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Abstract

Retrieval-augmented generation has proven
practical when models require specialized
knowledge or access to the latest data. How-
ever, existing methods for multimodal docu-
ment retrieval often replicate techniques devel-
oped for text-only retrieval, whether in how
they encode documents, define training objec-
tives, or compute similarity scores. To ad-
dress these limitations, we present COLMATE,
a document retrieval model that bridges the
gap between multimodal representation learn-
ing and document retrieval. COLMATE utilizes
anovel OCR-based pretraining objective, a self-
supervised masked contrastive learning objec-
tive, and a late interaction scoring mechanism
more relevant to multimodal document struc-
tures and visual characteristics. COLMATE
obtains 3.61% improvements over existing re-
trieval models on the ViDoRe V2 benchmark,
demonstrating stronger generalization to out-
of-domain benchmarks.

1 Introduction

The information assimilated by LLMs (Large Lan-
guage Models) during pretraining and stored in
their parametric memory can get outdated with
time (Zhang et al.,, 2024). LLMs also face
challenges when tackling tasks requiring highly-
specialized knowledge or scenarios requiring infor-
mation not present in their training data, such as
confidential information (Gao et al., 2024). RAG
(Retrieval Augmented Generation) offers a solution
to this issue by providing a way to provide external
knowledge as context to the models (Lewis et al.,
2020). Given its practicality, multimodal RAG
has also been explored. However, compared to
text-only retrieval, it involves retrieving documents
comprising of rich information in the form of fig-
ures, charts, and tables along with text, increasing

*Correpondance to ahmed.masry @servicenow.com and
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complexity and requiring understanding visual and
spatial representations (Mei et al., 2025).

Despite these challenges, multimodal RAG has
made notable progress with the development of
models like ColPali (Faysse et al., 2025). Although
representing meaningful progress, these methods
exhibit several limitations: (i) They use pretrained
VLMs such as PaliGemma (Beyer et al., 2024) to
obtain visual representations; however, these mod-
els do not explicitly optimize output visual tokens
during pretraining, as the autoregressive loss is ap-
plied only to subsequent text tokens, limiting their
effectiveness for fine-grained visual retrieval. (ii)
They rely heavily on supervised fine-tuning with
annotated query—document pairs to achieve cross-
modal alignment, which restricts their applicability
in domains lacking such labeled data. (iii) Existing
methods adopt late-interaction mechanisms such as
MaxSim (Khattab and Zaharia, 2020), originally
designed for text retrieval, which assume a one-to-
one correspondence between query and document
tokens. In visual contexts, this assumption breaks
down, as patch-based image tokenization can frag-
ment words or merge multiple words into a single
patch, introducing noise in similarity computation
during training and ultimately degrading retrieval
performance. These shortcomings in the design of
existing methods may limit their capabilities for
multimodal document retrieval.

We address these limitations by introduc-
ing COLMATE, a multimodal document re-
trieval model designed to capture the rich infor-
mation embedded in visually dense documents.
COLMATE introduces three complementary com-
ponents across pretraining, fine-tuning, and late-
interaction: (i) a masked OCR language model-
ing objective that explicitly optimizes visual to-
ken representations during pretraining, (ii) a self-
supervised contrastive learning objective that en-
ables cross-modal alignment without relying on
annotated query—document pairs, and (iii) a refined
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Figure 1: Overview of COLMATE’s key components. (a) Masked OCR Language Modeling (MOLM) explicitly
optimizes visual token representations by predicting masked OCR tokens during pretraining. (b) Masked Contrastive
Learning (MaskedCL) enables self-supervised cross-modal alignment between masked text and document features
when query—document pairs are unavailable. (¢) TopKSim refines the late-interaction mechanism by averaging top-K
similarity scores during training to reduce noise from patch-based tokenization in visual documents.

late-interaction mechanism, TopKSim, that alle-
viates training noise arising from patch-based tok-
enization in visual documents. Together, these com-
ponents bridge the gap between existing retrieval
approaches and recent advances in multimodal rep-
resentation learning, yielding more robust and gen-
eralizable multimodal document retrieval.

COLMATE improves performance over exist-
ing methods on both in-domain and out-of-domain
ViDoRe benchmarks (Faysse et al., 2025; Macé
et al., 2025), with particularly notable gains in
out-of-domain generalization. The contributions
of this work are summarized as follows: (i) we
present COLMATE, a multimodal document re-
trieval model that integrates three complemen-
tary components across pretraining, self-supervised
fine-tuning, and late interaction; (ii) we demon-
strate consistent performance improvements com-
pared to existing methods across diverse domains;
and (iii) we provide detailed ablations and analy-
ses to quantify the contribution of each component.
To support future research, we release the model
weights publicly at https://huggingface.co/ahmed-
masry/ColMate-3B.

2 Related Work

2.1 Multimodal Retrieval & Late Interaction

Multimodal retrieval models have significantly ad-
vanced through contrastive learning approaches
that align visual and textual representations in
shared embedding spaces (Radford et al., 2021;
Jia et al., 2021; Zhai et al., 2023). These mod-
els utilize contrastive learning techniques (Had-
sell et al., 2006; Chen et al., 2020) and are
trained on large-scale image-text datasets (Lin et al.,
2014; Schuhmann et al., 2022) to enable cross-

modal retrieval capabilities, facilitating down-
stream applications such as visual question answer-
ing (VQA) (Liu et al., 2023; Beyer et al., 2024)
and multimodal RAG (Chen et al., 2022; Yasunaga
et al., 2022). For efficient dense retrieval, late in-
teraction mechanisms like ColBERT (Khattab and
Zaharia, 2020) have proven effective by comput-
ing fine-grained token-level similarities between
queries and documents, and recent works have
extended these approaches to multimodal docu-
ment retrieval, with ColPali (Faysse et al., 2025)
directly applying ColBERT’s MaxSim operation
(Khattab and Zaharia, 2020) to vision-language
models like PaliGemma (Beyer et al., 2024). How-
ever, this direct adaptation introduces noise during
training because MaxSim assumes a one-to-one
correspondence between query and document to-
kens. This assumption breaks down in visual con-
texts where patch-based tokenization can fragment
words across multiple patches.

2.2 Visual Document Understanding &
Pretraining

Visual document understanding focuses on en-
abling models to comprehend and process docu-
ments that often contain complex layouts, diverse
fonts, and multimodal content such as images, ta-
bles, and charts. Models like DocFormer (Ap-
palaraju et al., 2021), LayoutLMv3 (Huang et al.,
2022), and DiT (Li et al., 2022) integrate textual
content with layout and visual information, while
approaches like StructTextV2 (Yu et al., 2023)
and UniDoc (Gu et al., 2021) refine pretraining
objectives specifically for document understand-
ing through masked image and language model-
ing over structured layouts. Recent large-scale ef-
forts like BigDocs (Rodriguez et al., 2025) have
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demonstrated the critical importance of document-
specific training data and pretraining for improv-
ing document comprehension capabilities. Despite
these advances, most multimodal document re-
trieval methods build on general-purpose VLMs
like PaliGemma (Beyer et al., 2024), whose pre-
training objectives do not explicitly optimize vi-
sual token representations in the final layer. As a
result, visual embeddings may not capture the fine-
grained document structure and semantics, limiting
retrieval effectiveness.

2.3 Visually Rich Document Retrieval.

Retrieving visually rich documents is challeng-
ing, as traditional OCR-based text retrieval strug-
gles to capture layout information and visual se-
mantics. Recent models such as DSE (Ma et al.,
2024) and VisRAG (Yu et al., 2024) leverage vi-
sion—language models (VLMs) directly for doc-
ument retrieval, reducing the need for complex
OCR preprocessing pipelines. ColPali (Faysse
et al., 2025) further extends late-interaction ar-
chitectures like ColBERT (Khattab and Zaharia,
2020) to efficiently match query and document
embeddings. Self-supervised objectives such as
masked language modeling (Devlin et al., 2019)
and contrastive learning (Hadsell et al., 2006; Chen
et al., 2020) have proven effective for improving
representation learning, with extensions like Span-
BERT (Joshi et al., 2020) and hard-negative con-
trastive training (Robinson et al., 2021) enhancing
robustness. However, existing multimodal docu-
ment retrieval models rely predominantly on super-
vised fine-tuning with annotated query—document
pairs, limiting scalability and generalization to do-
mains where such data is scarce.

3 Methodology

As presented in Fig. 1, COLMATE incorporates
three novel components: (i) MOLM, an OCR-
based masked language modeling training objective
for improved feature representation, (ii) TopKSim,
a late-interaction mechanism optimized for vi-
sion domain retrieval, and (iii) MaskedCL, a self-
supervised contrastive learning objective for sce-
narios without query-image pairs.

3.1 Masked OCR Language Modeling
(MOLM)

ColPali initializes from PaliGemma’s pretrained
weights (Beyer et al., 2024). However, the pretrain-
ing of PaliGemma and similar VLMs often does

not directly optimize the vision tokens represen-
tations in the last layer, as the autoregressive loss
is typically applied only to subsequent text tokens.
Consequently, vision features may be suboptimal,
hindering retrieval tasks that heavily rely on them.

To address this, we introduce a novel pretrain-
ing objective, Masked OCR Language Modeling
(MOLM), formulated as follows:

(1) Given an input document image, we obtain
contextualized visual token embeddings V' =
{v1,v2,...,on8} C R from the LLM out-
put. Suppose we have an OCR word token
{w;} with its corresponding bounding box.
Let B; C {1,..., N} denote the indices of
visual tokens that spatially overlap with the
bounding box of word w;.

(2) We randomly select 30% of the OCR tokens to
mask, forming the set M C {w;}. For each
masked word w; € M, we compute a pooled
visual representation over the tokens in B;:

1
Vj = 15 Z Vi
1Bj| &5
J
(3) Using these pooled embeddings, the model
is trained with a masked language modeling
objective to predict the masked OCR tokens:

Lyvom = — Z log p(w; | v;,0)
ij./\/l

where p(w; | v}, 6) denotes the probability of
predicting the token w; from its visual context
by the model with parameters 6.

By directly optimizing visual token embed-
dings through this OCR-based masking objective,
MOLM significantly enriches the visual representa-
tions, thereby enhancing downstream multimodal
retrieval performance.

3.2 TopKSim

Current late-interaction methods like MaxSim,
originally designed for text-based retrieval mod-
els such as ColBERT (Khattab and Zaharia, 2020),
are suboptimal when directly applied to document
images (Faysse et al., 2025). This limitation stems
from fundamental differences in how text and im-
ages are tokenized. In text, tokens usually align
well with semantic units such as words. In con-
trast, visual tokens (derived from image patches)
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may span multiple words or capture only parts of a
word, depending on factors like patch size and font
rendering. To address this, we propose TopKSim,
a novel method that averages the top-K similar-
ity scores during training instead of relying on the
single maximum. The hyperparameter K controls
the number of top-scoring document tokens consid-
ered for each query token. This approach reduces
training noise and mitigates the over-reliance on
single image patches, acting as a regularizer. This
results in more robust retrieval and matching of
query-image pairs.

Formally, given an encoded query ¢ =
{g1,q2,---,qn} C R? and an encoded document
d={dy,da,...,dy,} CR? we define the similar-

ity score as:

"1
Score(q,d) = » 7 > ai | dj),
=1

JET;

where (g; | d;j) denotes the dot product between
the ¢-th query token and the j-th document token,
and Z; C {1,...,m} is the set of indices corre-
sponding to the K largest dot products (g; | d;) for
fixed 7, defined as:

Z; = arg topK (1, my (@i | dj)
We employ TopKSim only during training; at
inference, we revert to MaxSim, which has shown
superior empirical performance.

3.3 Self-supervised Masked Contrastive
Learning (MaskedCL).

In practical scenarios, there are often abundant
PDF documents available, but corresponding an-
notated query-document pairs may be lacking. To
address this scenario, we propose MaskedCL, a
self-supervised contrastive learning approach de-
signed to mimic supervised contrastive fine-tuning
without relying on labeled queries. MaskedCL
integrates contrastive learning principles with a
masking-based pretext task specifically tailored for
multimodal document retrieval: (i) We construct
pseudo-queries by randomly masking spans within
the text content extracted from PDFs. (ii) Corre-
spondingly, we generate masked versions of doc-
ument images by overlaying white masks on ran-
dom patches. (iii) Finally, we perform contrastive
alignment between the masked textual representa-
tions and masked visual representations using our
TopKSim late interaction mechanism. This strat-
egy encourages robust cross-modal representation

learning, even when large portions of textual or
visual information are masked.

Formally, following prior methods (Faysse et al.,
2025; Khattab and Zaharia, 2020), we define
the MaskedCL loss using in-batch softmax cross-
entropy over positive and hardest negative scores.
Given a pseudo-query ¢ and its corresponding
masked document image dj,, we compute:

3: = Score(qy, dy,),

L= Score d
Sk I{l;?kx (ka l)a

where Score(q, d) denotes the TopKSim score. The
MaskedCL loss is then defined as:

b +
1 exp(s
LMaskedCL = ~3 E log <exp ( () ) ;

P si) + exp(sy)

with b representing the batch size.

4 Experimental Setup

Datasets & Benchmarks For masked OCR lan-
guage modeling (MOLM), we use 4M digital PDF
documents from the pdfa-eng-wds dataset', ren-
dered as images at 96 dpi. From these, 1M docu-
ments with their underlying metadata (words and
bounding boxes) are used for self-supervised con-
trastive masked learning. For supervised fine-
tuning, we adopt the ViDoRe training split (Faysse
et al., 2025), which includes 118,695 query-page
pairs from synthetic and public datasets.

For evaluation, we use two benchmarks: (i)
ViDoRe V1 (in-domain) (Faysse et al., 2025),
which covers 10 academic and real-world datasets
(e.g., DocVQA (Mathew et al., 2021b), InfoVQA
(Mathew et al., 2021a), arXivVQA (Li et al., 2024),
and real-world domains like energy, government,
healthcare, and Al), and (ii) ViDoRe V2 (out-of-
domain), comprising documents from 9 diverse
real-world domains such as biomedical, economics,
and ESG. Both benchmarks are multilingual, while
training data is exclusively English.

Modeling COLMATE builds upon the ColPali
model (Faysse et al., 2025), chosen for its faster
runtime. To compare the models efficiency, we
measured forward pass times for image encoding
on a single H100 GPU using a batch size of 4
and 500 images from the DocVQA benchmark.
The average batch times were: ColPali-3B (76 ms)

"https://huggingface.co/datasets/pixparse/pdfa-eng-wds
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ArxivQ  DocQ  InfoQ TabF  TATQ Shift Al Energy Gov. Health Avg.
Self-supervised Models
ColMate-Pali-3B (CL) 58.78  41.19 76.97  69.06 4697 6731  91.65 88.97  88.02 8732  71.62
ColMate-Pali-3B (MaskedCL) (Ours) 67.38  44.03 7781 7137 49.84 6696 9225 91.88  92.75 90.95  74.52
Supervised Models
ColPali-3B 83.03 58.45 85.71  87.44 7036 7738 9743 9540  96.21 9691  84.93
ColPali-3B (Reproduced) 84.55 57.65 86.43  86.65 7131 7640  96.62 94.64  94.84 97.76  84.68
ColMate-Pali-3B (Ours) 83.68 57.52 84.15  87.65 74.06  79.84  98.36 94.15 9534 96.65  85.14

Table 1: nDCG@5 scores of COLMATE and baselines on the ViDoRe V1 (in-domain) benchmark 10 academic and
real-world datasets. COLMATE achieves the highest average performance. In self-supervised settings, MaskedCL

outperforms standard contrastive learning (CL).

(Faysse et al., 2025), ColQwen2.5-3B (188 ms)
(Wang et al., 2024), and ColSmolVLM-256M (100
ms) (Marafioti et al., 2025). ColPali-3B was the
fastest. Notably, ColSmolVLM-256M, despite be-
ing 12x smaller than ColPali-3B, was slower, pri-
marily due to differences in image preprocessing.
ColPali-3B processes images at 448x448 resolu-
tion, while ColSmolVLM-256M uses a 2048x2048
resolution split into 17 crops of 512x512. Given
its superior speed, we selected ColPali-3B for our
COLMATE framework. We initialize our training
from the paligemma-448-base checkpoint.

Hyperparameters For MOLM, we train on the
4M pages from PDFA for 1 epoch, with a learning
rate of 3e-5 and batch size 64 using Adam (Kingma
and Ba, 2017). For MaskedCL, we train on 1M
documents for one epoch with a learning rate of
2e-5 and batch size 256 using paged AdamW (8-
bit). We use LoRA (Hu et al., 2021) with o = 32
and rank r» = 32 for the LLM layers and the pro-
jection layer. For effective masking, we adopt the
SpanBERT masking mechanism (Joshi et al., 2020),
masking contiguous spans sampled from a geomet-
ric distribution with a maximum length of 10 and
probability p = 0.2. To simulate real-world queries
referencing small document sections, we apply an
aggressive 80% masking probability to text. To
avoid trivial text-to-image matching, we also ran-
domly mask 50% of OCR words in the images with
white masks. Finally, in the full supervised finetun-
ing setup, we pre-train COLMATE using MaskedCL
before the full supervised fine-tuning.

For supervised fine-tuning, we follow ColPali
v1.3 settings?, using a learning rate of Se-5, batch
size 256, 1000 warmup steps, and 3 training epochs
of the ViDoRe training set (Faysse et al., 2025).
Finally, we set K = 5 for TopKSim, as it provided
the best performance in preliminary experiments
comparing K € {3,5,10}. Experiments were con-

Zhttps://huggingface.co/vidore/colpali-v1.3

ducted on machines equipped with 8xH100 and
4xH100 GPUs.

5 Evaluation

5.1 Main Results

We present results on ViDoRe V1 (in-domain)
and ViDoRe V2 (out-of-domain) in Tables 1 and
2. COLMATE outperforms the ColPali baseline
on both benchmarks. On ViDoRe V1, ColMate-
Pali-3B achieves an average nDCG@5 of 85.14,
surpassing both the original ColPali-3B (84.93)
and our reproduction (84.68). On ViDoRe V2,
COLMATE reaches 57.61, compared to 54.60 for
ColPali-3B and 54.00 for our reproduction, demon-
strating strong generalization to unseen domains.

To simulate scenarios without image-query pairs,
we evaluate self-supervised Masked Contrastive
Learning (MaskedCL) against standard Contrastive
Learning (CL) without masking. MaskedCL, even
without supervised finetuning, achieves competi-
tive performance—74.52 on ViDoRe V1 and 41.50
on ViDoRe V2—highlighting its effectiveness in
low-resource settings. The performance gap with
supervised finetuning is especially narrow on sub-
sets such as Al, Energy, Gov., and Health, which
represent real-world documents. MaskedCL also
outperforms standard CL by 2.90 and 3.39 on V1
and V2, respectively, making it a strong choice
when training data lacks image-query pairs.

5.2 Ablation Studies

To better understand the individual contributions of
each proposed component of ColMate, we perform
a detailed ablation study using the PaliGemma-3B
model (Beyer et al., 2024). The effectiveness of
each component is measured using the ViDoRe
V1 and ViDoRe V2 benchmarks, and results are
reported using the nDCG @5 metric in Figure 2 and
more detailed numbers on Table 3.
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MIT Bio.

Econ.

Mac.

ESG

AXA

ESG-M

AXA-M

MIT Bio.-M

Econ. Mac-M

ESG Human

Avg.

Self-supervised Models
ColMate-Pali-3B (CL)
ColMate-Pali-3B (MaskedCL) (Ours)

42.18
50.18

47.16
47.21

20.89
24.53

46.64
40.24

31.90
35.36

34.76
36.61

35.68
44.61

38.86
40.22

44.95
54.51

38.11
41.50

Supervised Models
ColPali-3B

ColPali-3B (Reproduced)
ColMate-Pali-3B (Ours)

59.70
60.20
60.99

51.60
54.01
55.99

57.00
52.14
54.15

59.80
54.61
67.01

55.70
53.13
53.44

50.10
45.34
50.61

56.50
58.43
59.31

49.90
49.01
54.14

51.10
59.17
62.82

54.60
54.00
57.61

Table 2: nDCG@5 scores on ViDoRe V2 (out-of-domain) across 9 real-world domains. COLMATE achieves the

best average and demonstrates stronger generalization.

Ablation Setup

20 == ColPali

®TopKSim (K=5)
®MOLM

@self-sup. (ColMate)

84.68 84.75 85.21 85.14

Average nDCG@5 Score

57.70 57.61

ViDoRe V: (In-domain)

ViDoRe V: (Out-of-domain)

Figure 2: Ablation Studies: Impact of COLMATE Com-
ponents on ViDoRe Benchmarks (Average nDCG@5)

TopKSim vs MaxSim We compare our
TopKSim mechanism with the MaxSim baseline
(Khattab and Zaharia, 2020; Faysse et al., 2025)
for multimodal document retrieval. Two ColPali
models are fine-tuned from paligemma-448-base
using identical hyperparameters from Section 4,
one with TopKSim (K=5), the other with MaxSim.

As shown in Figure 2, TopKSim achieves better
generalization on the out-of-domain ViDoRe V2
benchmark (56.41 vs. 54.00) and performs slightly
better on the in-domain ViDoRe V1. The improve-
ment is especially notable on the TabFQuAD sub-
set (see Table 3), which lacks similar examples in
the training set, further highlighting the improved
robustness and generalization offered by TopKSim.

Adding Masked OCR Modeling We assess the
impact of applying Masked OCR Language Mod-
eling (MOLM) before supervised finetuning and
observe consistent performance gains across both
benchmarks. On the out-of-domain ViDoRe V2,
MOLM increases average score from 56.41 to
57.70, supporting our hypothesis that modeling
OCR-masked tokens improves vision-language rep-
resentations for visual documents.

Adding Self-Supervised Finetuning We eval-
uate the impact of applying our self-supervised

Masked Contrastive Learning (MaskedCL) frame-
work before supervised finetuning. As shown in
Figure 2, MaskedCL offers no performance gains
when supervised data is abundant, suggesting its
limited utility in data-rich scenarios. However,
Tables 1 and 2 illustrate that MaskedCL alone
achieves performance comparable to supervised
finetuning across several ViDoRe subsets, high-
lighting its effectiveness in low-resource contexts.

5.3 Experiments with More Powerful
Backbone Models

To examine the scalability of our framework, we
applied COLMATE to a more capable backbone,
Qwen2.5-VL-3B (Wang et al., 2024), following
the same pretraining and fine-tuning procedure
used for ColPali. Table 4 reports performance
on ViDoRe V1 (in-domain) and ViDoRe V2 (out-
of-domain) benchmarks. COLMATE improves
the out-of-domain performance of Qwen2.5-VL-
3B by 0.86 nDCG@5, indicating that the induc-
tive bias introduced by COLMATE has a smaller
effect as backbone models become stronger and
benefit from richer pretraining data. Nevertheless,
the framework delivers larger gains with ColPali,
which is substantially faster (86 ms vs. 188 ms
for ColQwen2.5-VL), translating into tangible ben-
efits in resource-constrained or latency-sensitive
settings.

6 Conclusion

We introduce COLMATE, a multimodal document
retrieval model that addresses key limitations of
existing methods by combining three simple but
effective ideas: masked OCR language modeling
for richer vision-text representations, masked con-
trastive learning for effective self-supervised align-
ment, and TopKSim for robust similarity aggre-
gation during training. COLMATE consistently
improves retrieval performance over existing meth-
ods on both in-domain and out-of-domain ViDoRe
benchmarks, with particularly strong generaliza-
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tion to unseen domains. Our extensive ablation
studies show the individual contribution of each
component, validating our design choices. Our re-
sults highlight COLMATE’s utility for practical
retrieval scenarios, particularly where annotated
image-query pairs are scarce.

As future work, we plan to extend COLMATE
to additional model architectures and evaluate it
on broader multimodal document retrieval bench-
marks.

Limitations

This work applies the COLMATE framework pri-
marily to the PaliGemma model (Beyer et al.,
2024) for computational efficiency. Future work
will extend COLMATE to other models such
as SmolVLM (Marafioti et al., 2025). While
COLMATE provides only modest gains on in-
domain benchmarks (Table 1), it delivers sub-
stantial improvements on out-of-domain tasks (Ta-
ble 2). TopKSim also introduces an additional hy-
perparameter (K') that may require tuning. Lastly,
MaskedCL offers limited benefits when annotated
query-image pairs are abundant, but is highly effec-
tive as a self-supervised method when such data is
unavailable.

Ethical Considerations

We complied with the terms of use and licenses
for the ViDoRe benchmarks and the PaliGemma
model, which were used solely for research puroses
in our work. Our models are not generative; they
encode documents and queries for retrieval tasks.
Therefore, we do not anticipate risks typically asso-
ciated with large language models, such as halluci-
nations or harmful content generation. Still, proper
evaluation is necessary before deploying these mod-
els in real-world scenarios. Al writing tools were
used only to enhance the paper’s writing.
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A Appendices
A.1 Extended and Detailed Results

We present detailed ablation results in Table 3.
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ViDoRe V| (nDCG @5) (In-domain)

Method ArxivQ DocQ InfoQ TabF TATQ Shift Al Energy Gov. Health Avg.
ColPali 84.55 57.65 86.43 86.65 71.31 76.40  96.62 94.64  94.84 97.76 84.68
@ TopKSim (K=5) 83.08 57.40 85.11 90.43 71.02  76.41 97.63 94.66  94.84 96.94  84.75
@ MOLM 83.80 55.98 84.68 88.60 74.79 80.51 98.01 9495 9493 95.89  85.21

@ self-sup. (ColMate) 83.68 57.52 84.15  87.65 7406 7984  98.36 9415  95.34 96.65  85.14

ViDoRe V, (nDCG @5) (Out-of-domain)

Method MIT Bio.  Econ. Mac. ESG AXA ESG-M AXA-M Bio-M  Econ-M  ESG Human Avg.
ColPali (Reproduced) 60.20 54.01  52.14  54.61 53.13 45.34 58.43 49.01 59.17  54.00
@ TopKSim (K=5) 60.53 5446 5587  61.13 55.91 47.75 57.99 52.34 61.71  56.41
@ MOLM 60.55 57.64 5850  54.08 57.84 50.16 58.28 57.00 6522  57.70

@ self-sup. (ColMate) 60.99 5599 5415  67.01 53.44 50.61 59.31 54.14 62.82  57.61

Table 3: Ablation studies showing the impact of the different COLMATE components on the ViDoRe V| and V,
benchmarks (nDCG@)5).

ViDoRe V; (nDCG @5) (In-domain)

Method ArxivQ DocQ InfoQ TabF  TATQ Shift Al Energy Gov. Health Avg.

ColQwen2.5-VL-3B 89.22 63.22 9237  91.12 81.10  87.30  99.63 95.890  96.41 97.89 8941
ColMate-Qwen2.5-VL-3B 90.24 61.10 93.68 91.51 81.88 9024  99.26 9639  96.54 98.13  89.89

ViDoRe V; (nDCG @5) (Out-of-domain)

Method MIT Bio. Econ. Mac. ESG AXA ESG-M AXA-M Bio.-M Econ-M  ESG Human Avg.
ColQwen2.5-VL-3B 63.64 59.78  57.39  60.29 57.38 53.19 61.12 56.52 68.39  59.74
ColMate-Qwen2.5-VL-3B 62.06 59.55 60.06  65.82 60.21 56.39 60.33 52.05 68.94  60.60

Table 4: nDCG @S5 results for applying COLMATE to Qwen2.5-VL-3B.
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