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Abstract

Chain-of-thought enables large reasoning mod-
els (LRMs) to reason through multi-step prob-
lems but often leads to unnecessarily long
or redundant reasoning traces, a phenomenon
known as overthinking. This results in inflated
inference costs and potential degradation in an-
swer quality. To address these challenges, we
propose Confidence-Aware Reasoning (CaR),
an inference-time framework that optimizes rea-
soning trajectories by selectively pruning low-
utility reasoning blocks and halting early when
sufficient confidence has been achieved. CaR
is theoretically grounded in Bayesian optimal
experimental design, treating each reasoning
block as a sequential decision whose utility is
approximated by its marginal contribution to re-
ducing final answer uncertainty. We introduce
a lightweight implementation that leverages
token-level confidence to dynamically modu-
late reasoning depth without additional super-
vision. Evaluations on multiple benchmarks,
including AMC, AIME, GPQA-Diamond, and
MATH-500 show that CaR improves answer
accuracy by up to +13.3%, while reducing av-
erage reasoning length by 40%—-50%. Our find-
ings demonstrate that information-theoretic in-
sights can effectively control self-guided rea-
soning and enable LRMs to “think just enough”
at test time.

1 Introduction

Large language models (LLMs) have achieved re-
markable progress in multi-step reasoning through
the use of chain-of-thought (CoT) prompting,
where models are guided to first generate an inter-
mediate sequence of thoughts before producing a
final answer (Wei et al., 2023). Recent open-source
models such as DeepSeek-R1 (DeepSeek-Al, 2025)
and OpenAl’s o-series (Jaech et al., 2024) have fur-
ther adopted System-2-style generation (Li et al.,
2025), producing explicit reasoning traces that mir-
ror deliberative thinking. These advances have led

to strong performance on complex benchmarks.
However, this improvement often comes at the cost
of significantly increased inference latency, as long
reasoning trajectories are generated regardless of
their necessity or informativeness (Wu et al., 2025;
Cuadron et al., 2025).

In practice, many CoT traces include redundant
or low-value steps that contribute little to final an-
swer quality, sometimes even reducing it, a phe-
nomenon known as overthinking (Chen et al., 2024;
Su et al., 2025; Fan et al., 2025). This leads to both
computational inefficiency and potential reasoning
degradation, especially in settings with hard latency
or token budgets (Muennighoff et al., 2025). Exist-
ing works have observed that a substantial fraction
of reasoning tokens can be safely omitted without
impacting the final answer (Ma et al., 2025), mo-
tivating the need for adaptive reasoning control.
Prior efforts to address this issue fall into three
main categories (Xu et al., 2025a): (1) post-training
approaches that fine-tune the model using variable-
length CoT or reward shaping (Luo et al., 2025b;
Munkhbat et al., 2025), (2) prompt-based heuris-
tics that instruct the model to “be concise” (Aytes
et al., 2025; Xu et al., 2025b), and (3) inference-
time methods that monitor generated traces and ap-
ply early exit strategies (Yang et al., 2025; Zhang
et al., 2025; Yi and Wang, 2025). Among these,
inference-time approaches are appealing due to
their plug-and-play nature, but they typically rely
on either external probes or ad hoc thresholds, and
lack a principled framework for deciding when to
prune or terminate reasoning.

We address these limitations by proposing
a novel inference-time framework Confidence-
aware Reasoning (CaR), which optimizes self-
guided reasoning trajectories through information-
theoretic signals. At the heart of our approach
lies a simple yet powerful insight: each reasoning
step should be evaluated not merely for fluency,
but for its potential to reduce uncertainty about
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Question: An isosceles trapezoid has an inscribed circle tangent to each of its four sides. The radius of the circle is $3$, and the area of the trapezoid
is $72$. Let the parallel sides of the trapezoid have lengths $r$ and $s$, with $r \neq s$. Find $r*2+s*2$" Answer: 504

Raw-CoT-Reasoning

<think> "Alright, so | have this problem

about an isosceles trapezoid ... " isosceles trapezoid..."

"Wait, let me write that down..."

5= Confidence-aware Reasoning(CaR) =

<think>"Alright, so | have this problem about an

"Wait, let me write that down..."

Pruning low-confidence reasoning

S1:"Wait, let me think. No, the radius is the

"Wait, hold on." S"Wait, hold on."
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[Conf: 0.67]
[Conf: 0.68]
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[Conf: 0.56]

"Wait, actually, for a tangential quadrilateral,

"Wait, in an isosceles trapezoid ... So,

 +s”is 558." iis 558"

i"Wait, in an isosceles trapezoid ... So, r+s® i

[Conf: 0.91]; . . .
: Early stop high-confidence reasoning

"Wait, let me just verify that. Did |

compute the squares correctly?" squares correctly?"

"**Final Answer** \boxed{558}" ®

"Wait, let me just verify that. Did | compute the

"**Final Answer** \boxed{504}"

Replace the token "Wait" with "Final Answer" to
induce answer: "\boxed{504}" [Conf: 0.98]

Add <\think> to stop @ =

[Conf:0.90] ¥,

[Conf: 0.98]

Figure 1: Overview of Confidence-Aware Reasoning (CaR). An illustrative example of CaR applied to a mathematical
problem. The model generates intermediate reasoning blocks (separated by “Wait”), each associated with a token-
level confidence score. Low-confidence steps are pruned, while high-confidence blocks are retained. When the
confidence for both the reasoning and the candidate answer exceeds predefined thresholds, CaR inserts a <\think>
token to stop further generation and outputs the final answer. This process adaptively controls reasoning depth and
improves efficiency without modifying model parameters. See Section 3 for more details.

the final answer. Inspired by Bayesian optimal ex-
perimental design, we interpret each intermediate
reasoning block as a design decision whose util-
ity can be approximated by the LRM’s predictive
confidence. This intuition enables two complemen-
tary interventions: pruning low-confidence blocks
that likely contribute little information gain, and
early stopping when the model exhibits strong in-
ternal certainty. Unlike existing early-exit or probe-
based strategies (Yang et al., 2025; Zhang et al.,
2025), CaR operates entirely within the self-guided
decoding loop, requiring no fine-tuning or external
feedback. CaR dynamically modulates reasoning
length based on token-level confidence, allowing
the model to “think just enough”—Ilonger when
uncertain, shorter when confident. An illustrative
example is provided in Figure 1.

2 Preliminaries

2.1 Problem Formulation

Let P denote a problem statement that necessitates
complex reasoning, such as math or programming
tasks. We employ a reasoning language model
L and the inference begins with the construction
of an initial prompt P, which instructs £ to gen-
erate step-by-step reasoning enclosed within pre-
defined delimiters (e.g., “<think>...</think>"),
followed by a final answer presented in a standard-
ized format (e.g., “\boxed {Answer}”). Given the
problem prompt P, we call the LRM L to generate

the full output response O via inference decoding:

O=LMP|6), (R,A) €O, 1)
where 6 is the parameter of LRMs, and the output
O consists of the thinking/reasoning process
R and the final answer A. Specifically, the think-
ing process can typically be divided into multiple
reasoning blocks R = {r1, ..., 7 }.

Our objective is to maximize the performance
of the final answer by self-guiding the thinking
trajectories while avoiding overthinking. Formally,
we define the optimization problem as:

max Perf(A) subjectto Len(R) <7, (2)
where Perf(.A) € [0, 1] denotes a task-specific per-
formance metric of the final answer A, Len(R)
denotes the length of the reasoning trace R, and 7
is a predefined threshold controlling the maximal
allowable reasoning length.

2.2 Bayesian Optimal Experimental Design

We draw theoretical motivation from the framework
of Bayesian Optimal experimental design (BOED)
(Foster et al., 2019), which formalizes how to make
optimal decisions under uncertainty by acquiring
the most informative observations (Chaloner and
Verdinelli, 1995). BOED provides a general princi-
ple for sequential information acquisition which
inspires us to reinterpret this perspective by treat-
ing each reasoning block as a design choice, and
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the eventual answer as the latent target variable.
This analogy allows us to approximate the marginal
utility of each block based on how much it is ex-
pected to reduce uncertainty over the final answer
distribution. As a result, BOED offers a natural
foundation for our CaR framework, guiding both
the pruning and stopping of reasoning steps based
on information-theoretic utility. More discussions
are provided in the appendix.

3 Methodology

3.1 Information-Theoretic Insights

We reinterpret the principle of BOED by viewing
each intermediate reasoning block r; as a local de-
sign decision &;, whose purpose is to reduce the rea-
soning model’s epistemic uncertainty over the cor-
rect final answer A. Let Ry = {r1,72,...,7—1}
denote the partial reasoning trajectory up to step
t — 1. The final output consists of a full trajectory
R = R« U{r¢} and an answer .A. We define the
marginal utility of block r; as the conditional EIG
over the answer distribution:

p(A | R<t> Tt)

EIGA = Eavp(iRor ) | 108 P(A[R<y)

This quantity quantifies the expected informa-
tion contribution of r; toward the final answer A.
Our objective is to select the next reasoning block
¢ that maximizes the conditional EIG with respect
to the final answer A r; = argmax,,{EIG4}.
However, directly estimating the EIG4 is in-
tractable in practice, as it requires full posterior
access or Monte Carlo sampling over alternative
reasoning paths, which is computationally expen-
sive for LRMs (Rainforth et al., 2024).

To overcome this limitation, we propose a
tractable single-sample proxy for the EIG 4 of
each reasoning block, leveraging the model’s token-
level predictive confidence. This proxy avoids
Monte Carlo sampling, making it tractable for
large-scale decoding. Let r; = {yg), . ,y,(:)}
be the tokens comprising the ¢-th block, C means
the entire previous “context”, and define the block
confidence Conf(r;) as the average log-probability
of its tokens.

Empirical Observations. We note that blocks
with low predictive confidence tend to be seman-
tically vague or uninformative (e.g., filler phrases
such as “Wait”, “Wait, no”, “Wait, but...”). Figure
3 visualizes the manifold of the low-confidence

reasoning blocks (e.g., Conf(r;) < 0.6). We can
observe isolated clusters from both sizes of models
(1.5B and 14B), and the zoomed-in visualization
with annotated tokens are shown in Figure 2.

However, high-confidence blocks often correlate
with decisive and informative steps in the reasoning
trajectory. Therefore, we approximate the EIG 4 of
7+ via a monotonic mapping of its confidence score:
EIG4(r¢ | R<t) = @(Conf(r)), where ¢(-) is
an empirically calibrated function (e.g., identity,
exponential, or entropy-based mapping) that serves
as a surrogate for expected utility.

3.2 Pruning Low-Confidence Reasoning
Blocks

Motivated by the information-theoretic insights
and empirical observations, we propose a pruning
mechanism to remove low-confidence reasoning
blocks during inference, thereby reducing noise, in-
stability, and risk of overthinking. We define a con-
fidence threshold 7o € (0,0.6). If Conf(r;) <
Tiow, the block is considered low-confidence, and
thus unlikely to yield nontrivial information gain:

Conf(ry) < Tjow = I@A(rt | R<t) = 0. (3)

In this case, we prune r; and return to the previ-
ous reasoning state R, from which we perform
resampling. Specifically, we adopt the following
pruning and resampling procedure:

* Detection: If Conf(r;) < 7oy, discard the cur-
rent block r; due to low IG.

* Resampling: Revert to the previous state R ¢,
and resample K candidate reasoning blocks with

a relatively higher temperature:

)Y < Decode(L(R<t,0)), (4)

* Selection: Among the K candidates, select the

block with the highest confidence, i.e., maximum
information gain (IG):

rf = argmg)xConf(rgl)), 1=1,...,K. (5

Tt
* Acceptance or fallback: If Conf(r}) > 7w,
accept 7 as the new reasoning block; otherwise,
accept it anyway to avoid infinite resampling,

and proceed to step ¢ + 1.

This mechanism can be viewed as a light-weight
form of importance/reject sampling, which effi-
ciently mitigates the inclusion of noisy reasoning
fragments. Intuitively, it also improves alignment
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Figure 2: Zoom-in visualization of low-confidence tokens in low-dimensional space on 1.5B (green) and 14B (blue).
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Figure 3: Visualization of low-confidence reasoning
blocks on 1.4B and 15B models across AIME tasks.

between the LRM’s output space and its internal
belief: by preferring blocks with higher confidence,
we approximate the objective of maximizing IG
with respect to the final answer distribution.

3.3 Early Stopping via High-Confidence
Control

We further introduce an early stopping mechanism
that terminates the reasoning trajectory once suffi-
cient evidence has been accumulated. To avoid pre-
mature termination, we design a two-stage gating
procedure with progressively stricter confidence
thresholds. CaR first checks the high-confidence
reasoning block, and then passes a second confi-
dence check on the predicted final answer before
halting. This approach ensures that the decision to
stop is both context-aware and answer-aware.

Stage 1: Confidence Gate on the Reasoning
Block. Let r; be the current reasoning block, and
define its normalized confidence score:

|7¢]

1
Conf(r;) = exp Tl Z IOgPG(yJ(‘t) | Cj-1)
j=1

We define a threshold gn € (0.7,0.9). If
Conf(r;) > Thigh, we hypothesize that the model
has reached a confident and informative state in its
trajectory. We initiate a probe to assess whether the
model is ready to produce the final answer.

Stage 2: Confidence Gate on the Final Answer
Conditioned on the current reasoning trace, we
prompt the LRM L to generate a candidate answer

sequence A; = {aq,..., a|At|}. We compute the
answer confidence as:

1 |A¢|
A Z log po(aj|R, a<j)

J=1

Conf(A;) = exp

If the answer confidence exceeds a stricter thresh-
old Tas € (0.9,1.0), we consider the reasoning
process complete and terminate the trajectory:

Conf(A;) > Tans = Emit A, and stop.

We then insert a special delimiter token (e.g.,
“<\think>") to signal the end of the reasoning phase
and proceed to output the final answer. Otherwise,
if the answer confidence is insufficient, we discard
the candidate answer and resume the generation of
the next reasoning block 744 1.

Information-Theoretic Interpretation. This
two-stage mechanism aligns with the goal of
information-efficient reasoning. Stage 1 identifies
the onset of marginal utility saturation, i.e., when
the expected information gain of an additional
reasoning block becomes negligible:

ETIEA(HH | R¢) =~ 0. (6)

Stage 2 provides a formal confirmation that the
model’s predictive posterior over the answer A is
sufficiently peaked:

HIp(A| Ry)] < e & Conf(Ay) > s, (7)

where H|[-] denotes Shannon entropy and ¢ is a
user-defined entropy budget. Thus, early stopping
occurs only when both: (1) the latest reasoning step
is confident enough to warrant a prediction attempt.
(2) The answer itself is deemed reliable given the
current trace. This two-stage design avoids over-
thinking and redundant reasoning, while maintain-
ing rigorous guarantees on prediction quality.

A step-by-step workflow is provided in Algo-
rithm 1. Unlike fixed-length generation or step-
based heuristics, our CaR method is fully adaptive,
self-guided, driven by the LRM’s own confidence
over the reasoning blocks and the final answer.

2084



Model Method | MATH-500 AMC-2023 GPQA-Diamond AIME-2023 AIME-2024 AIME-2025
Distill-Qwen-1.5B | CoT-Raw | 65.4 42.5 57 20.0 20.0 16.7

CaR 742 (18.8)  55.0 (112.5) 6.6 (10.9) 200 (10.0)  233(16.6)  20.0(13.3)
Distill-Qwen-7B | CoT-Raw | 86.0 75.0 24.8 40.0 36.7 267

CaR 87.4(11.4) 850 (115.0) 28.3 (13.5) 50.0 (110.0)  46.7 (110.0) 33.3 (16.6)
Distill-Qwen-14B | CoT-Raw | 86.0 82.5 52.0 733 66.7 40.0

CaR 882(12.2)  90.0(17.5) 59.1 (17.1) 80.0(16.7)  76.7(110.0) 533 (113.3)
QwQ-32B CoT-Raw | 86.4 87.5 475 69.7 56.7 56.7

CaR 87.8(11.4) 85.0(125) 52.5(15.0) 69.7(10.0)  70.0 (113.3) 53.3(I3.4)

Table 1: Accuracy results on the DeepSeek-R1-Distill series of models (1.5B, 7B, and 14B) and QwQ-32B. Accuracy
improvements are shown in blue with 1; regressions are shown in red with |.
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Figure 4: Relationship between the confidence of reasoning blocks and their token length across different LRMs.

Algorithm 1 & Confidence-Aware Reasoning

1: Requirements: problem prompt P, P4, LRM Ly, thresh-
olds Tiow, Thigh, Tans, Dudget Thudger, resample trials K
Initialization: reasoning trajectory R < @, reasoning
token length 7" < 0
while 7' < Tyudger do

Generate reasoning block r; ~ Lo(P | R)

Compute Conf(r;)

if Conf(r:) < Tiow then // Reasoning Pruning
(k)

Re-sample K reasoning blocks r;

»

Compute Conf(r§k>) for each sample
Select r{ < arg maxy, Conf(rik))
end if
if Conf(r;) > Thign then // Early Stopping
Generate candidate answer A; ~ Lo(P, P4 | R)
Compute Conf(.A;)
if Conf(A;) > 7un, then
Append <\think> to R and exit thinking
end if
end if
18:  Append r+ to R and update 7' <— T" + Len(r)
19: Generate final answer A ~ Lo(- | R)
20: return A, T

Pk ek ket
NN PEAWN—~ONY 0 2 NNk W

4 Experiments

4.1 Experimental Setup

We evaluate our confidence-aware reasoning CaR
framework on a diverse set of LRMs, including the
DeepSeek-R1-Distill-Qwen family (1.5B, 7B, 14B)
(DeepSeek-Al, 2025) and the QwQ-32B (Team,
2025) model. We select 6 benchmark datasets,
including AMC 2023, AIME 2023, 2024, 2025,
MATH-500 (Hendrycks et al., 2021), and GPQA-
Diamond (Rein et al., 2024) that emphasize com-

plex multi-step math reasoning. We follow prior
work in adopting a zero-shot chain-of-thought
prompting setup, and we report exact match accu-
racy on the final answers. Our evaluation focuses
on two complementary objectives: reasoning,g ac-
curacy, and computational efficiency. We aim to
maximize the quality of the final answer while min-
imizing the length of the reasoning trajectory. More
details are provided in the appendix.

4.2 Main Results

Reasoning Accuracy. As shown in Table 1-2,
CaR consistently improves accuracy while substan-
tially reducing the number of tokens generated dur-
ing the reasoning process. This demonstrates that
inference-time trajectory optimization can yield
both performance and efficiency gains without tun-
ing model parameters. Specifically, CaR improves
accuracy by +12.5 on AMC-2023 and +8.8 on
MATH-500 on the 1.5B model. Gains remain
substantial at 7B and 14B scales, with improve-
ments of +15.0 and +7.5, respectively. On challeng-
ing datasets like GPQA-Diamond and AIME-2025,
CaR improves performance by up to +13.3.

Reasoning Length. CaR delivers significant re-
ductions in reasoning token length, typically by
40-50%. For instance, average token length drops
from 4205 to 2283 on AIME-2024 (—46%),and
from 3864 to 2008 on GPQA-Diamond (—48%)
on the 7B model. Even on the QwQ-32B model,
which is already highly optimized for long-range
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Model Method | MATH-500 AMC-2023  GPQA-Diamond AIME-2023 AIME-2024 AIME-2025
Distill-Qwen-1.5B | CoT-Raw | 2053 3295 4387 4355 4601 5472

CaR 1204 (141%) 1585 (152%) 2487 (143%) 2068 (153%) 2587 (144%) 2749 (150%)
Distill-Qwen-7B | CoT-Raw | 1874 2658 3864 3901 4205 4954

CaR 993 (|47%) 1539 (142%) 2008 (148%) 2177 (144%) 2283 (146%) 2558 (148%)
Distill-Qwen-14B | CoT-Raw | 1905 2866 4013 4823 4799 5203

CaR 1055 (145%) 1532 (147%) 1955 (151%) 2394 (150%) 2693 (144%) 2834 (146%)
QwQ-32B CoT-Raw | 1977 3019 4482 5064 5385 6077

CaR 1202 (139%) 1699 (144%) 2743 (139%) 2793 (145%) 3058 (143%) 3864 (136%)

Table 2: Token length results on the DeepSeek-R1-Distill series of models (1.5B, 7B and 14B) and QwQ-32B. Red
J indicates the reduction percentage of CaR compared to CoT-Raw .

reasoning, CaR reduces CoT length by 36-45%
without degrading accuracy on most benchmarks.
These results underscore the core advantage of
CaR: generating less but thinking better. By prun-
ing low-utility reasoning blocks and terminating
early when confidence peaks, the model avoids
redundant or misleading paths while maintaining
or improving prediction quality. Importantly, CaR
operates entirely at the decoding level, making it
broadly compatible with existing LRMs without
requiring retraining or external supervision.

4.3 Analysis

Impact of confidence thresholds. We begin our
ablation study by analyzing the effect of the two
core hyperparameters in CaR : the low-confidence
pruning threshold 7w and the high-confidence
early-stopping threshold Ty;gp.

64 4= T T T T T T T T T T
050 0.52 054 056 0.58 0.60 0.70 0.75 0.80 0.85 0.90
Low-Confidence Threshold High-Confidence Threshold

Figure 5: Effect of low/high-confidence thresholds on
accuracy and generation token length.

As shown in Figure 5 (left), varying 7jow from
0.50 to 0.60 reveals a non-monotonic relation-
ship with final accuracy. Moderate pruning (e.g.,
Tiow = 0.55) yields the best accuracy (70.0%),
while more aggressive pruning (7w > 0.58) leads
to a decline in performance. This suggests that
overly strict pruning risks discarding useful in-
termediate steps, while too lenient thresholds re-
tain noisy reasoning blocks. We therefore adopt
Tiow = 0.55 as a balanced default.

For Thign, which determines when to attempt
early answer generation, we observe in Figure
5 (right) that setting this value to 0.80 achieves

the best trade-off between accuracy and efficiency.
As Thigh increases beyond 0.85, accuracy begins
to drop due to premature answer emission, while
smaller values (e.g., 0.70) incur higher token costs
without substantial gains. We select Thign = 0.80
as the default in all experiments. Figure 4 shows
the relationship between the confidence of reason-
ing blocks and their corresponding token length,
which also provides some insights into the choice
of confidence thresholds.

We also set an answer-level confidence thresh-
old 7, for the final stopping condition. Prior work
(Yang et al., 2025) observed that lower values (e.g.,
0.90) often lead to premature stopping with under-
developed CoT traces, while values close to 1.0
delay exit unnecessarily. The choice of 0.95 strikes
a strong empirical balance between early termi-
nation and answer certainty, and avoids introduc-
ing instability in confidence estimation. We adopt
Tans = 0.95 throughout our experiments without
additional tuning.

Block Pruning vs. Early Stopping. To disentan-
gle the individual contributions of block pruning
and early stopping (ES) within CaR , we conduct a
component-wise ablation study across four models,
reporting both final answer accuracy and average
reasoning token length in Figure 6.

Introducing pruning consistently improves ac-
curacy while substantially reducing token usage
over the CoT-Raw baseline. For example, prun-
ing raises accuracy from 34.5% to 38.9% and re-
duces generation length from 4353 to 2339 tokens
(—46%) on 7B model. Similar trends are observed
for 1.5B and 32B models, indicating that pruning
low-confidence blocks helps remove distractive or
redundant steps in early-stage reasoning.

Adding early stopping on top of pruning yields
further efficiency gains, and in most cases, addi-
tional accuracy improvement. Notably, on 1.5B
model, accuracy rises from 20.0% (CoT-Raw) to
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Figure 6: Effect of pruning and early stopping.

21.1% (Pruning + ES), while token length drops
from 4809 to 2468 (—49%). On 14B model, how-
ever, we observe a small drop in accuracy when ES
is applied (from 70.0% to 65.6%), suggesting that
early halting may occasionally truncate valid yet
long reasoning chains in high-capacity models.

5 Industrial Application

Our CaR approach has broad potential for real-
world industrial applications where efficiency and
reliability are critical. For example, CaR can re-
duce computation cost and latency for customer
service chatbots, search and retrieval systems, and
code assistants by pruning unnecessary reasoning
steps while maintaining or even improving answer
accuracy. It can also be used in edge or mobile
deployments to fit strict token or memory budgets
without requiring any model fine-tuning. Overall,
CaR offers a simple yet effective method to opti-
mize LRMs for production systems that need to
balance accuracy, speed, and cost.

6 Related Work

Overthinking and Efficient Reasoning. Recent
advances in LRMs, like Open-Al ol (Jaech et al.,
2024), and DeepSeek-R1 (DeepSeek-Al et al.,
2025) have demonstrated that explicit chain-of-
thought (CoT) generation can significantly improve
performance across math, science, and logic bench-
marks (Xu et al., 2025a; Li et al., 2025). How-
ever, this improvement often comes at the cost of
increased test-time compute, as multi-step reason-
ing requires longer generation traces compared to
standard prompting (Guo et al., 2025; Feng et al.,
2025; Muennighoff et al., 2025). Moreover, these
models frequently engage in unnecessary or repet-
itive reasoning steps—commonly referred to as

“overthinking”, even after the correct answer has
been implicitly reached (Chen et al., 2024; Zhang
et al., 2025). To mitigate this, several methods have
been proposed to improve reasoning efficiency, in-
cluding training-time interventions that encourage
concise reasoning (Munkhbat et al., 2025), and test-
time strategies that adaptively constrain generation
based on confidence signals, prompt complexity, or
answerability heuristics (Zhao et al., 2024; Manvi
et al., 2024; Li et al., 2024; Yang et al., 2025; Xu
et al., 2025b; Ma et al., 2025; Luo et al., 2025a;
Hammoud et al., 2025).

Information-Theoretic Perspective. A princi-
pled view of efficient reasoning emerges from
the lens of Bayesian optimal experimental design
(BOED) (Foster et al., 2021; Rainforth et al., 2024),
which prescribes selecting actions that maximize
the expected information gain (EIG) over an un-
known target variable (Panousis and Rainforth,
2022). While BOED has been widely applied in
active learning (Melo et al., 2024) and Bayesian
optimization (Liu et al., 2024), it remains under-
explored in the context of LLM-based reasoning,
where each token or block can be viewed as a de-
sign decision (Handa et al., 2024; Falck et al., 2024;
Xiao et al., 2025; Qiu et al., 2025). In contrast,
we propose to view each reasoning block as a se-
quential design variable whose utility can be ap-
proximated by its marginal reduction in uncertainty
over the final answer. By adapting the BOED prin-
ciple to CoT generation, our approach connects
confidence estimation and trajectory control un-
der a single theoretical framework. To the best
of our knowledge, CaR is the first reasoning-time
framework to operationalize BOED for stepwise
generation, bridging the gap between information-
theoretic decision making and LLM decoding.

7 Conclusion

We present CaR, a unified self-guided framework
for optimizing the reasoning trajectories of LLMs
at inference time. By approximating informa-
tion gain with token-level confidence scores, CaR
enables two complementary interventions: low-
confidence block pruning and high-confidence
early stopping. Our method operates entirely at
the decoding level without requiring model mod-
ifications or auxiliary training, making it broadly
compatible with future reasoning models. Future
directions include extending CaR beyond mathe-
matical reasoning and enhancing its robustness.
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Limitations

While our method introduces a principled and ef-
ficient framework for reasoning trajectory con-
trol, it has several limitations. First, our con-
fidence estimates are based solely on token-
level log-probabilities from a single forward pass,
which may not fully capture epistemic uncer-
tainty—particularly in ambiguous or multi-answer
settings. Second, the approach assumes that rea-
soning blocks are cleanly segmented via delimiters
(e.g., “Wait”, “hmm”, “Alternatively”), an assump-
tion that may not hold in domains or models lack-
ing explicit CoT formatting. Third, although CaR
demonstrates strong performance across a range
of open-source models, it has not yet been evalu-
ated on closed or instruction-tuned systems with
different output conventions. Finally, the method
does not explicitly address hallucinated or logi-
cally inconsistent intermediate steps, which remain
a broader challenge for decoding-time reasoning
control.

An important additional limitation of CaR lies
in its reliance on the language model’s internal
confidence, as approximated by token-level likeli-
hoods. Large language models are known to ex-
hibit overconfidence or miscalibrated uncertainty,
especially on out-of-distribution queries or com-
plex multi-hop reasoning. In the absence of ex-
ternal supervision or verification signals, confi-
dently incorrect blocks may be retained or prema-
turely trigger final answer emission. While CaR
partially mitigates this via threshold tuning and re-
sampling, future work could incorporate stronger
uncertainty estimation, calibration techniques, or
auxiliary self-verification modules. Beyond model-
internal refinements, another direction involves
combining CaR with retrieval-augmented reasoning
or consistency-based methods to further improve
robustness on open-ended tasks.
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A Additional Discussion about BOED

We draw theoretical motivation from the framework
of Bayesian Optimal experimental design (BOED)
(Foster et al., 2019), which formalizes how to make
optimal decisions under uncertainty by acquiring
the most informative observations (Chaloner and
Verdinelli, 1995). The central objective is to select
a design variable ¢ that maximizes the expected
utility of an experiment, often instantiated as the
expected information gain (EIG) about a latent
target variable 6 (Rainforth et al., 2024). Formally,
EIG quantifies the reduction in uncertainty about
upon observing data y under a given design &, and
is defined as the mutual information:

9?
EIGy(§) = Eyole) [log W] ;8

which corresponds to the expected KL divergence
between the posterior p(f | y, &) and the prior p(6).

BOED provides a general principle for sequen-
tial information acquisition, which motivates us
to reinterpret each reasoning block as a design de-
cision, and the final answer as the latent target
variable. From this perspective, the goal of reason-
ing becomes selecting the next block to maximize
its expected information gain to the final answer.
Intuitively, each step should contribute meaning-
fully to reducing predictive uncertainty, and rea-
soning should proceed only as long as additional
information is worth acquiring. This interpretation
approximates the marginal utility of each block by
reducing uncertainty over the answer distribution.

B Additional Experiment Details

B.1 Reasoning Models

We evaluate our confidence-aware reasoning frame-
work on a diverse set of large reasoning lan-
guage models (LRLMs), including the DeepSeek-
R1-Distill-Qwen family (1.5B, 7B, 14B) and the
QwQ-32B model. The DeepSeek series represents
instruction-tuned models optimized for chain-of-
thought (CoT) generation, with explicit reasoning-
answer delimiters. QwQ-32B serves as a high-
capacity baseline with strong reasoning perfor-
mance across math and logic benchmarks. All
models are evaluated in a zero-shot setting with
consistent CoT-style prompts and no additional
fine-tuning or calibration, allowing us to isolate
the effect of our decoding-time intervention.

B.2 Datasets and benchmarks

We evaluate our method on four benchmark
datasets that emphasize multi-step reasoning, sym-
bolic manipulation, and factual knowledge retrieval.
To assess mathematical problem-solving capabili-
ties, we include AMC 2023 (American Mathemat-
ics Competitions) and AIME 2023-2025 (Ameri-
can Invitational Mathematics Examination), both
consisting of high-school level problems with non-
trivial algebraic and combinatorial structure. These
datasets challenge models to perform precise sym-
bolic reasoning over several steps, making them
ideal for evaluating reasoning trajectory optimiza-
tion. In addition, we include GPQA Diamond re-
cently proposed benchmark for graduate-level pro-
fessional question answering—which tests factual
recall, deductive reasoning, and domain-specific
knowledge across fields such as law, medicine, and
engineering. To assess generalization under token
budget constraints, we also evaluate on a filtered
subset of MATH-500, a collection of moderately
difficult open-domain math problems designed to
test both CoT depth and correctness. Across all
datasets, we follow prior work in adopting a zero-
shot chain-of-thought prompting setup, and we re-
port exact match accuracy on the final answers.

B.3 Performance Metrics

Our evaluation focuses on two complementary ob-
jectives: reasoning accuracy and computational
efficiency. Following our formulation in Section
4, we aim to maximize the quality of the final an-
swer while minimizing the length of the reasoning
trajectory. Accordingly, we report the following
metrics:

* Answer Accuracy: the primary evaluation met-
ric is exact match (EM) between the predicted
answer and the gold label, evaluated under the
model’s emitted answer format (e.g., \boxed{}
or final token span). For multiple-choice prob-
lems (e.g., GPQA), EM is computed over the
selected choice token.

* Reasoning Length: to quantify inference-time
efficiency, we measure the total number of tokens
generated in the reasoning phase prior to answer
emission. This includes all tokens between the
start of the slow-thinking region and the point
of early stopping (if triggered). Tokens from the
final answer are excluded.

2091



B.4 Implementation Details

We use greedy decoding with a maximum gener-
ation length of 16,384 tokens for all models. The
generation temperature is set to 0.6 by default to
encourage determinism while maintaining fluency.
For low-confidence block pruning (Section 3.2), we
resample reasoning blocks using a higher tempera-
ture of 0.7 to promote diversity, and retain the can-
didate with the highest confidence among K = 3
samples. Thresholds for confidence-based control
are fixed across all models and datasets. We set the
low-confidence pruning threshold to 71, = 0.55,
such that blocks below this value are discarded and
regenerated. For early stopping (Section 3.3), we
apply a two-stage gating procedure: a block-level
threshold Ty = 0.8 determines when to trigger
candidate answer generation, and an answer-level
threshold 7,4 = 0.95 is used to decide whether to
halt reasoning and emit the final output. These val-
ues were chosen based on validation performance
on held-out samples from the AMC dataset and
held fixed across all experiments.

C Additional Experiments and Analysis

C.1 More Baseline Comparisons

We have conducted additional experiments, includ-
ing two additional baseline methods:

* Majority Voting (k=5): Generates k=5 reasoning
chains and selects the most frequent final answer,
following standard self-consistency setups.

* Token-Conditional Control (TCC) (Muennighoff
etal., 2025): Specifies a fixed token budget in the
system prompt to enforce concise reasoning. We
set this token limit based on the average length
generated by CaR to ensure a fair comparison.

The results are summarized below (AMC 2023,
GPOQA-Diamond, AIME 2023) and the key ob-
servations are:

* CaR consistently outperforms both Majority Vot-
ing and TCC across all datasets and model scales.

* Compared to TCC, CaR achieves +2.5 to +3.3
accuracy gains, demonstrating that purely en-
forcing a token budget without confidence-aware
reasoning is suboptimal.

* Compared to Majority Voting, CaR improves ac-
curacy by +2.0 to +4.3, while also reducing aver-
age tokens due to pruning and early stopping.

C.2 Budget Compliance.

We further evaluate token budget compliance, de-
fined as the proportion of examples whose reason-
ing phase terminates within a fixed maximum to-
ken length (e.g., 2048 tokens). While the CoT-Raw
baseline frequently exceeds this threshold, partic-
ularly on arithmetic-heavy datasets such as AIME
and GPQA. CaR significantly increases compli-
ance rates across all settings. The results highlight
CaR’s practical utility as a plug-and-play decoding
strategy that can maintain high performance under
bounded compute. For instance, on Distill-Qwen-
7B, the proportion of inputs completed within bud-
get increases from 62% to 94% on AIME-2025,
and from 58% to 91% on GPQA-Diamond. This
budget-awareness is particularly valuable for real-
world applications where latency, API quota, or
memory constraints limit the allowable generation
cost per query.

C.3 Effect of Resampling during Pruning.

During pruning, CaR optionally resamples multiple
candidate reasoning blocks when the initial one
has low confidence. This introduces a trade-off
between selection quality and decoding cost. Table
4 presents results on AMC-2023 (Distill-Qwen-
7B) with varying resampling counts K € {1, 3,5}.
Increasing K from 1 to 3 substantially improves
accuracy from 78.5% to 85.0% (16.5) and reduces
reasoning length by 9%, which is a strong gain
relative to only 1.7x decoding overhead. Further
increasing K to 5 yields a marginal +0.5 accuracy
gain at a significantly higher cost (2.5%), suggest-
ing diminishing returns. We therefore fix K = 3
throughout all experiments as a practical compro-
mise, achieving near-maximum performance while
keeping compute overhead moderate.

C.4 Trajectory Length Stability.

To better understand how CaR adapts its reason-
ing depth across tasks and models, we measure
the average number of reasoning blocks gener-
ated before emitting a final answer. As shown
in Figure 7, CaR maintains a stable and balanced
number of blocks across all six datasets and three
model scales (1.5B, 14B, and 32B). For example,
on challenging tasks like MATH-500 and GPQA-
Diamond, the average number of blocks remains
below 50 even for smaller models, while on shorter-
answer tasks such as AIME-2023, CaR converges
in fewer than 20 blocks. Importantly, CaR exhibits
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Model Method AMC GPQA AIME 2023
Distill-Qwen-7B CoT-Raw 75.0 24.8 40.0
Distill-Qwen-7B TCC (Muennighoff et al., 2025)  82.5 27.3 46.7
Distill-Qwen-7B Majority Voting (k=5) 78.0 25.7 433
Distill-Qwen-7B CaR 85.0 28.3 50.0
Distill-Qwen-14B  CoT-Raw 82.5 52.0 73.3
Distill-Qwen-14B  TCC (Muennighoff et al., 2025)  88.5 58.3 76.7
Distill-Qwen-14B  Majority Voting (k=5) 84.5 55.8 73.3
Distill-Qwen-14B  CaR 90.0 59.1 80.0

Table 3: Performance comparison across different baselines and models.

# of Samples ‘ Accuracy T Token Length | Relative Cost

=1 78.5 1693 1x
K=3 85.0 1539 1.7x
K=5 85.5 1512 2.5x

Table 4: Effect of the number of resampling in low-
confidence reasoning block pruning.

consistent behavior across models, suggesting that
its confidence-based control mechanism scales ro-
bustly with model capacity. These results highlight
CaR’s ability to dynamically adjust reasoning depth
in a content-aware manner, without over-generating
or prematurely stopping. The uniformity across
tasks further demonstrates the framework’s gener-
ality and its suitability for deployment under varied
reasoning demands.

Average Number of Reasoning Blocks per Dataset

[ DeepSeek-R1-Distill-Qwen-1.5B
71 3 DeepSeek-R1-Distill-Qwen-14B
| = QwQ-328

Avg # of Reasoning Blocks

AIME2023 AIME2024 AIME2025 AMC2023 GPQA_DIAMOND MATH500

Figure 7: Converged number of reasoning blocks across
different LRMs and benchmarks.

C.5 How does CaR impact the inference
latency?

Overall effect on latency. Our experiments show
that CaR reduces end-to-end inference latency, pri-
marily because:

* Pruning removes low-confidence reasoning
blocks early.

* Early stopping halts generation once confidence
is sufficiently high.

Latency is measured as wall-clock time, including
decoding and post-processing, on an A100-40GB
GPU.

Computational overhead analysis. While CaR
reduces generation length and latency, it introduces
minimal additional computation:

Engineering considerations.

* CaR does not require additional forward passes
Or Cross-process communication.

* All pruning and stopping decisions are imple-
mented inline within the decoding loop, ensuring
minimal orchestration delays.

Overall, CaR reduces inference latency by short-
ening generation length, with negligible compu-
tational overhead from confidence calculation or
decision logic. Compared to SC, CaR offers a much
more latency-efficient improvement pathway. We
will clarify these latency trade-offs and engineer-
ing considerations in the camera-ready version to
better inform deployment implications.

C.6 Segment Reasoning Blocks

In our current implementation, we target reasoning
models such as DeepSeek and Qwen series mod-
els, which reliably generate explicit block markers
(e.g., “Step i:”, “Wait:”, “Hmm”) when prompted
appropriately. Empirically, >98% of generations
include such markers, enabling straightforward seg-
mentation via string matching. However, we ac-
knowledge that if these explicit signals are absent,
segmentation becomes non-trivial and is a limita-
tion of the current CaR framework (as noted in §7
Limitations).

To address this, we are exploring automatic
block segmentation methods, including:

* Perplexity-based segmentation: identify split
points where token-level perplexity sharply
changes.

* Sentence-level semantic clustering: embed token
sequences and segment when adjacent embed-
dings show low similarity.
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Component Overhead impact

Confidence calculation

Negligible. Uses token logprobs already produced by the decoder; adds < 1 ms

per block for aggregation.

Pruning & early stopping logic
Block segmentation, parsing

Negligible. Involves simple threshold comparisons.
Minimal. Uses string matching for explicit markers (e.g., “Step i:”); fallback

heuristics (newline + punctuation) incur low processing cost.

Prompt size change

Minimal. Including pruning/stopping instructions slightly increases prompt

tokens but does not meaningfully affect decode speed.

Table 5: Computational overhead introduced by CaR components.

* Lightweight learned segmentation classifiers:
train a small classifier to predict block bound-
aries using annotated CoT samples.

* If no segmentation is possible, CaR can fallback
to fixed-length token windows as an approximate
solution, albeit with reduced interpretability.

C.7 Relationship Between Overthinking and
Confidence

Our CaR’s central hypothesis is that overthinking
correlates with declining token-level confidence,
and we provide both empirical evidence and new
analyses to support this.

Low-confidence and pruning. As shown in Fig-
ures 5 and 6, reasoning blocks with confidence
<0.6 often contain transitional or filler phrases
such as “wait, no...”, which typically do not con-
tribute meaningfully to the final reasoning outcome.
We acknowledge that some low-confidence blocks
may still be helpful, though their proportion is
small.

To quantify this, we conducted a new annotation
experiment on the AIME 2023-2025 datasets. We
sampled reasoning blocks with confidence <0.6
and used an O3 model to label each as Help-
ful (contributing to correct reasoning) or Redun-
dant/Harmful. Then we conduct a manual inspec-
tion to verify the labels for accuracy.

These results in Table 6 indicate that only ~5%
of low-confidence blocks are actually helpful, con-
firming that pruning low-confidence blocks rarely
removes useful reasoning steps. Moreover, prun-
ing improves both accuracy and efficiency, further
suggesting that these blocks are less helpful on
average.

High-confidence and early stopping. We agree
that high-confidence blocks can still contain hallu-
cinations, as noted in §7 Limitations. However, in
practice, models perform well when early stopping
is triggered by high-confidence thresholds, as also

observed in recent RL-based reasoning optimiza-
tion studies.

To validate this, we conducted an additional
block annotation experiment. Using the O3 model,
we labeled reasoning blocks as Helpful or Re-
dundant, and calculated their average confidence
scores (plus the standard deviation). These results
in Table 7 show that Helpful blocks consistently
have higher confidence than redundant ones, sup-
porting our use of high-confidence early stopping
as a practical heuristic.

D Prompt Format Examples

We show a representative prompt used for inference
with Distill-Qwen-7B on an AIME problem:

Question: Let z be a positive real number such
that = + % = 3. What is the value of 2% + %2'7

<think> Let’s first square both sides of the equa-
tion... </think>

Reasoning blocks are automatically segmented at
the “Wait” delimiter during decoding.

E Hyperparameter Selection

We sweep the following values for threshold tuning

(§6.1):
* Tlow € {0.50,0.52,0.54,0.55,0.56,0.58,0.60}
* Thign € {0.7,0.75,0.80,0.85,0.90}

* Tans € {0.90,0.95,1.00}

« K €{1,3,5}

We fix Tiow = 0.55, Thigh = 0.80, and Tps = 0.95
in all final experiments.

In our current experiments, we performed coarse
grid searches and found that:

* For Qwen-series models, any 70w € [0.55,0.65]
and Thignh € [0.70,0.90] yields accuracy variation
within +0.5.
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Dataset Model % Helpful (confidence <0.6)

AIME 2023 1.5B 5.8%
AIME 2024 1.5B 4.2%
AIME 2025 1.5B 3.5%
AIME 2023 7B 4.9%
AIME 2024 7B 4.3%
AIME 2025 7B 4.7%

Table 6: Percentage of helpful blocks among low-confidence (<0.6) blocks.

Dataset Helpful (avg confidence) Redundant (avg confidence)
AIME 2023 0.82 (£0.04) 0.58 (£0.08)
AIME 2024 0.84 (£0.06) 0.53 (£0.10)
AIME 2025 0.85 (£0.07) 0.55 (£0.09)

Table 7: Average confidence scores for Helpful vs. Redundant blocks.

Symbol Description

P Problem prompt or input question

Lo Language reasoning model with parameters 6

R<t Partial reasoning trajectory before step ¢

T Candidate reasoning block at step ¢

R Full reasoning trajectory up to final block 7

A, Candidate answer generated after block 7

A Final predicted answer

O0=(R,A Complete model output: trajectory and answer

Conf(+) Confidence score based on average token log-probability

Tlow, Thigh, Tans  Confidence thresholds for pruning and early stopping
Number of samples used for block resampling

Table 8: Summary of notations used in CaR .

* Preliminary tests on DeepSeek-R1-Distill-
Llama-8B confirm similar stability ranges, sug-
gesting that these thresholds generalize well
across architectures, see our ablation studies in
Section 4.3. Moreover, tuning these thresholds
is computationally lightweight, requiring only
evaluation on a small held-out dev set without
additional backpropagation.

In future work, we plan to explore adaptive
thresholding strategies, such as percentile-based
calibration, selecting 7 based on confidence distri-
bution quantiles.

F Notation Summary

For clarity and reproducibility, we summarize the
key notations used throughout the paper. Our
framework operates at the decoding level of large
reasoning models (LRMs), where each reasoning
step is treated as an action in a self-guided trajec-
tory.
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