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Abstract

Modeling human behavior in urban environ-
ments is fundamental for social science, be-
havioral studies, and urban planning. Prior
work often rely on rigid, hand-crafted rules,
limiting their ability to simulate nuanced inten-
tions, plans, and adaptive behaviors. Address-
ing these challenges, we envision an urban sim-
ulator (CitySim), capitalizing on breakthroughs
in human-level intelligence exhibited by large
language models. In CitySim, agents gener-
ate realistic daily schedules using a recursive
value-driven approach that balances mandatory
activities, personal habits, and situational fac-
tors. To enable long-term, lifelike simulations,
we endow agents with beliefs, long-term goals,
and spatial memory for navigation. CitySim ex-
hibits closer alignment with real humans than
prior work, both at micro and macro levels. Ad-
ditionally, we conduct insightful experiments
by modeling tens of thousands of agents and
evaluating their collective behaviors under var-
ious real-world scenarios, including estimat-
ing crowd density, predicting place popularity,
and assessing well-being. Our results highlight
CitySim as a scalable, flexible testbed for un-
derstanding and forecasting urban phenomena.

1 Introduction

Simulating realistic city-scale behaviors is a long-
standing goal in social science and artificial intel-
ligence (Hofman et al., 2021; Lazer et al., 2009).
Traditional models often leverage hand-crafted
rules or utility functions, restricting their ability to
represent the diversity, adaptability, and long-term
dynamics inherent in humans (Zheng et al., 2022;
Wang et al., 2023). As a result, they often yield
unrealistic behaviors: rigid schedules, inability to
develop new preferences, and poor adaptation to
novel or changing environments (Feng et al., 2024).
Hence, it remains challenging to simulate nuanced
psychological, social, and environmental drivers
shaping actions in urban settings.

Figure 1: Overview of CitySim: LLM-based agents with
diverse personas plan daily activities, interact socially,
and navigate a virtual city environment.

Recent advancements in large language models
(LLMs) offer promising avenues in creating human-
like agents for studying complex urban phenomena,
enabling detailed exploration into individual-level
decisions and social interactions (Epstein, 1999;
Macal and North, 2005; Gao et al., 2024; Park et al.,
2023a). Numerous studies have pointed out that
after being empowered by LLMs, agents gain the
ability to reason, plan, and interact through natu-
ral language (Gao et al., 2024; Wei et al., 2022;
Bougie and Watanabe, 2025; Li et al., 2023; Park
et al., 2023a; Bougie and Watanabe, 2024). A pi-
oneering example is the Generative Agent (Park
et al., 2023a), which constructs a small-scale soci-
ety within a 2D game engine. Recently, AgentSoci-
ety (Piao et al., 2025) has introduced a large-scale
multi-agent platform, but lacks long-term cognitive
mechanisms such as evolving goals, evolving pref-
erences, or spatial memory. Despite advances in
modeling motivation, memory, and social interac-
tion (Ye et al., 2025), current approaches still face
several challenges. (1) Agents often plan activities
in a fixed sequential manner, overlooking the rela-
tive importance and interdependencies among daily
tasks; (2) Long-term simulation is underexplored,
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ignoring the effect of beliefs and long-term goal
formation and adaptation. (3) Place selection and
vehicle choice are usually not considered.

In this work, we present CitySim (Figure 1),
a scalable city simulation framework empowered
by LLMs. CitySim agents autonomously gener-
ate daily schedules and long-term plans through a
recursive, value-driven planning process that bal-
ances mandatory activities, personal habits, and sit-
uational context. Each agent is equipped with spa-
tial and temporal memories, which enable agents
to recall past experiences, form and update beliefs
about places they visit, and adapt their future de-
cisions accordingly. Namely, agents continuously
revise beliefs, transportation choices, and internal
states (such as mood or satisfaction) in response
to needs, environmental feedback, and social in-
teractions. To lay a reliable and diverse founda-
tion, agents are equipped with a persona module
derived from real-world surveys, encompassing
demographic, personality traits, preferences and
habits. This results in heterogeneous, context-
aware urban populations capable of capturing the
complexity of real societies.

2 Related Work

Replicating human behavior in urban environments
remains a challenge (Hofman et al., 2021; Lazer
et al., 2009). Traditional agent-based models have
been widely used to study complex phenomena,
resource allocation, and policy evaluation (Epstein,
1999; Macal and North, 2005; Wilensky, 2015).
Yet, they depend on hard-coded rules or fixed util-
ity functions, constraining their capacity to capture
behavioral diversity, adaptability, and long-term
dynamics (Feng et al., 2024; Zheng et al., 2022;
Wang et al., 2023). Recent frameworks such as
CityBench (Feng et al., 2024) and AI4SIM (Zheng
et al., 2022) have begun to integrate richer, data-
driven approaches, yet realistic cognitive and moti-
vational modeling remains limited.

Recently, LLMs have opened new possibili-
ties for simulating human-like agents in virtual
worlds (Park et al., 2023a; Gao et al., 2024; Li
et al., 2023; Wei et al., 2022). LLM-powered agents
can reason, plan, and interact through natural lan-
guage (Gao et al., 2024; Wei et al., 2022; Bougie
and Watanabe, 2025; Park et al., 2023a; Bougie
and Watanabe, 2024). Nevertheless, most LLM-
based agents still plan activities in a myopic or rigid
manner, struggle to update beliefs from experience,

and often represent personas solely via demograph-
ics (Wang et al., 2023). To support different appli-
cation scenarios, Zhou et al. (2023) present an open-
source framework for autonomous language agents,
and Hong et al. (2024) demonstrate how agents
can collaborate in complex software engineering
tasks. As research moves toward larger-scale simu-
lations, computational efficiency becomes crucial.
Park et al. (2024) scale up simulations to 1,000
agents but still inherits prohibitive costs. Frame-
works such as AgentSociety (Piao et al., 2025) or
MobileCity (Ye et al., 2025) use episodic mem-
ory and gravity-based place selection, but neglect
habits and transport choices. CitySim advances
this area by integrating recursive activity planning,
dynamic memory and belief modules, enabling life-
like, context-sensitive, long-term behaviors.

3 Method

We introduce CitySim, a framework simulat-
ing human-like behavior in a dynamic, graph-
structured urban environment. Agents are endowed
with advanced cognitive representations, including
personas, long-term goals, beliefs, and needs. At
each simulation step, an agent first perceives its en-
vironment (e.g., location, presence of friends) and
internal state. Along with insights retrieved from a
memory module, it decides on a course of action –
seeking food when hungry. The agent then reacts
by either following its current plan, adjusting future
activities when an unexpected event happens, or
filling the agent’s free time via value-driven plan-
ning. Finally, it reflects on recent experiences to
develop beliefs, opinions and habits, synthesizing
memories into higher-level reflections.

3.1 Cognitive State Representation

3.1.1 Persona Module
The persona module is fundamental for aligning
agents with genuine human behaviors in urban sim-
ulation. To lay a reliable foundation, questionnaire-
derived attributes include:

• Demographic Attributes: Name, age, gen-
der, occupation, income, hobbies, education,
household composition, and life stage. These
modulate the agent’s activity space (e.g., chil-
dren attend school; retirees prefer daytime
leisure) and shape patterns in daily routines.

• Spatial Anchors: Home, and work/school
locations.

• Psychographic Traits: Personality traits are
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defined by the Big Five personality facets:
Openness, Conscientiousness, Extraversion,
Agreeableness, and Neuroticism, each mea-
sured on a 1 to 3 scale.

• Habits and Preferences: routines that under-
lie human activity. Each agent is initialized
with a set of empirically-derived habits and
preferences, including activity preferences,
habits (e.g., early riser), and leisure patterns.

3.1.2 Memory Module
Humans retain diverse memories, bifurcating
mainly into factual and emotional categories
(LaBar and Cabeza, 2006). In CitySim, the mem-
ory module comprises three components: tempo-
ral, reflective, and spatial memories.
Temporal Memory This memory is organized
chronologically, with multiple memory nodes in
each stream. Each memory node contains four
components: time, location, and observation, and
key. The key serves to filter observations during
retrieval. New entries are appended at each simula-
tion step, action, or reflection.
Reflective Memory The reflective memory records
the agent’s thoughts and attitudes toward events
stored in temporal memory. Each entry is linked to
one or more nodes in the temporal memory, reflect-
ing how the agent perceives or reacts to a specific
event. At the end of each day, we synthesize those
memories into higher-level reflections, enabling the
agent to draw conclusions about itself.
Spatial Memory. Spatial memory maintains be-
liefs bi ∈ RK about point of interests (POIs),
where each dimension corresponds to an aspect
∈ {price, atmosphere, satisfaction, convenience}.
When the agent visits a POI i at time t and ob-
serves outcome o(t)i , the belief b(t)i is updated using
a Kalman filter to reduce noise (see Appendix). If
a POI i has not been visited, bi is initialized via
embedding-based similarity to previously visited
locations: bi ← Ej∈N (i)[bj], where N (i) denotes
similar POIs retrieved from spatial memory. Note
that the uncertainty is retrieved along bi to guide
the agent during the POI selection. To reflect for-
getting and environmental changes, we introduce a
decay. After a simulated day, each dimension d of
bi is updated as: bi,d ← (1− λ)bi,d + λb0,d, where
b0 is the neutral value (0.5) and λ is the decay rate.

3.1.3 Belief Module
This module is triggered each time the agent visits
a place. Upon visiting POI i, the agent generates a

subjective observation o
(t)
i by prompting an LLM

with visit-specific context, including the agent’s
persona, current activity, emotional state, and de-
scription of the POI. This observation captures the
agent’s immediate appraisal of the visit, providing
a multi-dimensional assessment with associated
reasoning. The new observation is then integrated
with the prior belief b(t−1)i , as described above.

3.1.4 Needs Module
The agent’s tracks and prioritizes four pri-
mary needs: hunger, energy, safety, and so-
cial connection. At the start of each day,
an LLM prompt, conditioned on demographic
and temporal context, serves to initialize scores:
s0 = {hunger, energy, safety, social} ∈ [0, 1]4.
Throughout the day, scores decay continuously
based on decay rate αn for need n: sn(t) =
max (0, sn(t −∆t) − αn∆t). Following each ac-
tivity or significant events, the LLM evaluates
outcomes and updates scores based on agent ex-
perience, contextual information, and current in-
ternal state. Needs are prioritized (hungry >
safe > tired > social) using thresholds Tn:
dominant need = argminn {sn ≤ Tn}. If a higher-
priority need arises, ongoing plans may be inter-
rupted and needs reprioritized. The dominant need
is stored as plain text in the persona module.

3.1.5 Long-Term Goal Module
We model the formation and revision of the agents’
high-level aspirations, drawing on the Maslow’s Hi-
erarchy of Needs (Huitt, 2007). Goals are revisited
monthly or following major life events (e.g., em-
ployment changes). In detail, the LLM is queried
using persona, financial status, social contacts, re-
cent activities, and current goals. Along with these
inputs, we compute the need fulfillment, defined as
the proportion of the day during the needs exceed
their thresholds. We also monitor financial stress
(income < 0.9 × expenses) and social isolation
(fewer than 3 unique contacts in last 7 days). To
capture the interest, we calculate the proportion of
recently visited POIs whose current satisfaction be-
lief exceeds 0.5: interest = 1∣V∣ ∑i∈V I[bsat

i > 0.5],
where b

sat
i is the satisfaction belief for POI i and V

is the set of POIs visited in the last 30 days. Given
this context c, a structured prompt pgoal conditions
the LLM to generate coherent short (few weeks)
and long-term goals: g1t , g

2
t , . . . , g

M
t ∼ LLM(pgoal ∣

θ, c), where resulting goals gmt inform subsequent
planning modules.
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3.1.6 Perception Module
At each simulation timestep, the perception module
receives an observation from the environment and
determines whether the agent should react. If so,
the perception module enumerates the set of avail-
able modules, each accompanied by a functional
description, and queries the LLM to select the most
appropriate module for the current situation. Mod-
ule selection is managed by a dispatcher, which
invokes the corresponding module (e.g., planning,
social interaction) based on the agent’s inferred
needs, short explanation, and required parameters.

3.2 Mobility Behaviors
3.2.1 Planning Module
Daily schedules are generated via a recursive de-
composition of time into [blocks], each includ-
ing a starting time, duration, and activity/intention.
Planning begins each day with mandatory tasks
(e.g., sleep, work) based on each agent persona and
needs, then recursively fills remaining [EMPTY]
blocks with medium-priority tasks (e.g., meals, hy-
giene). If a selected activity does not fill the entire
interval, the block may be subdivided according to
the activity duration.

Some [blocks] remain unfilled after this pro-
cess. According to Maslow’s Hierarchy (Huitt,
2007), these are typically used for leisure or long-
term goals (e.g., hobbies, socializing), and are filled
at execution time based on the agent’s state, lo-
cation, needs, and schedule using value-driven
planning. For each empty block, the agent gen-
erates and evaluates multiple candidate activities,
selecting the one expected to best satisfy intrinsic
desires. This selection is handled through a single
structured LLM call with internal reasoning steps.

3.2.2 Place Selection Module
For each activity, the location is determined using a
belief-aware gravity model, extending AgentSoci-
ety (Piao et al., 2025). For home or work activities,
addresses from the agent’s persona are used.
Step 1: Macro-level Area Selection. The agent de-
cides whether to remain in the vicinity or travel far-
ther by prompting the LLM with intention, sched-
ule, emotional state, area visit history, and popular
nearby areas (ranked by distance and popularity).
Step 2: Micro-level POI Selection. Within the
chosen area, the agent:
Intention Extraction: Determines required POI
types (e.g., café, park) and adjust feasible ranges
by integrating internal (e.g., age, daily schedule)

and environmental factors (e.g., weather, traffic),
providing a set of POIs candidates.
Belief-weighted Gravity Model: For each candi-
date POI i, computes the selection weight as

pij =
(bj + ε) /D 1+γ(bj−0.5)

ij

∑k(bk + ε) /D 1+γ(bk−0.5)
ik

(1)

where bj is the belief-based attractiveness of loca-
tion j, and Dij is the distance, γ controls distance
decay, and ε is a small positive constant to ensure
numerical stability. Here, bj is the weighted sum
of current beliefs. If no belief exists for j, it is
estimated from similar POIs in spatial memory.

3.2.3 Vehicle Selection Module
Finally, the most appropriate transport mode is
estimated for each trip. Given trip context, in-
cluding distance d to the next POI, time of day
t, month m, weather w, temperature T , and per-
sona p, a structured prompt pv is used to query
the LLM: LLM(pv ∣ d, t,m,w, T, p, θ,V), where
V is the set of available vehicles. Along with
the selected vehicle v

∗, the agent is instructed to
provide a brief justification, which are stored in
the reflective memory. The process approximates
v
∗ = argmaxv∈V U(d, t,m,w, T, p, θ,V), where

U(⋅) is an implicit utility function implemented by
the LLM’s reasoning over the provided context.

3.3 Social Behaviors
The foundation of our social module is a weighted
social network where each edge encodes an
agent’s evolving social beliefs about others. Each
agent u maintains a social belief vector bu,v
for every contact v, capturing dimensions: ∈{affinity, trust, familiarity}. These beliefs are ini-
tialized at simulation start based on demographic
similarity and relationships, then updated continu-
ously. We consider two types of interactions: face-
to-face and online. After an interaction, bu,v is
updated using observed outcome (positive, neutral,
negative) for each dimension.

Face-to-face interactions occur when agents
are co-located in same space. Agent u selects a
conversation partner v according to their current
belief score, with probability: pv = bu,v

∑v′∈V bu,v′
,

where V is the set of eligible co-located agents,
and bu,v is the current belief toward v.

Online interactions simulate remote communi-
cation (e.g., phone calls or messasing). When agent
u’s social satisfaction score falls below a defined
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Figure 2: Time-use distribution across activity categories and age groups. Solid bars represent ground truth; striped
bars show results from our simulation.

threshold, it seeks to contact an acquaintance dur-
ing leisure time, with selection probability based
on beliefs and relationship strengths.

4 Experiments

Settings. Experiments are conducted using the
urban simulation framework proposed in AgentSo-
ciety (Piao et al., 2025). All agents are powered by
the GPT-4o-mini version of ChatGPT, except when
specified differently, with the number of agents set
to 1,000 located in Tokyo metropolitan area.
Baselines We compare CitySim with GeAn (Park
et al., 2023b), AGA (Yu et al., 2024), HumanoidA-
gent (Wang et al., 2023). We also report results
with our closest competitors, MobileCity (Ye et al.,
2025) and AgentSociety (Piao et al., 2025).

4.1 Macro-level Time Use

To assess macro-level behavioral realism, we com-
pare our agents’ time-use distribution with ground-
truth data from the 2021 Japanese national time use
survey (Statistics Bureau of Japan, 2021). Each
agent simulates two months of daily activities,
which are mapped to the high-level activity cat-
egories used in the survey (e.g., Work, Commute,
Housework, Personal Care & Sleep). We aggregate
and normalize the total time spent on each activ-
ity by age group, reporting the share of day. As
shown in Figure 2, the distribution of daily activ-
ities closely matches the survey statistics. These
findings demonstrate that our model can faithfully
produce city-scale, macro-level activity patterns.

Figure 3: Pairwise win rate matrix. Each entry denotes
the proportion of trials in which the row agent is judged
more human-like than the column agent.

4.2 Pairwise Human Preferences

To evaluate the behavioral realism, we conducted
15 independent trials for each approach. To miti-
gate stylistic bias in generated activity sequences,
all outputs were first normalized using Llama-3.1
70B to ensure consistent formatting across models.
For each agent pair, GPT-4o was prompted to com-
pare anonymized daily routines using three criteria:
(i) Naturalness, (ii) Coherence; and (iii) Plausi-
bility. The pairwise win rate (Figure 3) reflects
how often each agent was judged more human-like
than another. CitySim achieves the highest aver-
age win rates, outperforming all baselines. This
is mainly due to explicit need modeling, dynamic
goals, and memory-based planning, which support
adaptive, context-sensitive behavior. In contrast,
MobileCity and AgentSociety are more rigid and
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Figure 4: Average number of agent travels per hour on
weekdays (left) and weekends (right).

Figure 5: Comparison of real-world POI popularity and
simulated-based visits in Shibuya.

repetitive, often disregarding common social and
temporal norms, contributing to suspicions of AI
involvement.

4.3 Travel Patterns

We now compare simulated travel distributions
with ground-truth data, derived from a proprietary
city-scale dataset. Figure 4 shows the average
number of travels per hour for both weekdays and
weekends. CitySim closely reproduces real-world
patterns, matching the timing and amplitude of
commuting peaks and weekend leisure activity. In
contrast, MobileCity exhibits overly rigid spikes
at commute times, while Baseline remains largely
static. Other agent methods (AGA, HumanoidA-
gent, AgentSociety) capture some broad trends but
display either diffused or mistimed travel peaks. In
contrast, our approach produces temporally coher-
ent, human-like mobility patterns that consistently
outperform other LLM agent baselines

4.4 Predicting POI Popularity

A key application is forecasting which POI will
attract the most visitors, essential for urban plan-
ning, retail strategy, or event management. In light
of this, we evaluate CitySim’s as a predictive tool
for real-world POI popularity in Shibuya (Tokyo,
Japan). Ground-truth was estimated using ratings
from Google Maps. Simulated popularity was mea-
sured by counting agent visits to each POI over a

F1-macro (mean ± std)

GeAn 0.19 ± 0.03
AGA 0.20 ± 0.03
HumanoidAgent 0.22 ± 0.03
AgentSociety 0.28 ± 0.02
MobileCity 0.21 ± 0.02
CitySim 0.36 ± 0.02
GBDT 0.45 ± 0.04

Table 1: Macro F1-score for well-being class prediction
(5-class) across models, evaluated on a proprietary agent
survey. Medals indicate top-3 methods.

simulated month. We compared CitySim with So-
cietyAgent by calculating Spearman rank correla-
tions between simulated and real-world popularity.
As shown in Figure 5, CitySim achieves positive
alignment, whereas SocietyAgent yields notably
weaker correlations. Notably, CitySim agents ex-
hibit a positive bias toward well-known or branded
POIs, leading to an inflated estimate of their real-
world popularity. These findings show the potential
of CitySim as a practical tool for predicting POI
popularity for location-based business strategies.

4.5 Social Studies using Synthetic Agents

We assess the potential of CitySim to estimate pop-
ulation well-being. We use a proprietary dataset
comprising 1,200 well-being survey responses col-
lected in Japan. Each record consists of a set of
questions designed to estimate well-being among
5 classes. Agents were initialized with persona
profiles matching the real survey respondents and
engaged in three weeks of simulated city life, us-
ing their memory module to answer the same set of
questions. We benchmark our method against a gra-
dient boosting model (GBDT) trained on collected
activities/locations from the dataset. As reported in
Table 1, the XGBoost baseline achieves the high-
est macro F1-score, while CitySim closely follows
and outperforms prior agent-based work. These
simulation-based approaches are limited by incom-
plete agent background knowledge and imperfect
persona initialization, which restrict their ability to
fully replicate the nuances of human well-being.

4.6 Modeling Crowd Density

Predicting spatial crowd density is vital for urban
management, public safety, and event planning.
We now assess CitySim’s ability to reproduce real-
world patterns of pedestrian concentration across
Shibuya (Japan). We aggregate agent visit counts
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Figure 6: Comparison of simulated (left) and real-
world (right) crowd density heatmaps in Shibuya, Tokyo.
Warmer colors indicate higher densities.

by location to generate simulated crowd density
heatmaps, and compare these against ground-truth
distributions estimated from smartphone location
data. As shown in Figure 6, CitySim accurately
mimics mobility patterns observed in real world,
with the highest densities around central transit
nodes and along major commercial streets. We
also notice that CitySim sometimes underestimates
crowd in small streets, likely due to its belief-
enhanced gravity model, which may reflect LLM
popularity bias (Lichtenberg et al., 2024). This
further highlights the potential of an agent-driven
approach for a/b and what-if testing, including sce-
narios difficult to observe in real-world settings.

5 Conclusion

We present CitySim, a large-scale framework for
simulating human-like urban behavior using LLM-
powered agents equipped with recursive planning,
real-world grounded personas, long-term goal for-
mation, and belief-aware memory. Results demon-
strate closer alignment of our agents with their hu-
man counterparts at both micro and macro levels.
CitySim enables the study of complex urban phe-
nomena and supports more realistic, adaptive agent
behaviors compared to prior agent-based models.
Experimental results highlight CitySim as a robust
foundation for research and industry applications at
the intersection of behavioral modeling and urban
planning, and social studies.

6 Limitations

Despite achieving the best performance compared
to other baselines, it is important to acknowledge
several limitations of this work. A limitation of this
work lies in reproducibility of this work, which
is limited because the data used for some exper-
iments is not public. Besides, our method may
inherit cultural, gender, and socioeconomic biases,

due to the nature of LLMs. Related to this, oc-
casional hallucinations have been observed when
generating appraisal for recent or less-known POIs,
which can lead to inaccurate simulation outcomes.
Moreover, the efficacy of our framework is largely
reliant on the strengths and weaknesses of the un-
derlying LLMs. The accuracy of the simulated user
behavior may be impacted by LLMs’ occasional
inconsistent, biased, or unfounded outputs. Finally,
the large number of interacting modules makes it
difficult to isolate the effect of each component;
we include ablation studies in the Appendix to par-
tially address this. In the future, we will explore
and improve these aspects.

7 Ethics Statement

This paper introduces an LLM-driven agent frame-
work for simulating urban human behavior at scale,
enabling the study of city dynamics and social be-
haviors in a realistic and cost-effective manner.
While our approach brings clear advantages in
terms of scalability and faithfulness, it also raises
important ethical considerations.

The use of synthetic agents in urban simulation
may inadvertently amplify biases, such as stereo-
types about age, gender, occupation, or lifestyle,
if such patterns are present in the training data
or agent initialization. There is also the potential
risk of reinforcing or introducing new inequities
in simulated urban policies, as these agents might
react in ways that privilege or disadvantage certain
demographic groups. Additionally, large-scale sim-
ulation of agent interactions could enable the iden-
tification and manipulation of behavioral trends,
potentially informing urban interventions that steer
collective behavior in subtle or non-transparent
ways. This raises concerns around consent and
autonomy, especially if agent outputs are used to
influence real-world policies or individual choices
without adequate oversight.

Finally, while synthetic agents can greatly ac-
celerate early-stage exploration of urban scenar-
ios, there is a risk that their deployment might
marginalize the involvement of actual residents,
stakeholders, and domain experts in the design and
evaluation process. We recommend that synthetic
humans be employed primarily to complement, not
replace, human input, especially in the early phases
of social studies or when involving real people
poses practical or ethical challenges. By adhering
to these principles, we aim to ensure that the use
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of synthetic urban agents is conducted in a manner
that is ethical, transparent, and socially responsible.
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A Experimental Setup

All agent attributes in the persona module are ini-
tialized from a proprietary survey-based dataset,
conducted in Japan. The attribute distributions
closely match those observed in recent Japanese
census statistics and lifestyle surveys (Statistics
Bureau of Japan, 2021). Big Five personality
traits are discretized on a 3-point scale (1=low,
2=medium, 3=high). Each agent’s home and
workplace (or school) locations are assigned ac-
cording to Japanese population density, based on
OpenStreetMap data (OpenStreetMap contributors,
2025), ensuring realistic urban spatial distribution
and feasible commutes.

The temporal memory retrieves the top k1 = 5
entries from the past ∆t = 24 hours (cosine embed-
ding similarity); each memory node stores {time,
location, observation, key}. Reflective memory is
synthesized at the end of each day, linking to tempo-
ral events. Spatial memory beliefs bi ∈ R4 ({price,
atmosphere, satisfaction, convenience}) are initial-
ized as 0.5 (neutral) for unvisited POIs, updated at
each visit via a Kalman filter, acknowledging this
slight abuse of notation for convenience:

K
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(t−1)
b

σ
(t−1)
b + σo

b
(t)
i = K
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o
(t)
i + (1 −K
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(2)
where σ

(t)
b denotes uncertainties in beliefs, and

with σ
(0)
b = 0.25 and σo = 0.2, and subject to daily

decay with λ = 0.03. Beliefs for unvisited POIs
are imputed from the k = 10 most similar visited
locations based on embedding distances.

Need thresholds for action interruption are
Thunger = 0.3, Tenergy = 0.3, Tsafety = 0.2, Tsocial =
0.2, and priority order is hunger > safety > energy
> social. Long-term goals are revised monthly or
after major life events, using a need fulfillment in-
dex (representing the proportion of the day when
all core needs exceed their thresholds), financial
stress (income < 0.9×expenses), and social isola-
tion (fewer than 3 unique contacts in 7 days) as trig-
gers. Simulation operates with a 5 minute timestep,
and all random seeds are fixed for reproducibility.

Daily schedules are constructed from time
blocks with a minimum granularity of 5 minutes,
matching the resolution of human routine report-
ing in time-use surveys. In value-driven planning,
N = 3 candidate activities are generated for each
leisure block, balancing agent diversity and com-

putational efficiency. During place selection, the
agent considers the top 10 nearby areas and up to
200 candidate POIs by relevance and proximity for
each activity. The gravity model uses γ = 2.0 as
distance decay, with ε = 10

−3 for stability. Be-
lief score considered in the gravity model is the
the average of the agent’s beliefs about this place
across four dimensions, as recorded in its spatial
memory. For transport, available vehicles include
walk, bicycle, car, bus, and train. Face-to-face in-
teractions are limited to one partner per 30-minute
tick to avoid excessive social behaviors.

At the end of each day, the agent synthesizes
higher-level insights regarding its habits, prefer-
ences, and beliefs through a structured reflection
process. Specifically, the most recent entries from
the agent’s temporal memory are compiled and pro-
vided to the language model. The initial prompt
instructs the model to identify salient, high-level
questions that can be answered using only the pro-
vided memory records. The questions in our ap-
proach are explicitly formulated to uncover recur-
ring patterns of behavior (habits), preference, and
evolving beliefs. For each generated question, rele-
vant memory entries are retrieved using semantic
similarity and temporal proximity. The language
model is then prompted to extract up to five distinct
insights, each supported by explicit references to
the underlying memory entries (e.g., The agent
prefers evening study sessions (evidence:
8, 13, 22, 45)). Both direct observations and
prior reflective statements are eligible to serve as
evidence, enabling the recursive construction of
abstracted self-knowledge. All resulting insights
are stored in the reflective memory.

For pairwise human preference, we defined the
following criterion: (i) Naturalness—the extent to
which actions align with the agent’s profile, habits,
and context; (ii) Coherence—the logical progres-
sion and goal-directedness of activities; and (iii)
Plausibility—the overall believability of the se-
quence given realistic urban behavior.

A.1 Module Details

We now provide a comprehensive explanation of
some modules, detailing the implementation and
technical details.

A.1.1 Planning Module
Daily planning follows a two-step recursive ap-
proach:

1. Mandatory Block Assignment: Starting
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from an empty day, the planner assigns fixed,
non-negotiable activities (e.g., sleep, work,
medical appointments) using agent persona,
occupation, and needs. If a selected activity
does not fill the entire interval, the block may
be subdivided according to the activity dura-
tion.

2. Medium-Priority Recursive Filling: Af-
ter planning mandatory activities, remaining
[EMPTY] blocks are recursively processed for
medium-priority tasks (e.g., meals, hygiene,
essential errands).

One may notice that some [blocks] remain empty.
Following Maslow’s Hierarchy of Needs (Huitt,
2007), those blocks are typically reserved for
leisure activities or to satisfy long-term goals/needs
(e.g., hobbies, socializing, exploration). Therefore,
they are filled at execution based on the agent’s cur-
rent state, location, dominant needs, future sched-
ule, using a value-driven planning. For each
empty interval, we argue that the paradigm of pre-
senting multiple candidate activities and evaluating
them enables the agent to select the best action.
Thus, we prompt the agent to generate N candi-
dates — with maximum duration being the block,
that may improve enjoyment, satisfaction, or fulfill
a need or goal. Next, it evaluates each activity by
imagining the resulting desire states that the agent
would experience after taking action. Based on
these evaluations, the agent selects the activity at
that is expected to best fulfill the agent’s intrinsic
desires. This scheme is executed through a single
structured LLM call with multiple internal reason-
ing steps.

A.1.2 Social Module
Beyond maintaining evolving belief vectors over
social ties, our social module incorporates struc-
tured reasoning to support context-sensitive com-
munication. When initiating a conversation, agents
rely on LLM-generated judgments that consider
not only relationship strength but also the agent’s
intention, emotional state, and ongoing thought pro-
cesses. Message generation is similarly guided by
a prompt framework that reflects personality traits,
past interactions, and constrained discussion topics
derived from the agent’s persona.

Following each interaction, beliefs are updated
by evaluating the sentiment and outcome of the
exchange: positive, neutral, or negative signals are
extracted from the conversation and used to incre-
mentally adjust the affinity, trust, and familiarity

scores between agents. In addition, social inter-
actions are not statically scheduled. Instead, un-
met social needs dynamically trigger acquaintance
search and interaction planning. For instance, when
social satisfaction falls below a threshold, agents
proactively evaluate whom to contact and whether
the mode of interaction should be face-to-face or
online. This decision process is handled by a single
LLM call, producing both the modality and the tar-
get agent in structured form. These features enable
the emergence of diverse, adaptive social patterns
across agents over time.

B Discussion

We acknowledge that our method exhibits certain
limitations. The collective behaviors generated
by CitySim agents are well-aligned with estab-
lished theories in urban studies and commonly ob-
served patterns in city life. Micro-level phenomena,
such as individual activity selection, place visits,
and route planning, emerge from the endogenous
decision-making of our agents. However, the un-
derlying reasons for why agents exhibit specific
motivational and planning patterns remain partially
unexplained due to the inherent black-box nature
of large language models. One possible explana-
tion is that LLMs encode knowledge and behaviors
present in their diverse training corpora, which in-
cludes textual descriptions of urban routines, spa-
tial preferences, and daily life across global con-
texts.

A further limitation stems from the dependency
on sufficient behavioral and interactional data to
construct detailed and faithful agent personas. In
some cases, real-world data may be limited, particu-
larly for cold-start populations or marginalized user
groups with fewer observed interactions. This con-
straint reduces the effectiveness of modules such as
persona, belief, or long-term goal formation, which
rely on rich historical context. To mitigate this,
we initialize agent personas using a diverse set of
demographic features (age, occupation, life stage)
and personality traits sampled from empirical dis-
tributions, but this remains an imperfect proxy of
geniune humans.

As with any LLM-based simulation, there is a
risk that model-driven agents inherit biases present
in large-scale data, potentially leading to the under-
representation or oversimplification of certain ur-
ban groups or behaviors. This can pose challenges
when applying simulation results to real-world ur-
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ban policy or planning, as the needs of underrepre-
sented groups might be overlooked. To address this,
our experiments ensure a broad spectrum of simu-
lated personas — encompassing occupations, age
groups, and personality profiles, and we quantify
discrepancies between generated and real-world
behavior distributions. As future work, we aim to
analyze the representation of minority and vulnera-
ble groups in our synthetic society, and to extend
CitySim to additional domains (e.g., health, mobil-
ity, food environments).

Some experiments in our paper rely on LLM-
as-judge evaluations using GPT-4o, while GPT-4o-
mini powers the agents themselves. Although this
circular evaluation approach may introduce signifi-
cant bias, as LLMs tend to favor content generated
in their own style, it remains a common practice
due to the scalability and consistency offered by
automated evaluations. Nevertheless, we acknowl-
edge the limitations inherent in this methodology,
including the potential for inflated performance
metrics and diminished generalizability to real hu-
man judgment. To mitigate these concerns, future
work should incorporate more diverse evaluation
strategies, including human assessments and cross-
model validation.

While CitySim accurately reproduces major
crowd patterns in central and highly accessible
areas, it tends to underrepresent pedestrian den-
sity in smaller streets due to the belief-enhanced
gravity model’s emphasis on prominent POIs. To
mitigate this limitation, future work could integrate
additional urban context features—such as land
use data, pedestrian infrastructure, or historical
mobility traces—into the location selection pro-
cess, enabling agents to account for micro-scale
attractors and local accessibility (Xia et al., 2018;
López Baeza et al., 2021). Moreover, incorporat-
ing adaptive behavioral modules that encourage
agents to occasionally explore less popular areas,
either through learned novelty-seeking or routine
variation, may help better capture the diversity of
real-world movement (Gürcan et al., 2025).

CitySim adopts a hybrid principle that balances
semantic reasoning (LLMs) with transparent com-
putation. LLMs are employed where nuanced in-
terpretation and generative reasoning are required
(e.g., beliefs, goals, and planning), while straight-
forward latent states such as financial stress, social
isolation, and need hierarchy are modeled using
interpretable heuristics. This choice reflects both
practical considerations — LLMs were unreliable

# Agents CitySim (mean ± SD) [s] AgentSociety (mean ± SD) [s]

10
3

9.0 × 10
−3 ± 3.2 × 10

−5
8.6 × 10

−3 ± 3.0 × 10
−5

10
4

9.7 × 10
−3 ± 2.1 × 10

−5
9.1 × 10

−3 ± 1.5 × 10
−5

10
5

2.1 × 10
−2 ± 5.0 × 10

−4
1.8 × 10

−2 ± 5.7 × 10
−4

10
6

0.183 ± 5.6 × 10
−4

0.168 ± 5.3 × 10
−4

Table 2: Mean time per simulation step (seconds) and
standard deviation as a function of agent population.

for estimating these signals while increasing to-
ken cost, and theoretical grounding, as in the case
of need hierarchy, which follows Maslow’s well-
established framework.

Finally, while CitySim faithfully models daily
routines, belief formation, and adaptive planning,
it abstracts away some contextual factors that influ-
ence real-world appraisal, including weather condi-
tions, crowding, transportation delays, or accessi-
bility constraints. Moreover, some internal needs
like self-esteem and self-actualization are not yet
fully represented, as they are subjective and of-
ten depend on individual values, goals, and life
circumstances. This introduces a potential gap be-
tween the richness of real urban interactions and
our agent-based simulation. Capturing these fac-
tors requires more nuanced modeling beyond ob-
servable behaviors, which presents ongoing chal-
lenges for simulation environments like CitySim.

B.1 Pseudo-Code
We provide the pseudo-code of our method.

Algorithm 1: Daily Simulation Loop

For each day:
For each agent:
plan_day()
For each time step:

perceive()
action ← decide_action()
if action.requires_move:

poi ← select_POI()
vehicle ← select_vehicle(poi)
move(poi, vehicle)

else:
execute(action)

reflect() //beliefs, goals, needs, habits, ...

C Additional Experiments

C.1 Performance Evaluation
To assess the scalability and efficiency of our city
simulation framework, we conduct a performance
analysis. We simulate agent populations of 103,
10

4, 105, and 10
6 individuals, distributing their de-

parture times according to typical weekday peaks.
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Method Activity Dialogue Mobility Event Reaction

GeAn 3.11 ± 0.18 3.96 ± 0.04 3.08 ± 0.17 3.03 ± 0.21
AGA 3.22 ± 0.28 4.00 ± 0.03 3.16 ± 0.24 3.15 ± 0.19
HumanoidAgent 3.30 ± 0.31 3.99 ± 0.05 3.29 ± 0.22 3.21 ± 0.17
AgentSociety 4.02 ± 0.22 4.08 ± 0.06 3.82 ± 0.25 3.75 ± 0.21
MobileCity 4.09 ± 0.27 4.04 ± 0.06 3.96 ± 0.18 3.89 ± 0.17
CitySim 4.37 ± 0.18 4.23 ± 0.04 4.14 ± 0.15 4.09 ± 0.16

Table 3: Human-likeness score evaluated by GPT-4o
across city simulation domains. Higher values indicate
greater similarity to real human responses.

As done in AgentSociety (Piao et al., 2025), for
each agent, we alternate between setting and fetch-
ing queries (at a 1:999 ratio) to mimic realistic
simulation workloads. The simulation runs for 24
virtual hours, with the main metric being the mean
simulation step time per agent. Each setting is re-
peated five times to obtain average and standard
deviation values. The simulation speed results are
presented in Table 2. We observe that, even as both
the agent population and query frequency grow by
several orders of magnitude, the average time per
simulation step increases modestly. This demon-
strates that our framework supports large-scale sim-
ulations with negligible loss of efficiency, and is
well-suited for modeling complex urban scenarios
with massive agent populations.

C.2 Human Likeliness

As LLM Evaluators (Chiang and Lee, 2023) have
demonstrated performance on par with human an-
notators, we leverage GPT-4o to judge whether
agent behaviors in our simulation appear human
or LLM generated. For each baseline, we collect
20,000 outputs across four domains: daily activ-
ities, dialogue, mobility choices, and event reac-
tions. GPT-4o assesses each sample using a 5-point
Likert scale, with higher scores indicating stronger
resemblance to human-like responses. Results in
Table 3 show that our model significantly outper-
forms all baselines across the evaluated domains.
Notably, the integration of value-driven planning
and belief-aware mobility contributes to substan-
tial improvements in both the mobility and event
reaction scores. Furthermore, our agent’s explicit
modeling of needs, feelings, and long-term goals
leads to more consistent and believable routines. In
contrast, baseline agents are more likely to produce
repetitive actions or unrealistic schedules — unusu-
ally long breakfasts or work starting atypically late,
contributing to suspicions of AI involvement.

Figure 7: Evolution of basic needs (hunger, energy,
safety, social satisfaction) for five agents across one day.

C.3 Needs Evolution

To assess the realism and adaptability of our agent-
based planning framework, we simulate the evo-
lution of basic needs across a typical day for five
agent profiles: a mid-career office worker, a high-
school student, a night-shift nurse, a freelance
designer, and a retired senior. Figure 7 presents
the resulting need trajectories, which display dis-
tinct, context-dependent patterns consistent with
real-world routines. The office worker and student
exhibit dips in hunger and energy preceding follow-
ing periods of sustained activity, with occasional
snacks to restore hunger during the day. The night-
shift nurse’s trajectories capture irregular sleep and
meal patterns inherent to shift work, while the free-
lance designer demonstrates variable self-care and
flexible scheduling. The retired senior shows more
regular mealtimes, napping, and consistently high
social satisfaction due to living with their family.

C.4 Belief Estimation

Beliefs are central in shaping human behaviors.
To evaluate the accuracy and consistency of our
belief estimation, we conduct a study in which
each agent is first initialized with belief vectors
from a dataset of visited POIs, then tasked with
predicting beliefs for a disjoint set of POIs. For
each test POI, we compute the mean absolute er-
ror (MAE) between the agent’s predicted belief
and the ground-truth value, reporting results sepa-
rately across five semantic POI categories. Figure 8
presents category-wise belief estimation error for
all evaluated models. As shown in Figure 8, larger
models like GPT-4o achieve the lowest MAE across
all categories, followed by GPT-4o mini and Qwen-
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Activity Dialogue Mobility Event Reaction

Value Value Value Value

CitySim (full) 4.37 ± 0.18 4.23 ± 0.04 4.14 ± 0.15 4.09 ± 0.16
w/o Belief 3.85 ± 0.22 3.92 ± 0.08 3.75 ± 0.18 3.60 ± 0.21
w/o Rec. Plan 3.72 ± 0.17 3.85 ± 0.06 3.80 ± 0.17 3.65 ± 0.16
w/o LT Goal 3.80 ± 0.19 3.95 ± 0.07 3.88 ± 0.14 3.70 ± 0.18
w/o Needs 3.55 ± 0.21 3.82 ± 0.09 3.73 ± 0.16 3.50 ± 0.20
w/o Persona 3.60 ± 0.20 3.60 ± 0.10 3.72 ± 0.17 3.58 ± 0.17

Table 4: Ablation study for CitySim, evaluated by GPT-4o. Metrics reflect human-likeness (Likert, 1-5 scale, mean
± std) for activity, dialogue, mobility, and event reaction. Medals denote top-3 performance in each domain.

Figure 8: Category-wise mean absolute error (MAE) of belief estimation for unvisited POIs, evaluated across five
semantic categories (Restaurants, Parks, Shops, Transport, Entertainment) and ten LLM-based agent models. Lower
values indicate higher accuracy.

14B. ToolLLaMA excels in Transport and Shops,
while smaller LLaMA-2 models show higher er-
rors, especially for Entertainment. Overall, larger
LLMs generalize beliefs more accurately in diverse
urban contexts.

C.5 Ablation Study

We conduct a systematic ablation study to assess
the specific contribution of each architectural mod-
ule to agent performance. As shown in Table 4,
we remove key components — belief module, re-
cursive daily planning, goal module, needs mod-
ule, and persona module, from our full framework
and evaluate their effect on human-likeness scores
across all domains.

Removing the belief module leads to a marked
drop in performance, especially for activities and
event reactions. Agents without beliefs lack the
ability to accumulate or leverage prior expecta-
tions about places, resulting in less adaptive and
less contextually grounded plans. This experiment
demonstrates the critical role of beliefs in enabling
value-driven, experience-aware decisions.

Ablating recursive planning reduces scores fur-
ther, particularly in activity and mobility. Without
this mechanism, agents are less capable of adapting
routines to new internal or environmental feedback,
which in turn diminishes the coherence and flexi-

bility of their schedules.
We observe that excluding the long-term goal

module has a more localized impact, with the most
noticeable decline in dialogue and mobility. This
suggests that long-term, high-level goal manage-
ment primarily benefits life-course consistency and
contextual coherence over multiple days.

Disabling the needs module results in the largest
drop in both activity and event reaction scores.
Agents without explicit needs prioritization become
unable to interrupt or reorder their plans in response
to internal states, often leading to unrealistic, rigid
behavior and missed opportunities to fulfill basic
requirements.

Finally, removing the persona module—thereby
eliminating demographic and psychological diver-
sity—causes a sharp decrease in all metrics. Agents
converge to a bland, homogenized pattern, lacking
the individualized routines and reactions essential
for human-likeness.

C.6 Cost Analysis

We report here the efficiency and scalability of our
method compared to the closest baseline (AgentSo-
ciety), in terms of LLM cost. Table 5 compares
the daily LLM token usage and estimated cost per
1,000 agents for CITYSIM and several baselines,
assuming GPT-4o mini pricing. Token usage and
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Method Tokens/day (M) Cost/day (USD)

CitySim 16.52 $3.65
AgentSociety 15.10 $3.22
MobileCity 14.23 $2.56
AGA 22.20 $4.78
GeAn 69.30 $15.33

Table 5: Daily LLM token usage and cost per 1,000
agents (GPT-4o mini).

Figure 9: Pairwise win rate matrix (Gemini-2.5-flash
evaluator). Each entry denotes the proportion of trials
in which the row agent is judged more human-like than
the column agent.

cost for our method are on par with AgentSoci-
ety and MobileCity, while remaining well below
GeAn. Costs scale linearly with agent population,
and daily cost for 1,000 agents remains much lower
than involving real human to conduct social stud-
ies. Overall, our method achieves competitive ef-
ficiency and cost relative to state-of-the-art frame-
works.

D Bias Mitigation in LLM-Based
Evaluation

In our main experiments, GPT-4o is employed as
the judge of how human-like simulated behaviors
appear. Since CitySim agents are empowered by
GPT-4o-mini, this raises the possibility that the
evaluator and the system under evaluation could
share underlying model biases, potentially favoring
behaviors generated by CitySim. To address this
concern, we further test the robustness of our eval-
uation, we repeated the win-rate experiment using
a different model family as the evaluator: Gemini-
2.5-flash. The results are reported in Figure 9.
We observe that the overall ranking of frameworks

remains consistent, with CitySim outperforming
alternatives across comparisons.
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