strategy-following capability during inference. A
case dialogue corresponding to Figure 1 is shown in
Figure 3 in Appendix A.1, where the model starts
chit-chat after the merchant mentioned the location
of the exhibition.

4.2 Role-playing Simulation

Strategy defines the overall session “trajectory”.
The excellent instruction-following capabilities
of LLMs are well-suited to address the limita-
tions of multi-task extraction in terms of strategy-
following.

We leverage the character modeling capabilities
of LLMs, such as GPT-4 (OpenAl, 2023), to de-
sign detailed personas for sales and merchants and
further refine them with the assistance of LLMs
and top sales experts. Then, we employed two off-
the-shelf LLMs to perform role-playing, simulating
a salesperson and a merchant. Except their basic
role personas, both agents’ inputs include a given
script to emulate realistic telemarketing scenarios.
To ensure the strategy-following, we also config-
ured the salesperson agent with the specific strategy
and corresponding user profile, which are extracted
from the source script. The role-playing schema of
salesperson and merchant is shown in the middle
of Figure 2.

Empirically, while this sub-dataset exhibited ex-
cellent strategy-following, its conversationality was
significantly inferior to that of multi-task extraction,
regardless of persona configurations. As shown in
Figure 4 in Appendix A.1, the overly formal re-
sponse could potentially reduce the effectiveness
of telemarketing.

4.3 Session Prefix Completion

The datasets from both aforementioned methods
are derived from successful cases handled by top
salespersons. However, real-world telemarketing
scenarios demand additional capabilities, such as
proactive call termination and necessary content
safety protection.

Furthermore, integrating commonly encountered
knowledge—such as environmental regulations,
import/export policies, or platform strategies across
countries—is challenging via retrieval-augmented
generation (RAG). This difficulty stems from the
computational cost associated with long contexts
and the inherent latency of retrieval and rerank
modules. A more judicious approach is to inject
them as in-parameter knowledge via supervised
training directly.

Consequently, we generated a third dataset to
address these limitations. We leveraged expert-
annotated common Q&A pairs to serve as the final
turn of synthetic dialogues. Conditioned on a given
sampled profile and strategy, LLLMs then completed
the preceding conversational turns.

4.4 Post-processing

Despite our meticulous generation process, some
sensitive, duplicated and other hallucination infor-
mation inevitably remained. Hence, we decided
to implement a post-processing pipeline for data
refinement. It primarily encompassed steps such as
conversationality, safety filtering, noisy replication
removing, quality screening and etc.. A vibe evalu-
ation conducted on sampled instances indicated a
noticeable improvement after the post-processing.

S Experiments

5.1 Statistics of the Synthetic Data

Table 1 presents the statistics of our generated three
synthetic sub-datasets, including the average the
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| Seed Valid Turn  Len.
Multi-task Extraction 1504 813 7.54 30.26
Role Playing Simulation 1710 1061 8.01 37.01

Session Prefix Completion | 701 701 5.18 41.44

Table 1: Statistics of three sub-datasets

number of turns and length of each utterance. We
collect about 3k seed scripts and 700 single-turn
FQA annotated by top salespersons. To minimize
redundancy in synthetic sessions, these scripts are
divided into two distinct sets randomly for Multi-
task Extraction and Role Playing Simulation. Sub-
sequently, our post-processing pipeline operates
under extremely rigorous standards. We priori-
tize several critical quality dimensions: user pri-
vacy protection, the conversationality, semantic co-
herence throughout the dialogue, and etc. Each
of these undergoes an independent filtering stage.
This multi-layered process ultimately leads to a
retention rate of approximately 55%.

5.2 Offline Evaluation Method

Evaluation Sessions We generated test sessions
via Role-playing Simulation mentioned in Section
4.2. But the salesperson role is performed by our
fine-tuned TeleBot. We prepare a dedicated set
of 100 isolated scripts, meticulously paired with
sampled profiles and strategies, ultimately yielding
300 distinct sessions for offline evaluation.

Metrics For the e-commerce telemarketing sce-
nario, we have developed a novel and comprehen-
sive offline evaluation framework. To facilitate
straightforward assessment, each individual metric
is assessed with a binary outcome: 1 representing
good performance and 0 indicating a deficiency.
Specifically, the evaluation is categorized into three
primary dimensions:

¢ Human-likeness. It quantifies the similarity
between the generated responses of evaluated
model and human, encompassing three key
metrics. (a) Consistency: Evaluating the se-
mantic and factual coherence of the every re-
sponses in the given session. (b) Repetition:
Ensuring the model avoids expressing redun-
dant conversational intents, such as repeated
inquiries regarding product details. (c) Con-
versationality: Assessing the conversational
naturalness of response.

* Marketing Skills. We focus on two critical

dimensions: Diversity and Strategy-following.
The former assesses the ability to generate var-
ied responses for similar content, and the latter
indicates whether the TeleBotconsistently fol-
low pre-defined strategy throughout the entire
telemarketing call.

* Hallucination. In telemarketing scenario,
it is crucial to prevent the LLM from gen-
erating fabricated knowledge or information
not explicitly present in the provided context,
like non-existent profiles or marketing cam-
paigns. Here, we emphasize not to fabricate —
knowledge-grounding. The consistency men-
tioned above emphasizes semantic coherence
and not to answer questions that are not asked.

Evaluator and Baselines We used GPT-4.1 as
the LLM evaluator to assess the six metrics across
four sets of evaluation data: prompt engineering
(PE), TeleBot, and two ablation experiments (with-
out extraction, without simulation). Considering
that FQAs are the supplement of expert knowledge,
it is difficult to measure whether the model has
learned them via these six metrics. Hence, we do
not conduct ablation experiments in this offline
evaluation. Additionally, we employed 3 human
annotators to conduct a double-blind human evalu-
ation for both PE and TeleBot.

5.3 Online Evaluation Method

For both PE and TeleBot, we conducted online A/B
testing. Given the complexity of real telemarketing
scenarios, our evaluation primarily focused on four
key outcome metrics:

* High Intention Rate. It indicates the will-
ingness to engage with our platform, specif-
ically defined by successfully scheduling an
in-person, offline meeting, or by acquiring
more direct contact information. To refine
this metric and specifically attribute success
to our telemarketing intervention rather than
pre-existing merchant intention (empirically,
a 20-second call typically encompasses three
conversational turns), a 20-second call dura-
tion threshold is implemented. We recalculate
the proportion of high intention in these calls
that last longer than 20 seconds.

 Follow-up Rate. The percentage of special
flagged by salespersons after the telemarket-
ing, such as ”good” or potential customer”.
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Model Human-likeness Marketing Skills Hallucination
Consistency Repetition Conversationality | Diversity Strategy-following | Knowledge-grounding

PE 98.67 75.47 90.14 68.33 74.52 69.81
LLM-based | TeleBot 97.45 93.20 94.44 94.66 81.37 76.69
Eval. w/o extraction 98.14 91.50 90.98 88.91 93.39 85.71
w/o simulation 97.05 92.07 96.03 95.29 77.22 61.38
Human PE 99.00 99.09 91.55 63.06 90.74 85.66
Eval. TeleBot 98.48 99.13 97.84 86.08 98.79 90.15

Table 2: Offline LLM-based and human evaluation results. In the two groups, the best result is bolded and the

second best is underlined.

Metric ‘ Improvement
High Intention Rate +14.73%
High Intention Rate (20s+) | +25.22%
Follow-up Rate (20s+) +16.71%
On-site Visit (20s+) +120%

Al Suspicion Rate +11.54%

Table 3: The improvement of TeleBot in A/B testing
compared to PE on 40k+ online samples. TeleBot sig-
nificantly outperforms PE in On-site Visit (20s+) with
p = 0.025, reaching a performance level comparable to
the top 25% of the entire sales team.

* On-site Visit Rate. Assessing the percentage
of calls resulting in an in-person visit within 7
days.

* Al Suspicion Rate. Determining the propor-
tion of calls where merchants express suspi-
cion of Al involvement. A lower suspicion
rate indicates a more human-like model.

5.4 Results and Analysis

Offline Results is shown in Table 2. From the re-
sults, several findings can be observed: (1) TeleBot
is the most balanced model in terms of Human-
likeness, Marketing Skills, and Hallucination dur-
ing offline evaluation. In the LLM-based evalua-
tion, it got 1 bast and 4 second-best results. (2)
TeleBot (w/o extraction) demonstrated excellent
strategy-following and knowledge-grounding capa-
bilities. This can be attributed to the LLM strength
in instruction-following. In role-playing simula-
tion, the LLM can effectively adhere to the given
strategy and avoid from discussing or fabricating
content that has not been introduced in the context.
However, this is also a limitation, as the persona
of the role is predefined, leading to relatively fixed
dialogue patterns and poorer response diversity and
conversationality. (3) TeleBot (w/o simulation) pri-
marily relies on dialogue extracted from online

scripts, addressing the shortcomings of TeleBot
(w/o extraction) in terms of diversity and conversa-
tionality. Whereas, the online scripts from top sales-
persons contain a significant amount of chit-chat
content. Even after extracting the main content, the
proportion of chit-chat tokens remains high during
training. Consequently, models trained predom-
inantly on this sub-dataset exhibit poor strategy-
following. (4) In PE, many professional skills and
important considerations need to be specified in
the system prompt, leading to an excessively long
token length. As the conversation progresses, its
professional capabilities begin to deteriorate, par-
ticularly in terms of diversity, strategy-following,
and knowledge-grounding.

A/B Testing indicates that TeleBot achieves
higher performance in metrics on high intention
rate, follow-up rate, and on-site visit rate compared
to our prompt-based model PE, as shown in Ta-
ble 3. Although the High Intention Rate (20s+)
and Follow-up Rate (20s+) show about a 20% im-
provement, TeleBot achieves nearly twice the per-
formance of PE in the On-site Visit (20s+) metric.
This suggests that TeleBot excels in terms of skill-
fulness and process efficiency. Additionally, the Al
suspicion rate is lower, which is attributed to our de-
liberate design for conversationality and diversity
at each data processing stage.

6 Conclusion

This study introduces a novel data synthesis frame-
work for e-commerce telemarketing. To address
these real-world requirements, we standardize the
input into three components: system prompt, user
profile, and strategy. This structure enables TeleBot
to adapt telemarketing strategies according to mer-
chant profiles for improved performance. Specif-
ically, we proposed three complementary data
synthesis methods that incorporate expert knowl-
edge. Each method has been optimized for spe-
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cific attributes such as conversational tone, strategy-
following, and special scenarios mentioned by
FQA of top sales. Comprehensive offline evalu-
ations—both human and LLM-based—as well as
online A/B testing demonstrate the efficacy of our
approach. Overall, TeleBot has the potential to sig-
nificantly reduce the workload of real salespersons
in telemarketing tasks.

7 Limitations

Our work may have some limitations. First, the
experiments are only on Chinese corpus. The effec-
tiveness of TeleBot is not verified on the datasets of
other languages. Second, a fundamental constraint
of our approach, stemming from its post-training
nature, is the necessity to retrain the model for
newly added or modified knowledge. While this
represents an inherent drawback, it is a deliberate
compromise when weighed against the substantial
token consumption and increased latency associ-
ated with extremely long context windows. We
acknowledge that novel solutions capable of strik-
ing a better balance between dynamic knowledge
integration and computational efficiency warrant
further exploration.
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A Appendix
A.1 Case Study

This section presents two cases: (1) a detailed ex-
planation of the limitation in strategy-following
mentioned in Section 4.1, where the conversation
easily shifts to chit-chat; (2) models trained on data
generated by Role-playing Simulation sometimes
produce overly formal responses, which do not
match real sales scenarios mentioned in Section
4.2.

...(omitted for space) @
@ Office chairs.

Recently, there has been a high demand in [Country/Region
Name] for such products. A buyer wants to order 1,000 black @
office chairs. Are you interested in learning more?

@ Looks good so far. But I'm not sure we can handle it.

Got it. There's a furniture exhibition next month at [Location]. @
If you attend, we can chat more in person.

Is it being held at that venue near [Building Name]?
Sounds good.

Yeah, this building is also near your factory right? | remember @
there was a food street next to ...(omitted for space)

@ ...(omitted for space)

Figure 3: A generated example corresponding to Figure
1. After mentioning the furniture exhibition, the model
deviates from its original marketing topic and engages
in chit-chat, as highlighted with a red background mes-
sage.

...(omitted for space) @
@ Office chairs.

Recently, there has been a high demand in [Country/Region
Name] for such products. A buyer wants to order 1,000 black @
office chairs. Are you interested in learning more?

@ Looks good so far. But I'm not sure we can handle it.
Understood. For your reference, there will be a furniture
exhibition next month at [Location]. Should you be able to @

attend, we could arrange an in-person meeting to discuss
matters in greater detail.

@ Is it being held at that venue near [Building Name].
Sounds good.

Very well. May | kindly request your [Contact Information], so @
that | may send you the detailed materials we have discussed?

@ ...(omitted for space)

Figure 4: A generated example corresponding to Fig-
ure 1. After the user expressed hesitation, the model
still preform good strategy but generate overly formal
responses, which are marked as red messages.
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