AttributeForge: An Agentic LLM Framework for Automated Product
Schema Modeling

Yunhan Huang!, Klevis Ramo?, Andrea Iovine?, Melvin Monteiro®,
Sedat Gokalp!, Arjun Bakshi', Hasan Turalic?, Arsh Kumar 2,
Jona Neumeier?, Ripley Yates!, Rejaul Monir®, Simon Hartmann?,
Tushar Manglik®, Mohamed Yakout!

' Amazon, Seattle, WA, USA, 2Amazon, Munich, Germany, > Amazon, New York, NY, USA

Correspondence: yunhanh@amazon.com

Abstract

Effective product schema modeling is funda-
mental to e-commerce success, enabling ac-
curate product discovery and superior cus-
tomer experience. However, traditional man-
ual schema modeling processes are severely
bottlenecked, producing only tens of attributes
per month, which is insufficient for modern e-
commerce platforms managing thousands of
product types. This paper introduces Attribute-
Forge, the first framework to automate end-to-
end product schema modeling using Large Lan-
guage Models (LLMs). Our key innovation
lies in orchestrating 43 specialized LLM agents
through strategic workflow patterns to handle
the complex interdependencies in schema gen-
eration. The framework incorporates two novel
components: MC2-Eval, a comprehensive val-
idation system that assesses schemas against
technical, business, and customer experience
requirements; and AutoFix, an intelligent mech-
anism that automatically corrects modeling de-
fects through iterative refinement. Deployed
in production, AttributeForge achieves an 88 x
increase in modeling throughput while deliver-
ing superior quality: a 59.83% Good-to-Good
(G2G) conversion rate compared to 37.50%
for manual approaches. This significant im-
provement in both speed and quality enables
e-commerce platforms to rapidly adapt their
product schemas to evolving market needs.

1 Scaling Product Schemas

E-commerce services rely on comprehensive and
well-structured product information to provide
customers with accurate details, enable effective
search and filtering, and facilitate informed pur-
chasing decisions. However, managing product
schemas at scale poses significant challenges. Prod-
ucts span thousands of product types, each with
unique attribute requirements, and product informa-
tion evolves constantly as new products and vari-
ants are introduced. For example, new products

such as smart rings require unique attributes like
’sensor_description’, ’battery_life’, i.e., attributes
that didn’t exist in traditional jewelry schemas yet
were crucial for customer experience. Tradition-
ally, defining and maintaining product schemas has
been a manual process, relying on subject matter
experts to identify relevant attributes, model their
structures, and ensure data quality.

This manual approach has several limitations: it
is time-consuming, error-prone, and struggles to
keep pace with the rapidly changing product land-
scape. Additionally, it often results in incomplete
or inconsistent schemas, as experts may overlook
certain attribute requirements or introduce subjec-
tive biases during the modeling process. These
shortcomings can lead to poor customer experi-
ences, with incomplete or inaccurate product infor-
mation, and missed opportunities for driving sales
and customer satisfaction.

1.1 The Schema Creation Lifecycle

As illustrated in Figure 1, the creation of product
attributes follows a comprehensive lifecycle com-
prising four stages: discovery, modeling, assess-
ment, and validation. To illustrate this process, we
use “maximum_altitude’ for drones as an example.

In the discovery phase, multiple data sources
are analyzed to identify relevant attributes. For
instance, analysis of customer reviews and search
queries revealed frequent questions about maxi-
mum flying height for drones.

The modeling phase, which is our focus, in-
volves creating structured representations of the
attribute. For maximum_altitude, this includes
defining its name (maximum_altitude), datatype
(UnitIntegerVariant@1.0), descriptions (e.g., "The
highest elevation the item can safely operate rel-
ative to sea level"), units ("meters", "feet"), and
example values ("6000 meters", "9800 feet").

During assessment, the attribute’s business value
is evaluated. For maximum_altitude, it was deter-

2106

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 2106-2121
November 4-9, 2025 ©2025 Association for Computational Linguistics

mailto:yunhanh@amazon.com

Attribute Creation Lifecycle

Attribute Modeling

Core Properties

Attribute
Discovery

Validation & Deduplication

Constraints + Data Quality & Consistency

Search querics

A &reviews + Attribute Name +

+ Data Type + Unit Rules
+ Value
+ Value Range

Usage Guidelines

+ Example

Web Data

¥ Display
LLM Latent
Knolwedge

+ Display Labels
+ Short Description
+ Long Description

+ Data Management & Governance

Federation + Regulatory & Compliance

Contributor

+ Customer Experience

b
Attribute Assessment
Attribute

Attribute Appraisal
PP Prevalence

Figure 1: Attribute creation lifecycle.

mined to be somewhat customer-relevant partic-
ularly for specialized operations in high-altitude
environments.

Finally, validation ensures the attribute meets
multiple requirements: technical (e.g., lowercase
naming convention), business rules (appropriate
unit selections), customer experience (clear, non-
circular descriptions), and non-duplicative (e.g.,
not duplicated with existing schema).

While each stage presents unique challenges,
this paper focuses on the modeling and the valida-
tion phases, which represent the most complex and
resource-intensive portion of the lifecycle.

1.2 Challenges

While recent LLM advances offer potential for au-
tomating schema modeling (OpenAl, 2022; An-
thropic, 2024b), several key challenges remain.

First, product schema modeling requires the in-
tegration of extensive proprietary requirements that
go beyond general language understanding. Each
component must simultaneously satisfy multiple
technical specifications (e.g., naming with low-
ercase_underscore format), business rules (e.g.,
global reusability across product categories), and
domain-specific constraints. While LLMs excel at
natural language tasks, they lack the specialized
knowledge needed to consistently enforce these
organizational standards.

Second, schema components exhibit interdepen-
dencies where changes in one element necessitate
corresponding adjustments across multiple related
elements. For example, modeling mattress size as
either an enumerated string (king, queen) or nu-
meric measurement (38"x75") requires different
follow-up tasks - generating enumeration values
or defining measurement units respectively. These
interdependencies make maintaining consistency
increasingly challenging as requirements grow.

Finally, schema defects have widespread impact

due to their foundational role in e-commerce sys-
tems. For example, if water_resistance_level uses
free text instead of enumerated values, inconsis-
tent seller inputs could break product comparison
and search features across entire categories. Given
that schema errors affect millions of products, post-
deployment fixes require costly data migrations.

1.3 Contributions

This paper presents AttributeForge, a framework
leveraging orchestrated LLM agents for automated
product schema modeling. Deployed in produc-
tion, our system achieves an 88 throughput in-
crease while maintaining a 59.83% Good-to-Good
conversion rate, which significantly outperform-
ing manual approaches (37.50%). Our contribu-
tions are: (1) a novel framework orchestrating 43
specialized LLM agents through strategic work-
flow patterns, establishing the first effective solu-
tion for automated attribute modeling; (2) MC2-
Eval, a comprehensive validation framework in-
corporating 22 domain-specific criteria, achiev-
ing F2 scores >85% (5% MOoE) in production;
(3) AutoFix, a closed-loop correction mechanism
that improves modeling quality (41.88% to 59.83%
Good-to-Good conversion rate) while maintaining
schema consistency; and (4) production-ready tool-
ing (PromptIDE, Tracer) and integration patterns
enabling cost-effective deployment at scale, reduc-
ing modeling costs by 104X compared to manual
processes.

2 Related Work

LLMs for Ontology: Recent work has ex-
plored LLMs in ontology engineering, with
LLMs40L (Babaei Giglou et al., 2023) and NeOn-
GPT (Fathallah et al., 2025) focusing on ontolog-
ical knowledge extraction through zero/few-shot
prompting. While Neuhaus (Neuhaus, 2023) high-
lighted challenges in maintaining logical consis-
tency and resolving ambiguity. AttributeForge
takes a different approach that focuses on struc-
tured schema modeling rather ontology construc-
tion by extracting text. LLMs for E-commerce:
LLMs have enhanced various e-commerce aspects:
Singh et.al (Singh et al., 2024) improved query
auto-completion diversity by 38% while main-
taining relevance, Liu et.al (Liu et al., 2024) ad-
dressed fashion recommendation challenges, and
Amazon deployed LLMs for product descrip-
tion generation (Westmoreland, 2024b) and seller

2107

assistance (Westmoreland, 2024a). In catalog
management, LLLMs enabled product categoriza-
tion (Cheng et al., 2024) and attribute extraction
using ensemble (Fang et al., 2024) and multimodal
approaches (Zou et al., 2024). However, these
works focus on different use cases and assume pre-
defined schemas, while AttributeForge is the first to
automate the fundamental task of schema modeling
itself.

3 AttributeForge: An Agentic
Framework for Schema Modeling

AttributeForge orchestrates 43 specialized LLM
agents through strategic workflow patterns, where
each agent handles specific modeling tasks (An-
thropic, 2024a). The framework combines robust
validation with AutoFix capabilities while main-
taining cost-efficient yet critical human oversight.

3.1 Framework Architecture

AttributeForge’s core architecture comprises LLM-
powered blocks enhanced with retrieval capabilities
and memory. Each block encapsulates a specific
modeling task through four components: an input
schema defining required fields, an output schema
specifying the response format, a prompt template
containing task instructions, and execution parame-
ters for model configuration.

Consider the attribute description generation task
as an example. The input schema requires the at-
tribute_name (unique identifier), product_type (cat-
egory), and datatype (data structure). The output
schema enforces a JSON format containing the
generated description and reasoning. The prompt
positions the LLLM as a product catalog specialist
with specific content guidelines from proprietary
documentations stored in knowledge bases, while
model configuration defines operational parameters
such as batch size and temperature settings.

To manage interdependencies, the framework
employs four orchestration patterns: sequential
chaining for establishing foundational compo-
nents before dependent ones, routing for datatype-
specific processing, parallelization for concurrent
execution of independent tasks, and synthesization
for maintaining cross-component consistency.

The framework optimizes performance through
strategic batch processing and prompt caching, re-
ducing token and time costs by up to 5x. Batch
sizes are calibrated to each task’s characteris-
tics—smaller batches (3-4 attributes) for descrip-

Table 1: Core Datatypes Supported in AttributeForge
Framework

Datatype Description Example
Attribute
Boolean True/False values only is_autographed
Decimal Numbers with frac- caliber
tional values
Integer Whole numbers for drawer_count

counting

Free-form text with lan-
guage

Free String special_features

Enumeration set of enumerable val- orgin_country
ues

Decimal Decimal with units response_time

Unit

Integer Unit Integer with units distance_driven

tion generation with lengthy outputs, larger batches
(7-8 attributes) for tasks like datatype assignment
with minimal outputs. An embedded knowledge
base facilitates attribute de-duplication and consis-
tency validation across the pipeline.

Generation Steps: Our modeling pipeline con-
sists of 13 LLM generation steps (M;-M;3) or-
chestrated in a directed acyclic graph (DAG) work-
flow that transforms product concepts into fully-
specified schema components illustrated in Fig. 2.
Readers can refer to Appendix C for a complete
list of generation steps and their description.

The workflow begins with foundational steps:
M; concept generation consolidate different sig-
nals to discover initial attribute concepts following
single-purpose tenets. For example, instead of a
general "material" concept, it discover specific con-
cepts such as "band_material" or "gem_material"
to ensure clear scope. My (Datatype Assign-
ment) determines the attribute’s structural foun-
dation using 7 core datatypes (See Table 1). For
example, "is_waterproof" uses Boolean, while
"screen_resolution" requires String to capture val-
ues like "1920x1080". M3 (Name Standardization)
creates standardized names following conventions.
For example, Boolean attributes must start with
"is_", "has_", or "include_" (e.g., "is_autographed"
for signed items).

Following these foundations, the workflow par-
allelizes descriptive components that help sell-
ers provide accurate values: M, (Short Descrip-
tion) creates concise tooltips for data entry from
seller. For example, "Provide whether this item
has been personally signed by someone of note."

2108

Parallel Display

Gen
M;: Concept My: Short .
Gen Desc ———> Synthesis Coordn
l e sy M - MEoum , Myt | Mrioke
Ms: Ms: Long Y —l
Datatype Gen Desc Mg: Check is
Enumerable & Route, . Mg: Unit M 4: Unit Final Schema
l Unit-Based Enum Match Enum Gen Synthesis Output
Ms3: Name M;: Disp
Std Label Numeric M;3: Max
Value

Figure 2: The AttributeForge Workflow diagram showing the DAG of generation steps.

M5 (Long Description) generates detailed guide-
lines. For example, "Designates if the item bears
an authentic signature from a notable individual
such as an athlete, artist, or public figure. Do
not use for reproduced signatures or unauthorized
copies." Mg (Display Labels) creates user-friendly
labels like "Autographed” from technical names
like "is_autographed".

Routing then (Mg) directs attributes through spe-
cialized paths: Enumerable attributes (like "wa-
ter_resistance_level") flow through M;; (Enum
Name), M7 (Enum Values: "water_resistant", "wa-
terproof”), My (Value Labels: "Water Resistant",
"Waterproof"), and M7 (Max Occurs). Unit-based
attributes require unit mapping (Mg) matching ap-
propriate units (e.g., "response_time" using mil-
liseconds) and constraint generation (M;3) defin-
ing valid ranges (e.g., 0-100ms).

4 Automated Validation

Product schema validation is critical for e-
commerce platforms, as schema errors directly im-
pact search relevance, customer experience, and op-
erational efficiency. While LLMs offer promising
automation capabilities, validating LLM-generated
schemas requires sophisticated approaches beyond
traditional NLP evaluation frameworks. Standard
NLP metrics prove insufficient for schema vali-
dation due to three key limitations: (1) the ab-
sence of singular ground truth representations for
attributes precludes the use of reference-based met-
rics like BLEU (Chen et al., 2021) or ROUGE (Lin,
2004), (2) reference-free metrics such as BLANC
(Vasilyev et al., 2020) and Fact-CC (Kryscinski
et al., 2020) evaluate only textual coherence with-
out capturing domain-specific requirements, and
(3) comprehensive schema validation demands si-
multaneous verification across technical, semantic,
and business dimensions against precise criteria.

MULTI-COMPONENT MULTI-CRITERIA LLM EVALUATION FRAMEWORK

Generation Steps

My Long Description
Generation

Validation Sets

My Datarype M- Enumeration Value
Assignment Generation

Ve

C03%: Clarity & Circularity

CO28: Value Alignment
Cheeks if values align with
attribute semantics

[Evaluate if description is clear| W
and not circular

€O11: Datatype Correctness
‘Validates if datatype matches
attribute scope

CO47: Unitization
‘Checks measurement unit
presence in description

€0S1: PT Specificity
Validate scope alignment

COLT: Variant
Ensure praper placement of
description

C031: Value Uniquess
Checks for duplicate values
across atribute

COSI: Value Single Concept
Determine if values contain
‘multiple concepts or
ambiguous

Figure 3: Evaluators organized into validation sets (V;)
corresponding to each generation step (M;).

4.1 MC2-Eval: Multi-Component

Multi-Criteria Evaluation Framework

We introduce MC2-Eval, a framework that decom-
poses schema validation into atomic criteria with
discrete scopes. Each criterion addresses specific
validation requirements (e.g., The Attribute Rel-
evancy criterium evaluates if attributes like bat-
tery_life are appropriate for Dishwashers). These
criteria form validation sets (V;) mapped to cor-
responding generation steps (/;), enabling sys-
tematic evaluation across all schema components
(see Appendix D). Each evaluator provides a bi-
nary pass/fail outcome with detailed reasoning. A
generated component is considered valid only after
passing all applicable criteria.

4.2 Conceptual vs. Modeling Defects

Defects are divided into two types: Conceptual
defects represent fundamental attribute invalid-
ity. For example: The Attribute Relevancy cri-
terium flags irrelevant attribute-product combina-
tions (e.g., hand_orientation for air gun projec-
tiles). Modeling defects address structural and rep-
resentational issues. For instance, the unit-agnostic
criterium requires measurement attribute descrip-

2109

tions not to reference specific units, which prevents
global reusability.

4.3 Evaluator Performance

MC?2-Eval combines deterministic syntactic val-
idators (e.g., for length & format requirements)
with LLM-based semantic evaluators (complex
semantic evaluation). While syntactic validators
achieve 100% accuracy through rule-based vali-
dation, LLM-based evaluators must demonstrate
F2 scores >85% with <5% margin of error on
benchmark datasets before deployment. We em-
phasize F2 scores to prioritize defect detection,
as schema errors can cascade throughout the e-
commerce ecosystem, affecting search relevance,
data quality, and customer experience.

5 AutoFix

We present AutoFix, a closed-loop system for au-
tomated schema refinement that extends the Re-
flexion framework (Shinn et al., 2023). Unlike
Reflexion’s episodic memory approach, AutoFix
employs structured validation criteria and domain-
specific prompts optimized for schema model-
ing. When MC2-Eval detects defects, AutoFix
initiates targeted corrections through a feedback-
driven iteration process. As illustrated in Figure
4, AutoFix integrates with each generation step
M; through a three-component correction cycle: 1.
Original generation (M;); 2. Defect identification
(V;-evaluators); 3; Correction synthesis (AutoFix
prompt).

This cycle continues until validation criteria
are satisfied or a predetermined iteration limit is
reached (default: 3 iterations). AutoFix offers three
key advantages: Universal Applicability: A sin-
gle prompt architecture supports diverse genera-
tion steps and validation criteria, enabling seamless
framework extension. Holistic Correction: Si-
multaneous handling of multiple defects prevents
oscillating errors where fixing one issue creates an-
other. Systematic Learning: Continuous capture
of correction patterns enables iterative improve-
ment of generation steps. The AutoFix prompt
template and implementation details are provided
in Appendix E. Section 6 demonstrates the sys-
tem’s effectiveness through quantitative evaluation
across multiple validation criteria.

Attribute Modelling
Concept
Discovery

M1l VI 4 V1
L 5 v
Modelled
M2 V2 - : }—
AutoFix ‘ i
AutoFix
Attribute
Appraisal M. Ve

AutoFix \

AutoFix Workflow

nput| M-Modeling ouput _ Vi-Evaluation Final output
el | ginaoup |
Prompt Prompts
F|xed/0mpu| /
{

Fail Reasoning

AufoFix }/
. Prompt |

Figure 4: Abstracted AttributeForge workflow with Aut-
oFix integrated.

Table 2: Overall AutoFix Impact

Metric w.0. AutoFix | w. AutoFix | Improv.
G2G Rate 41.88% 59.83% +17.95%
Defect Rate 5.75% 3.80% -1.95%

6 Performance and Impact Analysis

Our evaluation methodology employed a rigorous
multi-stage process. For MC2-Eval’s LLM-based
evaluators, 15 data auditors participated in the val-
idation, with each criterion evaluated by 2 inde-
pendent auditors. Sample sizes were calculated to
ensure <5% margin of error, with an expert ontol-
ogist arbitrating any disagreements. The average
inter-judge agreement across all 22 validation crite-
ria was 87%.

We evaluate schema quality through a three-tier
classification system: "pass" (meets all 22 criteria),
"fail" (violates conceptual requirements), and "fix"
(contains correctable modeling defects). Our pri-
mary metric, the G2G conversion rate, quantifies
successful attribute modeling:

#pass

G2G = ———.
#pass + #fix

ey

The measurement of good-to-good conversion
rate followed a thoroug% review process. Three
expert ontologists (each with 5+ years experience)
conducted initial evaluations independently across
392 attributes spanning 85 product types. Before
finalizing pass/fix/fail decisions, ontologists cross-
validated each other’s assessments to ensure con-
sistency. Using Claude 3.0 Sonnet!, Attribute-
Forge transforms schema modeling from a human-
centric to machine-first approach, delivering an
88 throughput improvement—scaling from fewer
than ten to hundreds of attributes monthly. The
system achieved a 59.83% G2G rate, significantly
outperforming manual modeling (37.50%) which
we use as a baseline. That means of the generated

'Per organization policy, only Claude models are allowed
on proprietary data

2110

Table 3: Defect Rate Breakdown by Criteria (Selected Core Components due to Page Limit)

Component Criteria Without AutoFix With AutoFix Defect Rate Delta
CO12A Short Description Clarity & Circularity 18.2% 9.9% -8.3%
CO012B Short Description Begins With 0.8% 0.0% -0.8%
Short Description C014 Short Description Length 0.0% 1.9%
C047 Unitized Attribute Short Description 0.0% 1.7%
C051B Mismatch Attribute Name and Short Description 7.4% 3.3% -4.1%
C017 Long Description Variant Path 0.0% 0.0% 0.0%
Lone Descrintion CO038A Long Description Circularity 0.0% 1.7%
s p C047B Unitized attribute Long Description 0.8% 1.7%
CO051A Mismatch Attribute Name and Long Description 9.9% 9.1% -0.8%
Datatype CO11 Datatype 9.1% 4.1% -5.0%
Max Occurrence CO16A Max_Occurs 14.9% 5.0% -9.9%
Aggregate All Total 5.8% 3.8% -1.9%

attributes, 59.83% required no human intervention,
while remaining cases averaged fewer than 2 de-
fects per attribute, resolvable within 10 minutes
through our Schema Augmentation Interface. In
addition to G2G rate, we also track the frequency
of defect occurrence through:

DefectRate — # of validation failures

of total applicable validation criteria’

calculated as the number of validation failures
divided by the total number of applicable validation
criteria across all attributes. This metric provides us
with a more granular view of quality by measuring
the proportion of failed validations relative to all
possible validation checks.

6.1 AutoFix Performance

AutoFix demonstrated significant quality improve-
ments across multiple dimensions. As detailed in
Table 2, the system increased the G2G conversion
rate from 41.88% to 59.83% while reducing the
overall defect rate from 5.75% to 3.80%.

Analysis of specific criteria (Table 3) reveals sig-
nificant targeted improvements. In structural ele-
ments, the maximum occurrence constraint defects
decreased by 880 basis points (bps, from 14.9% to
5.0%), while datatype assignment errors reduced by
500 bps (from 9.1% to 4.1%). Description quality
also improved substantially, with short description
clarity and circularity issues declining by 830 bps
(from 18.2% to 9.9%).

While AutoFix achieved substantial improve-
ments overall, isolated cases of defect rate increases
due to inter-criteria dependencies. For instance,
enhancing the clarity of ’cooling_capacity’ descrip-
tions by adding measurement units occasionally
triggered unit-agnostic validation failures. These
observations suggest the need for advanced multi-
criteria optimization in future iterations.

6.2 Business Impact and Cost Analysis

AttributeForge demonstrates compelling business
value through multiple metrics. The system re-
duces attribute modeling time from 20-30 hours
to approximately 20 minutes—a 60x efficiency
gain—while maintaining modest operational costs
($4.00-$4.50 per attribute: $1.30 for generation,
$2.40 for validation, $0.50 for AutoFix). Com-
pared to manual modeling costs, this represents a
104 x reduction while achieving superior quality.

Quantitative business impacts span multiple di-
mensions. Product categories with expanded at-
tribute coverage showed greater than 1% increase
in ordered product sales (exact numbers restricted
according to organization policy). Seller expe-
rience improved significantly through systematic
elimination of irrelevant attributes and enhanced
description clarity. The system enabled rapid cata-
log evolution, successfully modeling over 100 new
attributes within hours instead of the months re-
quired by manual processes.

The system’s component-specific architecture
enables targeted improvement of existing schemas
by isolating and correcting specific defect types.
For instance, when detecting circular definitions
in short descriptions, AttributeForge can system-
atically update them without affecting other valid
components, ensuring schema integrity while re-
ducing technical debt.

7 Conclusion

AttributeForge demonstrates three critical insights
for automating complex enterprise tasks like prod-
uct schema modeling. First, decomposing domain-
specific workflows into specialized LLM agents en-
ables better handling of intricate interdependencies
than single-model approaches, as evidenced by our

2111

88 throughput improvement. Second, robust vali-
dation frameworks must go beyond traditional NLP
metrics to incorporate business logic and domain
expertise, achieved through our MC2-Eval system
with 22 technical and business criteria. Third, auto-
mated correction mechanisms can significantly re-
duce human intervention while maintaining quality,
demonstrated by our AutoFix system improving
Good-to-Good conversion rates from 41.88% to
59.83%. These learnings, validated through pro-
duction deployment, provide a blueprint for apply-
ing LLMs to other structured enterprise tasks while
maintaining rigorous quality standards."

Acknowledgements

We express our sincere gratitude to the Ontology
team for developing comprehensive attribute mod-
eling guidelines that served as the blueprint for the
AttributeForge framework. We particularly thank
Erin Hawley for sharing her thoughts and analy-
sis of attribute generation steps and sophisticated
routing mechanisms, and Eric Kauz for sharing his
extensive expertise in product schema modeling
and his invaluable contributions to LLM evalua-
tor prompt engineering that underpins our schema
quality. Special appreciation goes to Yvette Chua
and Vanessa Franco for leading the critical hu-
man audit effort. We are also grateful to Sharadha
Viswanathan and Penny Gao for their thoughtful
review and valuable feedback to the writing of the
paper. Their collective expertise and dedication
were instrumental in bringing automated attribute
modeling from concept to reality.

References

Anthropic. 2024a. Building effective agents.
https://www.anthropic.com/research/
building-effective-agents. Accessed on
Sept 06, 2025.

Anthropic. 2024b. Introducing the next generation of
claude. Accessed: 2025-02-05.

Hamed Babaei Giglou, Jennifer D’Souza, and Soren
Auer. 2023. Llms4ol: Large language models for on-
tology learning. In The Semantic Web — ISWC 2023,
pages 408-427, Cham. Springer Nature Switzerland.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Zhu Cheng, Wen Zhang, Chih-Chi Chou, You-Yi Jau,
Archita Pathak, Peng Gao, and Umit Batur. 2024. E-
commerce product categorization with LLM-based
dual-expert classification paradigm. In Proceedings
of the 1st Workshop on Customizable NLP: Progress
and Challenges in Customizing NLP for a Domain,
Application, Group, or Individual (CustomNLP4U),
pages 294-304, Miami, Florida, USA. Association
for Computational Linguistics.

Chenhao Fang, Xiaohan Li, Zezhong Fan, Jianpeng Xu,
Kaushiki Nag, Evren Korpeoglu, Sushant Kumar, and
Kannan Achan. 2024. Llm-ensemble: Optimal large
language model ensemble method for e-commerce
product attribute value extraction. In Proceedings
of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’24, page 2910-2914, New York, NY, USA.
Association for Computing Machinery.

Nadeen Fathallah, Arunav Das, Stefano De Giorgis, An-
drea Poltronieri, Peter Haase, and Liubov Kovriguina.
2025. Neon-gpt: A large language model-powered
pipeline for ontology learning. In The Semantic Web:
ESWC 2024 Satellite Events, pages 36-50, Cham.
Springer Nature Switzerland.

Wojciech Kryscinski, Bryan McCann, Caiming Xiong,
and Richard Socher. 2020. Evaluating the factual
consistency of abstractive text summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9332-9346, Online. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74—81, Barcelona, Spain.
Association for Computational Linguistics.

Han Liu, Xianfeng Tang, Tianlang Chen, Jiapeng Liu,
Indu Indu, Henry Peng Zou, Peng Dai, Roberto Fer-
nandez Galan, Michael D Porter, Dongmei Jia, Ning
Zhang, and Lian Xiong. 2024. Sequential LLM
framework for fashion recommendation. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing: Industry Track,
pages 1276—1285, Miami, Florida, US. Association
for Computational Linguistics.

Fabian Neuhaus. 2023. Ontologies in the era of large
language models — a perspective. Appl. Ontol.,
18(4):399-407.

OpenAl. 2022. Introducing chatgpt. https://openai.
com/index/chatgpt/. Accessed: 2025-02-05.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In Proceedings of the 37th International
Conference on Neural Information Processing Sys-
tems, NIPS ’23, Red Hook, NY, USA. Curran Asso-
ciates Inc.

2112

https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://doi.org/10.18653/v1/2024.customnlp4u-1.22
https://doi.org/10.18653/v1/2024.customnlp4u-1.22
https://doi.org/10.18653/v1/2024.customnlp4u-1.22
https://doi.org/10.1145/3626772.3661357
https://doi.org/10.1145/3626772.3661357
https://doi.org/10.1145/3626772.3661357
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://doi.org/10.18653/v1/2020.emnlp-main.750
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://doi.org/10.18653/v1/2024.emnlp-industry.95
https://doi.org/10.18653/v1/2024.emnlp-industry.95
https://doi.org/10.3233/AO-230072
https://doi.org/10.3233/AO-230072
https://openai.com/index/chatgpt/
https://openai.com/index/chatgpt/

Sonali Singh, Sachin Sudhakar Farfade, and
Prakash Mandayam Comar. 2024. DiAL : Diversity
aware listwise ranking for query auto-complete. In
Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing: Industry
Track, pages 1152-1162, Miami, Florida, US.
Association for Computational Linguistics.

Oleg Vasilyev, Vedant Dharnidharka, and John Bohan-
non. 2020. Fill in the BLANC: Human-free quality
estimation of document summaries. In Proceedings
of the First Workshop on Evaluation and Comparison
of NLP Systems, pages 11-20, Online. Association
for Computational Linguistics.

Mary Beth Westmoreland. 2024a. Ama-
zon launches a powerful new genera-
tive ai-based selling assistant codenamed

project amelia. https://www.aboutamazon.
com/news/innovation-at-amazon/
amazon-project-amelia. Accessed on February 4,
2025.

Mary Beth Westmoreland. 2024b. Amazon
launches new generative ai feature for sell-
ers to create product descriptions. https://
www. aboutamazon.com/news/small-business/
amazon-sellers-generative-ai-tool. Ac-
cessed on February 4, 2025.

Henry Zou, Gavin Yu, Ziwei Fan, Dan Bu, Han Liu,
Peng Dai, Dongmei Jia, and Cornelia Caragea. 2024.
EIVEN: Efficient implicit attribute value extraction
using multimodal LLM. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 6: Industry Track),
pages 453-463, Mexico City, Mexico. Association
for Computational Linguistics.

8 Limitations

While AttributeForge demonstrates significant im-
provements in schema modeling automation, we
acknowledge several important limitations:

Model Flexibility: Our current implementation
uses Claude models in compliance with enterprise
data policies. The framework’s model-agnostic
architecture enables straightforward adaptation to
other LLMs, offering flexibility for different orga-
nizational needs. Our detailed workflow patterns
and validation criteria provide a foundation for im-
plementing similar systems with any capable LLM.

Schema Complexity: AttributeForge currently
supports seven core datatypes that cover most
e-commerce product attributes. As the system
evolves, we plan to extend support to more com-
plex schemas with nested structures and component
relationships, further expanding its utility across
diverse product categories.

Reproducibility & Implementation Details:
While some components leverage proprietary e-
commerce data that can not be shared publicly,
we provide comprehensive documentation of our
framework architecture, workflow patterns, and val-
idation criteria in Appendices. Organizations can
adapt these principles to their specific needs using
their own product data and business rules, enabling
similar automation benefits.

Resource Optimization: The system’s current
cost ($4.00-$4.50 per attribute) represents a 104 x
reduction compared to manual modeling while
delivering superior quality. Future optimizations
through prompt caching and batch processing will
further improve cost efficiency, making the system
increasingly accessible to organizations of various
sizes.

Appendix A Schema Metadata
Components

This appendix describes the structured components
that define a product attribute schema:

1. Attribute Name: The logical name of the
attribute concept in lower-case underscore for-
mat who also serves as the identifier for the
attribute.

2. Data Type: The fundamental structure and
shape of the attribute, such as BoolVari-
ant@1.0 for boolean values, DecimalVari-
ant@ 1.0 for numeric values with decimals, or
LocalizedStringVariant@1.0 for text values.
The datatype determines the basic validation
rules and behaviors of the attribute.

3. Display Label: A human-readable name for
the attribute used in user interfaces and doc-
umentation. Unlike the technical attribute
name that follows lowercase_underscore con-
vention, the label is formatted in Title Case
for better readability.

4. Long Description: A comprehensive expla-
nation of the attribute, including its purpose,
usage guidelines, and any special considera-
tions. This helps contributors understand how
to properly populate the attribute.

5. Short Description: A concise version of the
attribute description, typically used in tooltips
or quick reference materials.

2113

https://doi.org/10.18653/v1/2024.emnlp-industry.87
https://doi.org/10.18653/v1/2024.emnlp-industry.87
https://doi.org/10.18653/v1/2020.eval4nlp-1.2
https://doi.org/10.18653/v1/2020.eval4nlp-1.2
https://www.aboutamazon.com/news/innovation-at-amazon/amazon-project-amelia
https://www.aboutamazon.com/news/innovation-at-amazon/amazon-project-amelia
https://www.aboutamazon.com/news/innovation-at-amazon/amazon-project-amelia
https://www.aboutamazon.com/news/innovation-at-amazon/amazon-project-amelia
https://www.aboutamazon.com/news/innovation-at-amazon/amazon-project-amelia
https://www.aboutamazon.com/news/innovation-at-amazon/amazon-project-amelia
https://www.aboutamazon.com/news/innovation-at-amazon/amazon-project-amelia
https://www.aboutamazon.com/news/small-business/amazon-sellers-generative-ai-tool
https://www.aboutamazon.com/news/small-business/amazon-sellers-generative-ai-tool
https://www.aboutamazon.com/news/small-business/amazon-sellers-generative-ai-tool
https://www.aboutamazon.com/news/small-business/amazon-sellers-generative-ai-tool
https://www.aboutamazon.com/news/small-business/amazon-sellers-generative-ai-tool
https://www.aboutamazon.com/news/small-business/amazon-sellers-generative-ai-tool
https://doi.org/10.18653/v1/2024.naacl-industry.40
https://doi.org/10.18653/v1/2024.naacl-industry.40

10.

11.

12.

13.

14.

15.

16.

17.

. Sample Values (Units Not Required): Sam-

ple valid values for attributes that don’t re-
quire units of measurement.

. Sample Values (Units Required): Sample

valid values including their units of measure-
ment for attributes that require them (e.g., “5.2
inches”, “3.4 kg”).

. Selected Unit Enumeration Name: The

name of the pre-existing unit enumera-
tion set being used by the attribute. Ex-
amples of pre-created enumeration set:
battery_capacity_unit: [amp_hours, mil-
liamp_hours], angle_unit: [degrees, radians].

. New Unit Set Name: The name of a new unit

enumeration set being created specifically for
this attribute. We create new unit enumeration
set when there is not a appropriate match from
existing enumeration set.

Enumeration Values: For enumerated at-
tributes, the list of valid values that conform
to the enumeration tenets (lowercase with un-
derscores, marketing-agnostic, globally appli-
cable).

Enumeration Value Display Labels: The
human-readable display labels corresponding
to the enumeration values.

Unit Enumeration Values: For attributes
with units, the list of valid unit values (e.g.,
“Cm”, ‘4in7?, é‘kg?7).

Unit Enumeration Value Display Labels:
The human-readable display labels for unit
values (e.g., Btus, Kilowatts, Watts).

Example Numeric Values: The numeric por-
tions of example values for attributes with
units.

Example Unit Values: The unit portions of
example values for attributes with units.

Enumeration Set Name: The identifier for
the enumeration set used by the attribute, fol-
lowing lowercase_underscore naming conven-
tion.

Attribute Value Band: Classification of the
attribute’s importance and relevance for spe-
cific product types, E.g., band_A, band_B,
and etc.

18. Maximum OQOccurrences: The maximum
number of times an attribute can appear per
selector group. For example, a max_occurs
of 5 means up to 5 values can be specified for
the attribute within the same selector context
(e.g., marketplace, language).

Appendix B Example Prompt Structure
and Configuration

This appendix provides detailed examples of
prompt structure and configuration used in our at-
tribute modeling system, specifically for long de-
scription generation:

Configuration

task_configuration:
model: "anthropic.claude-3-sonnet
-20240229-v1:0"
temperature: 0.17
batch_size: 5

input_data_fields:
- attribute_name
- attribute_label
- attribute_explanation
- datatype
- product_type
- pt_definition

output_schema:

{
"results”: [
{

"product_type"”: "copy from input

"attribute_name": "copy from
input”,

"attribute_label"”: "copy from
input”,

"datatype": "copy from input”,
"long_description”: "long
description text",

"reason”: "why the long
description is correct and
in accordance with all the
guidelines”

3
]
}

Long Description Generation Prompt
(Trimmed)

[Inputs]:
[
{
"attribute_name”: "attribute”,
"attribute_label”: "attribute label
"product_type": "product type”,
"attribute_explanation”: "sample
explanation”,

"datatype”: "datatype”,

2114

n

"product_description”:
product_description”
3
]

<role_definition>

You are a product catalog specialist
responsible for creating detailed
attribute descriptions

for an e-commerce website. You will
receive a list of attribute names.

"attribute_name”: "copy from input

n

"attribute_label"”: "copy from
input”,

"datatype”: "copy from input”,

"long_description”: "long
description text”,

"reason”: "why the long

description is correct and in
accordance with all the
guidelines”

Each attribute }
requires a long description that 1
elaborates on the attribute’s }
meaning and explains its </output_schema>

purpose in clear and concise language.
</role_definition>

<task>

Your task is to generate a long
description for each attribute
following these guidelines:

<guidelines>
1. Read the attribute name and the
associated product type, and if the
attribute name does
not include the exact product type in
the attribute name, the long
description should

not include the product type. In this
case, use the term "item” to
refer to the

product in the long description.

2. The long description must provide
additional details beyond the
attribute name to help
users understand the attribute’s

semantic meaning and how the
attribute should be used.

3. When describing the attribute avoid
repeating the exact words from the
attribute name.

Instead, use alternative phrasing to
convey the same concept.

[The original prompt is cutted due to
space limit]

<templates>

"[Attribute name] designates the [
characteristics of the attribute in
detaill].

[Optional: clarification or distinction
from other attributes, if applicable
]I'

</templates>

</guidelines>

</task>

Produce single JSON object contains all
the answers. Print only one JSON
object with all

answers and do not output anything else.

<output_schema>

{

"results”: [

{
"product_type"”: "copy from input”,

2115

Appendix C Generation Steps

Step ID Step Name Description Input Schema Output Schema
My Concept Genera- | Generates raw attribute | product_type attribute_label
tion concepts for a product | product_type_definition description
type example_values
Mo Datatype As- | Determines appropriate | product_type attribute_label
signment datatypes for each raw | attribute_label data_type
concept description justification
M3 Name Standard- | Generates standardized | product_type attribute_name
ization attribute names following | attribute_name corrected_name
naming conventions attribute_explanation product_type
data_type attribute_explanation
My Short Descrip- | Creates concise descrip- | attribute_name attribute_name
tion Generation | tions providing context | attribute_explanation product_type
and examples datatype short_description
product_type reason
product_type_definition
Ms Long Descrip- | Creates detailed descrip- | attribute_name attribute_name
tion Generation | tions defining scope and | attribute_explanation product_type
usage datatype long_description
product_type reason
product_type_definition
Mg Check Is Enu- | Evaluates whether an at- | product_type attribute_name
merable tribute’s values should be | product_type_definition product_type
enumerated attribute_name example_values
data_type answer
long_description reason
M~ Enumeration Generates enumeration | product_type product_type_name
Value Genera- | values for string concepts | attribute_name attribute_name
tion data_type number_of _values
attribute_explanation enumeration_name
Mg Unit Mapping Matches unit enumera- | product_type product_type
tion to UnitDecimal/Unit- | attribute_name attribute_name
Integer types attribute_explanation enumeration_units
new_enum_name
My Value Label | Creates human-readable | product_type product_type_name
Generation labels for enumeration | attribute_name attribute_name
values attribute_explanation identifier
enumeration_name label
enumeration_value
Mo Display Label | Creates user-facing dis- | attribute_name display_label
Generation play labels attribute_explanation
My Enumeration Generates standardized | product_type enumeration_name
Name Genera- | enumeration names attribute_name
tion attribute_explanation
Mo Max Occurs | Determines single/multi- | attribute_name attribute_name
Constraint ple value cardinality product_type product_type
product_type_definition max_occurs
datatype reason
short_description
long_description
enum_values
M3 Max Value Con- | Determines maximum | attribute_name max_value
straint value constraints for | product_type reason
numeric types datatype

2116

Appendix D Validation Criteria

The following table presents our comprehensive validation criteria used to assess generated attribute
schemas, including their descriptions, target content types, and classifications.

Criteria Criteria Name Criteria Description Target Con- Syntactic? Conceptual
ID tent or Model-
ing?
C001 Attribute Rele- Checks for attribute that are not rel- Attribute No Conceptual
vancy evant to the PT (product type) it has
been made customer relevant for. This
check is used to avoid irrelevant at-
tribute/PT mappings.
C002 Attribute Single Checks for attributes that do not have Attribute No Conceptual
Purpose a single purpose as identified by the
semantics of the attribute’s represented
concept.
C003 Enumeration Checks to see if enumerated list name Enumeration Yes Modeling
name is 30 has 30 characters or fewer. Name
characters or
fewer
C006 Enumeration dis- Enumeration display labels exist for ~Enumeration Yes Modeling
play labels exist each enumeration value Display La-
for each enumer- bel
ation value
C007 Enumeration Enumeration display labels should be Enumeration Yes Modeling
display labels formatted in Proper Case by capitaliz- Display La-
should be for- ing each word except for values with bel
matted in Proper prepositions. For such values, use up-
Case per case for verbs, adjectives or nouns
surrounding the preposition which is
in lower case (ex. Mother of Pearl).
C009 Attribute Single Checks for attribute that do not repre- Attribute No Conceptual
Logical Domain sent a single logical domain concept
Concept when applied to different PTs.
C010 Product Detail Checks for attributes that do not rep- Attribute No Conceptual
Attribute resent a universal product fact for a
specific product type for example at-
tributes that relate to an offer/sku or
relationships to other asins.
C011 Attribute Checks for attributes which use an in- Datatype No Modeling
Has Correct correct reusable datatype based on the
Datatype attribute’s scope for example a Deci-
mal Variant when a unit is required.
CO12A Short Descrip- Checks whether the short description ~ Short De- No Modeling
tion Clarity would be clear to a reader at the 7th scription
grade level. This check considers cir-
cularity but takes into account that
many terms are obvious to the reader
and do not need to be clarified in the
short description.
CO012B Short Descrip- Given the datatype and short descrip- Short De- Yes Modeling
tion Begins tion from the parameters, the valida- scription
tion checks if the short description
starts with the appropriate expression;
"Provide whether’ for Bool attributes
and "Provide the’ otherwise
CO13A Attribute has a Checks for attributes that already ex- Attribute No Conceptual
semantic match ists in UMP and are already relevant
in UMP for product or considered universal.
Exact match is defined that as the con-
cept already exists and the data types
are effectively the same.
C013B Attribute has Checks for attributes that overlap with Attribute No Conceptual

a semantic
match against
Non-Released
Attributes

non-released attributes

2117

Continued on next page

Continued from previous page

Criteria Criteria Name Criteria Description Target Con- Deterministic? Conceptual
1D tent or Model-
ing?
C013C Exact Match Checks for attributes that exactly Attribute Yes Conceptual
against against matches with non-released attributes
Non-Released
Attributes
Cc014 Short Descrip- Checks whether the short description ~ Short De- Yes Modeling
tion Lengthy exceeds 140 characters. scription
C015 Short Descrip- Checks whether the short description ~ Short De- Yes Modeling
tion Exists All is present for all variant paths defined scription
Visible Variant for the attribute for example both value
Paths and unit.
CO16A Attribute con- There can be more than one occurrence Constraints No Modeling
straints values of an attribute value for a product but
are not aligned the max_occurs is limited to 1.
with the scope
of the attribute
Concept is
repeatable but
max_occurs = 1
co017 Long Descrip- Checks whether the long description Long De- Yes Modeling
tion Only Exists only exists at the attribute level and scription
at * Variant Path is not present at the individual variant
level.
C020 Required Con- All constraints required for an attribute Attribute Yes Modeling
straints Present were created based on the datatype.
With Values
C021 Example Text Checks whether example and descrip- Example Yes Modeling
and Label Exists tion is present for all variant paths de- Values
All Visible fined for the attribute for example both
Variant Paths value and unit.
C028 Enumeration Checks for values in the enumerated Enumeration No Modeling
Value Aligns list that are not relevant to the at- Values
with Attribute tribute’s defined purpose/scope as per
Semantic Defini- the attribute’s long description.
tion
C031 ENM value is Enumeration value is a duplicate or ~ Enumeration No Modeling
a duplicate of synonym of a value in an overlapping Values
a value with attribute.
another attribute
relevant for PT
C037 Attribute names Attribute names are unique within Attribute Yes Conceptual
are unique UMP. Do not reuse an existing at-
within UMP tribute name even if it suits the concept
that you are trying to define.
CO38A Criteria 38a Checks whether the long description Long De- No Modeling
Long Descrip- would be clear to a reader at the 7th scription
tion Clarity/Cir- grade level. This check considers cir-
cularity cularity but takes into account that
many terms are obvious to the reader
and do not need to be clarified in the
short description.
C039 Attribute Syntax ~ Use lowercase_underscore naming Attribute Yes Modeling
is valid Deter- convention for all attributes in all Name
ministic namespaces (e.g. active_ingredients).
With the exception of the underscore,
attribute names must not include spe-
cial characters. Numbers should also
be avoided except when necessary for
example regulations (e.g. [califor-
nia_proposition_65]). Do not start an
attribute name with a number.
c047 Unitized at- Short descriptions for a measurement ~ Short De- No Modeling
tribute - short attribute reference one specific unit of scription

description

measure when the attribute can be mea-
sured under different measurement sys-
tems or units.

2118

Continued on next page

Continued from previous page

Criteria Criteria Name Criteria Description Target Con- Deterministic? Conceptual
1D tent or Model-
ing?
C047B Unitized at- Long descriptions for a measurement Long De- No Modeling
tribute -long attribute reference one specific unit of scription
description measure when the attribute can be mea-
sured under different measurement sys-
tems or units.
C051 PT domain not PT specific attribute long descriptions Long De- No Modeling
clear or long de- but attribute has global name scription
scription of at-
tribute is PT spe-
cific but attribute
is viewed/named
globally.
C051B PT domain not PT specific attribute short descriptions ~ Short De- No Modeling
clear or short de- but attribute has global name scription
scription of at-
tribute is PT spe-
cific but attribute
is viewed/named
globally.
C053 Enumeration Enumeration Display Labels are only ~ Display La- Yes Modeling
Value Display allowed to have the a defined set of bel
Label Format format characters
Characters
C060 Attribute Check is to determine whether an at- Attribute No Conceptual
has potential tribute relates to health, safety, certifi-
legal/safety cation or regulatory concerns.
ramifications
and should not
be generated
C064 Enumeration Determine if any values in the enumer- Enumeration Yes Modeling
contains values ation represent terms that are ambigu- Values
that express ous and convey multiple concepts or
more than one intentions simultaneously
concept/inten-
tion modelling
C068 Attribute Identifies attributes that provide lim- Attribute No Conceptual
represents a ited value for customer purchase deci-
characteristic sions, including those that are obvious,

that would not
provide value to
a customer.

subjective, redundant, non-essential,
relate to replaceable components, or
lack meaningful detail.

2119

Appendix E AutoFix Prompt Template

You are tasked with fixing defects in

generated product attribute metadata
You will be provided with:

The original generation prompt

The content it generated

The validation criteria that failed

Detailed reasons for the validation

failures

A wN—

<generation_prompt>
{original_generation_prompt}
</generation_prompt>

Here is the content generated from this
prompt:

<original_content>
{original_generated_content}
</original_content>

The content was evaluated using these
validation criteria:

<validation_criteria>
{validation_criteria}
</validation_criteria>

The content failed {
number_of_failed_checks} validation
checks for the following reasons:

<failure_reasons>
{detailed_failure_reasons}
</failure_reasons>

Generate corrected content that
addresses all validation failures
while maintaining the original
requirements. Provide your response
in this JSON format:

{

"corrected_content”: {content
following the original output
schema},

"fix_reasoning”: "Concise explanation
of changes made to address each
failure reason”

3

Important requirements:

- Address all validation failures
simultaneously

- Maintain compliance with original
generation requirements

- Ensure changes don’t introduce new
issues

- Provide clear reasoning for
corrections

Appendix F Development Lifecycle &
Human Integration

The AttributeForge framework are integrated with
two key development and test tools: PromptIDE
and Tracer. PromptIDE serves as the core devel-

opment environment, streamlining prompt engi-
neering through real-time validation, version con-
trol, and deployment management. The system
integrates product knowledge data and enables
both targeted validation testing and comprehen-
sive pipeline evaluation, providing non-technical
prompt developers with immediate feedback on
prompt effectiveness. Complementing PromptIDE,
Tracer provides end-to-end pipeline monitoring and
analysis capabilities, creating a complete ecosys-
tem that supports both technical and non-technical
stakeholders throughout the prompt engineering
lifecycle. This dual-component approach ensures
robust development capabilities while maintaining
complete visibility across the entire pipeline.

PromptIDE’s integration with MC2-Eval enables
efficient, isolated prompt development. When im-
proving a specific generation step (M;), prompt
engineers can focus solely on optimizing against
its corresponding validation criteria set (V) with-
out concern for downstream impacts. This isolated
testing occurs first in the development environment
using a diverse validation set of 385 attributes span-
ning 15 product types. Once improvements are
validated, the prompt undergoes end-to-end test-
ing in an alpha environment to verify that enhanced
outputs don’t adversely affect dependent steps (e.g.,
ensuring improved long descriptions don’t break
enumeration value generation). This structured ap-
proach has reduced iteration cycles from one week
to approximately one hour while maintaining sys-
tematic quality control. The integration of Promp-
tIDE into AttributeForge allows direct deployment
of the changes into production by non-technical
users with limited manual hand-off required.

To optimize pipeline observability and efficiency,
Tracer provides end-to-end monitoring of the entire
pipeline. Tracer consolidates data across multiple
pipeline stages into a unified view, reducing data
inspection time by 1 week per pipeline run. Tracer
incorporates real-time MC2-Eval validation results,
on-demand pipeline triggering capabilities, and au-
tomated metrics computation. Through implemen-
tation of an efficient caching layer, Tracer reduced
result loading times by 70% reduction for frequent
searches, while saving an additional 400 minutes
across iteration cycles through automated metrics
computation. This integration has democratized
pipeline access, enabling non-technical stakehold-
ers to independently analyze results and validate
generated attributes against established quality met-
rics without engineering intervention.

2120

F.1 Strategic Human Integration

While the AttributeForge framework is machine-
first, we strategically position human expertise at
four critical touchpoints to maximize impact while
maintaining scalability:

Benchmark Dataset Curation: NLP scientists
and ontologists assemble diverse, high-quality
datasets representing various product types and
edge cases, ensuring rigorous evaluation of our
LLM evaluators.

Prompt Engineering: Domain experts use Promp-
tIDE to develop and refine prompts based on qual-
ity metrics and systematic failure patterns.
Selective Review: Human review is triggered only
for schemas failing specific validation criteria.
Continuous Improvement: Experts analyze ag-
gregate quality metrics and experiment results to
identify systematic issues and enhance generation/-
validation prompts.

This focused approach optimizes human effort
while maintaining high quality standards and en-
abling system refinement.

Appendix G Execution

The execution of AttributeForge begins by retriev-
ing input data from data lakes (e.g., Amazon S3,
Amazon Athena) through SQL queries that join
relevant schema tables. The workflow orchestrator
(e.g., AWS Step Functions) manages the coordina-
tion and communication between agents through
distributed cloud computing, where each step runs
on separate server instances (AWS Fargate or AWS
Lambda) optimized for input size and performance
requirements. For each task, the system prepares
batched inputs, retrieves corresponding prompts,
and executes them using LLM services (e.g., Ama-
zon Bedrock). Generated outputs are validated,
transformed into standardized JSON format, and
stored back in the data lake. Intermediate results
are made available for the downstream steps to start
consuming, as well as for analysis and debugging
through a query interface. The workflow contin-
ues until all schema components are generated, at
which point the final synthesized schema is vali-
dated.

To ensure reliable execution, the system imple-
ments comprehensive error handling at multiple
levels. For output parsing errors, a multi-stage pars-
ing system first attempts to extract valid JSON, then
employs an LLM-based JSON repair mechanism
that uses a specialized prompt to fix malformed

outputs while preserving their semantic content.
Further parsing failures trigger an automatic retry
logic that re-formats the prompt with additional
structure emphasis and reduces batch size, using
exponential backoff with a 1-second initial delay
and maximum three retries. The system maintains
detailed error logs capturing failure modes, input
conditions, and system state, enabling continuous
improvement of prompts and validation rules while
providing valuable diagnostic information for hu-
man reviewers.

2121

