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Abstract

Although large language models (LLMs) have
revolutionized natural language processing ca-
pabilities, their practical implementation as au-
tonomous multi-agent systems (MAS) for in-
dustrial problem-solving encounters persistent
barriers. Conventional MAS architectures are
fundamentally restricted by inflexible, hand-
crafted graph topologies that lack contextual
responsiveness, resulting in diminished effi-
cacy across varied academic and commercial
workloads. To surmount these constraints, we
introduce AMAS, a paradigm-shifting frame-
work that redefines LLM-based MAS through
a novel dynamic graph selector. This compo-
nent autonomously identifies task-specific opti-
mal graph configurations via lightweight LLM
adaptation, eliminating the reliance on mono-
lithic, universally applied structural templates.
Instead, AMAS exploits the intrinsic proper-
ties of individual inputs to intelligently direct
query trajectories through task-optimized agent
pathways. Rigorous validation across question
answering, mathematical deduction, and code
generation benchmarks confirms that AMAS
systematically exceeds state-of-the-art single-
agent and multi-agent approaches across di-
verse LLM architectures. Our investigation es-
tablishes that context-sensitive structural adapt-
ability constitutes a foundational requirement
for high-performance LLM MAS deployments.

1 Introduction

Despite achieving unprecedented success in nat-
ural language processing benchmarks, large lan-
guage models (LLMs) have established SOTA
performance across specialized domains includ-
ing domain-specific question answering, mathe-
matical deduction, safety alignment, and instruc-
tion comprehension (Qin et al., 2023; Zhu et al.,
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2023). However, their transition from sophisti-
cated language processors to autonomous problem-
solving engines remains fraught with unresolved
challenges. Current research primarily focuses
on single-model applications, leaving critical gaps
in operational deployment frameworks for LLM-
driven agent ecosystems. Notably, the momentum
toward LLM-based agent architectures has acceler-
ated dramatically, with both industrial practitioners
and academic researchers increasingly prioritizing
this paradigm shift for scalable problem-solving
architectures.

A vibrant scholarly pursuit has centered on ar-
chitecting LLM-driven agent frameworks, evolv-
ing from foundational GPT-3 (Brown et al., 2020)
through sophisticated few-shot prompting mech-
anisms that harness LLMs’ intrinsic in-context
learning potential. Current single-agent imple-
mentations increasingly deploy structured reason-
ing protocols—such as Chain of Thought (COT)
(Wei et al., 2022), ReAct (Yao et al., 2022), Tree
of Thought (TOT) (Muralidharan and Thomas,
2024), Reflexion (Shinn et al., 2024), and Graph of
Thought (GOT) (Besta et al., 2024)—to elevate tex-
tual reasoning efficacy. To transcend these bound-
aries, LLM-powered multi-agent systems (MAS)
(Zeng et al., 2022; Zhuge et al., 2024; Li et al.,
2023a) have gained traction across industrial and
academic domains. These systems deploy multi-
ple LLM instances with distinct functional roles
(Park et al., 2023), enabling natural language coor-
dination to collectively resolve complex problems.
This distributed intelligence paradigm consistently
surpasses single-agent benchmarks by leveraging
specialized agent expertise and emergent collective
cognition (Minsky, 1988). Nevertheless, prevailing
MAS approaches persistently rely on handcrafted
agent collaboration topologies. GPTSwarm (Zhuge
et al., 2024) represents a pivotal departure by for-
malizing MAS as a parameterized graph, employ-
ing reinforcement learning (RL) to autonomously
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refine structural configurations for optimal task ex-
ecution.

This study introduces the Adaptive Multi-Agent
System (AMAS) architecture to overcome fun-
damental constraints in contemporary methodolo-
gies. Preliminary empirical analysis uncovers pro-
nounced heterogeneity across task-specific sam-
ples, demonstrating that no singular graph topol-
ogy consistently achieves optimal outcomes within
the MAS paradigm. Instead, numerous graph con-
figurations yield performance metrics that closely
approximate the highest-performing variant. This
empirical insight propels a paradigm shift: rather
than enforcing a static graph architecture, we de-
velop a context-aware selector that autonomously
adapts to input characteristics. The AMAS frame-
work harnesses parameter-efficient adaptation pro-
tocols for large language models to construct this
selector, enabling real-time graph selection tailored
to each individual sample without task-specific re-
configuration.

This research establishes a rigorous empirical
validation of the AMAS architecture across hetero-
geneous workloads, encompassing open-domain
question answering, formal mathematical reason-
ing, and program synthesis challenges. Across
all evaluated scenarios—regardless of underlying
LLM architecture—the framework systematically
outperforms both monolithic agents and conven-
tional multi-agent baselines. Robust experimental
evidence confirms the framework’s cross-domain
adaptability and operational robustness. Our key
innovations are articulated as follows:

* We refine graph topology quality through
adaptive integration of actor-critic dynam-
ics within reinforcement learning-driven opti-
mization pipelines.

* The architecture implements a dynamic graph
selection mechanism that autonomously deter-
mines optimal structural configuration from
candidate ensembles upon sample ingestion.

» Extensive empirical validation and mechanis-
tic analysis substantiate AMAS’s superior task
resolution efficacy compared to state-of-the-
art multi-agent paradigms.

2 Related works
2.1 LLM-based agents

Large language models have undergone unprece-
dented advancements, exhibiting exceptional ver-
satility across multifaceted application domains.
Consequently, scholarly and industrial communi-
ties have intensified focus on transforming these
models into autonomous cognitive agents. While
LLM-driven single-agent systems demonstrate no-
table efficacy, the inherent advantages of collec-
tive intelligence remain irrefutable. Substantial
research efforts have been directed toward LLM-
powered multi-agent architectures. Drawing inspi-
ration from the theoretical framework of collective
cognition (Minsky, 1988), NLSOMs (Zhuge et al.,
2023) deploy task-specialized social topologies
within MAS implementations. The open-source
ecosystem has witnessed proliferation of MAS
development frameworks, including CAMEL (Li
et al., 2023a), Agents (Zheng et al., 2024), ChatDev
(Qian et al., 2023), and AutoGen (Wu et al., 2023),
which implement handcrafted role-assignment pro-
tocols for inter-agent coordination. MetaGPT
(Hong et al., 2023) establishes structured opera-
tional frameworks to standardize role definitions
and communication protocols, thereby enhanc-
ing collaborative efficiency. GPTSwarm (Zhuge
et al., 2024) conceptualizes MAS through compos-
ite topological architectures and proposes reinforce-
ment learning-based parameterization for graph
structure refinement. Despite these innovations,
critical limitations persist: (a) automated topologi-
cal optimization remains challenging due to rein-
forcement learning’s inherent instability, and (b)
all contemporary approaches enforce static graph
configurations—whether manually engineered or
RL-optimized—thereby neglecting sample-specific
heterogeneity in task execution.

2.2 Sample dependency in LLMs

This research pioneers the integration of sample-
specific heterogeneity into multi-agent system ar-
chitecture, introducing a query-adaptive graph or-
chestrator that dynamically selects optimal topo-
logical configurations from candidate ensembles
based on input characteristics. The conceptual
foundation draws inspiration from parallel advance-
ments in large language model research: in-context
learning methodologies (Rubin et al., 2021; Li
et al., 2023b) dynamically construct task-specific
exemplars during inference to generate adaptive
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Figure 1: Schematic illustration of our AMAS framework.

Graph A | 02 02 0.1 02 03 04 0.1

GraphD | 00 0.1 02 00 03 0.1 0.1

Sample index
8 9 10 11 12 13 14 15| Avg

01 02 03 02 03 01 0.1 03] 0.208
03 01 01 00 02 01 02 02 02]0.199
00 00 02 02 03 02 05 01 03]0.199
03 02 02 06 02 02 00 0.1])0.192

Table 1: Pilot experiment’s results on Crossword. This table presents the four different graphs’ performances on 15

samples of the test set.

prompts, while input-dependent soft prompt tun-
ing approaches (Zhu et al., 2024; Liu et al., 2022)
synthesize query-conditioned embedding vectors
through parameter-efficient adaptation. AMAS ex-
tends this paradigm by transposing the input-aware
design principle from prompt engineering to struc-
tural optimization, establishing a novel framework
for context-sensitive multi-agent system architec-
tures that fundamentally addresses sample-specific
variation in task execution.

3 AMAS

3.1 Preliminaries on graph optimization

Drawing upon the theoretical foundation of col-
lective cognition (Minsky, 1988; Zhuge et al.,
2023), the GPTSwarm framework (Zhuge et al.,
2024) formalizes agent interconnectivity through a
composite topological architecture G = (N, £). To
elevate multi-agent system efficacy, this approach
further embeds topological attributes within dif-
ferentiable parameters, employing policy gradient
optimization via the REINFORCE algorithm to dy-
namically refine structural configurations for task-
specific performance enhancement.

3.2 A pilot experiments and motivations
To establish the foundation for our AMAS frame-

work, we initiate an exploratory investigation' tar-

"The methodological approach aligns precisely with Sec-
tion 4, utilizing the Qwen2.5 3B language model as the core

geting the Crossword puzzle benchmark (Muralid-
haran and Thomas, 2024). Figure 1 displays the
four most effective architectural designs—labeled
Graph A through D—while Table 1 illustrates their
evaluation outcomes across fifteen test instances.
A complete tabular representation of these compar-
ative results appears in Table 1.

Analysis of the empirical findings uncovers two
pivotal patterns: (i) While Graph A’s architecture
delivers the highest cumulative score in the Cross-
word evaluation, multiple alternative graph config-
urations demonstrate performance metrics that are
statistically comparable to Graph A’s outcomes. (ii)
The assessment data reveals pronounced sample-
specific performance variations, indicating that no
single architectural design maintains consistent
superiority across all test instances. Specifically,
Graph A achieves the highest mean score yet fails
to secure top position in every individual case. Con-
versely, Graph D registers the lowest average per-
formance but never attains the lowest rank in any
single evaluation. This fluctuation is exemplified
by the contrasting performance hierarchies: the ini-
tial test instance ranks architectures as A > B =
C > D, whereas the thirteenth sample exhibits a
completely inverted ordering of C>B =D > A.

These empirical findings demonstrate that while
reinforcement learning facilitates the refinement
of agent architectures, a static graph configuration

LLM component instead of the primary experimental configu-
ration.
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fails to secure consistent superiority across all task
instances. Consequently, the integration of a dy-
namic graph selection mechanism—capable of au-
tonomously evaluating and selecting the most ap-
propriate architecture for each test sample based on
predictive performance analytics—would yield a
substantial performance enhancement for the agen-
tic system.

3.3 Construction of graph selector

Our methodology for developing the graph se-
lector within task 7 operates through a three-phase
framework. Analogous to the reward modeling
component in RLHF (Ouyang et al., 2022), this se-
lector quantifies architectural efficacy by assigning
a normalized performance expectation score within
(0,1) for each candidate graph structure given the
input context. Crucially, whereas RLHF reward
models assess LLM output quality, our selector
evaluates the intrinsic suitability of agent architec-
ture configurations. The implementation pipeline
proceeds as follows:

Generation of Candidate Architectural Config-
urations The parameterized graph undergoes
systematic refinement through optimization over
task 7’s training corpus Diqin, executed accord-
ing to the protocol specified in (Zhuge et al., 2024).
This iterative process produces multiple parameter
O checkpoint iterations, each yielding a distinct ar-
chitectural configuration. Subsequently, we extract
the top K graph structures exhibiting maximal av-
erage performance metrics from these checkpoint-
derived configurations.
Formulating the Training Corpus for the Graph
Selection Module The graph selector’s training
dataset Dy trqin is systematically derived from
Derain via a structured methodology. Each instance
within Dy 4rqin Operates on a dual-element archi-
tecture, featuring a query component x and an out-
come indicator y. The query z follows a standard-
ized template as follows:
Task Introduction:
(a) You are currently acting as the
graph selector for the agent system
that works on the [task_name] task.
(b) The task [task_namel]'s introduction
is as follows: [task_intro].
(c) you will be given an input query,
and a graph structure. Please
evaluate the graph structure's
quality in terms of how it will help

solving the task in the input
prompt .

The input query is:

[input_query].

The graph structure is:
[graph_structure]

In the above template, [task_name] denotes the
the task name, [task_intro] denotes the introduc-
tory text contents for the task, [input_query] de-
notes the input query ¢ of the current sample,
and [graph_structure] denotes the graph’s struc-
ture G. And the label y is the rank index for the
[graph_structure]. Correspondingly, y encodes the
sequential position of [graph_structure] within the
structural hierarchy.

Architecting the Graph Selection Mechanism
The pre-existing LLM framework M serves as the
foundational architecture, augmented via low-rank
adaptation (LoRA) (Hu et al., 2021) to specialize in
graph selection, driven by two critical advantages:
(i) LoRA substantially reduces computational re-
source demands during training while mitigating
reliance on extensive datasets; (ii) LoORA param-
eters integrate seamlessly with the existing LLM
backbone, occupying merely ~0.5% of the back-
bone’s GPU memory footprint. Let {2 denote the
LoRA parameter set. The graph selection mod-
ule integrates LoRA layers atop M, supplemented
by a pooling layer and a linear prediction head.
Formally, with Pooler(-) representing the pooling
operation and LP(-) denoting the prediction head,
the selector’s output is defined as:

§ = LP(Pooler(M(z | ©2))). (1

Here, M processes the input to generate hidden
states H, € Rl=*%m_The Pooler condenses these
states into a contextual vector h, € R%m, while
LP employs a linear transformation followed by a
sigmoid activation to yield normalized scores in
[0, 1].

The training objective aligns the selector’s pre-
dicted rankings with ground-truth performance
metrics. For a test query ¢, K candidate graphs
{G;}E | correspond to distinct agent systems, each
associated with performance score s;. Their rela-
tive ordering is determined by:

r; = Ranking(s; | {s;}/%), )

where Ranking assigns positions 1 (best) to K
(worst) in ascending score order. Ties are resolved
by index priority (e.g., ¢ < j when s; = s;). 2

%For identical scores s; = s 7, the graph with smaller index
i receives higher rank.
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Datasets #train  #dev  #test Type Metrics
Game-of-24 1.0k 0.1k 0.1k Math problem acc
Crossword 80 25 25 Text puzzles acc
~ MMLU 112k 1.4k 1.4k Question Answering  acc
LLM-Eval-P 32k 0.4k 0.4k Question Answering acc
" HumanEval 120 24 20  Code generation  pass@10

Table 2: The statistics of the datasets evaluated in this work.

To instill ranking semantics, we employ the loss:

D

1<i,j <K i#j

with weights m(¢, j) = max (0, [r; — r;|°®) and
scoring term g(4, j) = GeLU((s; — si) - (§; — ¥i))-
This formulation enforces critical constraints.
When s; > s; (implying r; > 7;), m(i,j) = 0
discards the pair. When s; < s; (1; < 19),
m(i, ) > 0 and minimizing £, maximizes §; — ¢;.
Ties (s; = s;) yield m(i,7) - g(i,j) = 0, ren-
dering the pair inactive. The weight m(i, 5) dy-
namically scales loss contribution based on rank
disparity. Adjacent ranks (r; = 2, r; = 1) yield
m(i,j) ~ 0.292. Distant ranks (r; = 4, r; = 1)
yield m(i, j) = 0.5, amplifying optimization pres-
sure. Thus, £, efficiently propagates list-wise rank-
ing cues to the selector, enabling precise graph
selection aligned with empirical performance.

4 Experiments

4.1 Datasets and evaluation metrics

Our evaluation framework encompasses five
rigorously designed assessment benchmarks: (i)
Crossword (Muralidharan and Thomas, 2024), re-
quiring 5x5 puzzle resolution; (ii) Game-of-24
(Muralidharan and Thomas, 2024), demanding
arithmetic composition of four digits to reach 24;
(ii)) MMLU (Hendrycks et al., 2020), a compre-
hensive multiple-choice reasoning benchmark; (iv)
LLM-Eval-P (internal benchmark), engineered to
assess reasoning depth, factual knowledge, and
task generalization across 47 domain-specific chal-
lenges spanning literature, healthcare, security, cod-
ing, and software engineering; (v) HumanEval
(Chen et al., 2021), a code-generation evaluation
suite. All datasets undergo standardized partition-
ing into 8:1:1 train/dev/test splits to support our
AMAS pipeline. Graph selector fine-tuning data
is exclusively derived from the training partitions,
with comprehensive statistical profiles documented
in Table 2.

Task-specific metrics are as follows: (i) Cross-
word employs character-level precision, measur-
ing the proportion of correctly resolved puzzle en-
tries; (ii) Game-of-24 evaluates arithmetic compo-
sition success, quantifying the correctness of de-
rived expressions from four numerical digits; (iii)
MMLU adopts multiple-choice reasoning accuracy,
assessing selection correctness among candidate
options; (iv) LLM-Eval-P utilizes domain-diverse
multiple-choice accuracy to gauge response cor-
rectness across 47 specialized challenge domains;
(v) HumanEval implements the standard pass@10@
metric, calculating the fraction of successful code
executions across ten independent generation trials.

4.2 Baselines

We benchmark AMAS against state-of-the-art
LLM architectures across diverse agent-centric in-
ference paradigms. Monolithic agent approaches
encompass: (i) Input-Output (10), where the LLM
directly synthesizes outputs from prompts; (ii)
Chain-of-Thought (COT) (Wei et al., 2022), im-
plementing stepwise reasoning prior to final re-
sponse generation; (iii) Self-Consistency (Wang
et al., 2022); (iv) Tree-of-Thought (TOT) (Muralid-
haran and Thomas, 2024); (v) Graph-of-Thought
(GOT) (Besta et al., 2024). Collaborative agent
ecosystems include: (i) AutoGPT (Yang et al.,
2023); (ii) AgentVerse (Chen et al., 2023); (iii)
GPTSwarm (Zhuge et al., 2024).

4.3 Experiment Settings

Computational infrastructure  All experiments
were conducted using either NVIDIA A40 GPUs
(equipped with 48GB of memory) or NVIDIA
A100 GPUs (featuring 80GB of memory).

Foundation LLLMs Each agent system in our
study relies on a large language model (LLM) as its
core backbone. Specifically, we employ the follow-
ing models in our evaluations: (a) GPT-3.5-turbo’;
(b) the LLaMA-3 architecture (Dubey et al., 2024),
instantiated in both 8B and 70B parameter variants;

3https://platform.openai.com/docs/models/gpt-3-5-turbo
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and (c) distilled versions of the Deepseek R1 model
(Guo et al., 2025), each with 7B parameters.

Graph optimization configuration Following
the methodology of GPTSwarm, we structure our
agentic system as a composite computational graph.
This graph integrates three key components: a Tree-
of-Thoughts (ToT) agent configured with a depth
of 4 and a branching factor of 2; a Reflection agent
(Shinn et al., 2024) that performs one reflection step
over two iterative passes; and a dedicated output
node. Altogether, this yields a graph comprising
n = 12 nodes. The d potential interconnections
within the graph are governed by a learnable pa-
rameter vector © = [01,6s,...,0,]. We utilize
the REINFORCE algorithm (Williams, 1992). On
each optimization step, two graph structures are
sampled via (Zhuge et al., 2024), and their will ob-
tain rewards on the current batched samples. The
parameters are optimized with the optimizer set to
AdamW, the learning rate set to 1.0e-1, the training
epoch set to 5, and the batch size set to 4.

During optimization, we persist the graph pa-
rameters © at every tenth training step. Each saved
checkpoint is then used to instantiate a concrete
graph structure, which is subsequently evaluated
on the development set. From these, we retain the
top K = 4 highest-performing graphs as candi-
dates for the downstream graph selection module.

Graph selector hyperparameters Our imple-
mentation of the graph selector adopts the follow-
ing settings: (a) the Pooler utilizes last-token pool-
ing—i.e., the representation of the final token in the
input sequence serves as the aggregate embedding
for the entire sequence; (b) a LoRA adapter with
rank 7 = 16 is attached to every linear layer within
the LLM backbone; and (c) for experiments involv-
ing proprietary LLMs, the selector is realized by
fine-tuning the 7B distilled Deepseek model. In
all other cases, the LoORA modules of the selector
are fine-tuned directly on the same LLM backbone
used by the agent. Consequently, when the back-
bone is the Deepseek 7B distilled model, the selec-
tor introduces an additional 40.5 million trainable
parameters—equivalent to just 0.57% of the total
model size. At inference time, the selector assesses
each candidate graph on a per-sample basis and
selects the structure yielding the highest reward to
construct the final agentic pipeline for prediction.

We use the HugginFace Transformers (Wolf
etal., 2020) and PEFT (Mangrulkar et al., 2022) for
implementing the training procedure of the graph

selector. The batch size is set to ensure the opti-
mization steps in one epoch is between 64 to 256,
and the maximum training epoch is set to 10. We
use AdamW as the optimizer with a linear learning
rate decay schedule and 6% of the training steps for
warm-up. The learning rate is set to 1le-4. In every
50 steps, the model is evaluated on the dev set to
calculate dev set perplexity. Patience is set to 10,
that is, if the model does not achieve a lower dev
set perplexity for 10 evaluation runs, the training
stops early. The best checkpoint on the dev set is
used to run predictions on the test set.
Reproducibility protocol To ensure robustness,
every task is executed across five distinct ran-
dom seeds, and we report the median performance
across these runs.

4.4 Main results

We compare AMAS with baseline LLM agentic
approaches, and the experimental results are pre-
sented in Table 3. We present the average latency
(in seconds) in the last column to examine the effi-
ciency of each system. Table 3 reveals that: (a) our
AMAS method outperforms the baseline methods
across all seven tasks. In particular, AMAS out-
performs the previous SOTA MAS baselines like
AgentVerse and GPTSwarm. (b) Despite having
an additional graph selection step, our AMAS’s
latency is comparable to that of GPTSwarm. The
graph selection step requires only one forward pass
on the LLM backbone, which will not significantly
increase latency.

4.5 Ablation studies and further analysis

Results on more LLM backbones While our
primary evaluation focuses on the open-source
LLaMA-3 family, we further assess the generality
of the AMAS framework by extending our experi-
ments to a diverse set of language models: (a) GPT-
3.5-turbo, (b) the distilled 7B variant of Deepseek
R1, and (c) Qwen-3 models of both 8B and 30B
scales (Yang et al., 2025). Performance on the
Crossword and Game-of-24 benchmarks is sum-
marized in Table 4. Due to practical limitations
in integrating LoRA adapters with GPT-3.5-turbo,
we instead train a graph selector by fine-tuning the
LLaMA-3 8B model using LoRA. As shown in
the table, our approach consistently surpasses con-
ventional MAS baselines across these alternative
backbones as well.

Ablation analysis of the AMAS architecture
To rigorously assess the architectural integrity of
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System Crossword Game-of-24 MMLU LLM-Eval-P HumanEval | Latency
Results for LlaMA-3 8B
10 0.165 0.132 0.536 0.365 0.659 1.13
CcoT 0.184 0.217 0.594 0.432 0.701 2.25
Self-consistency 0.205 0.206 0.604 0.445 0.707 2.67
TOT 0.396 0.305 0.615 0.459 0.713 13.5
GOT 0.406 0.289 0.618 0.464 0.708 14.6
~ AutoGPT | 0418 0309 0621 0457 0698 | 324
AgentVerse 0.452 0.326 0.632 0.458 0.715 352
GPTSwarm 0.447 0.343 0.649 0.473 0.728 30.6
" AMAS (ours) | 0485 0377  0.663 0481 0748 | 310
Results for LlaMA-3 70B
TOT 0.647 0.521 0.829 0.564 0.785 145.6
GPTSwarm 0.654 0.548 0.836 0.585 0.798 353.5
"~ AMAS (ours) | 0.671 0563 0847 0597 0812 | 3517

Table 3: The Overall comparison of different agentic systems. The LLM backbone model is L1aMA-3 8B or 72B.
We report the median accuracy over five random seeds. Bold indicate the best results.

Method | Crossword Game-of-24
Results for Deepseek R1 distilled 7B
TOT 0.457 0.368

GPTSwarm 0.479 0.402
 AMAS | 0516 0438
Results for Qwen-3 8B
TOT 0.448 0.462

GPTSwarm 0.464 0.471
 AMAS | 0502 0493
Results for Qwen-3 8B
TOT 0.592 583
GPTSwarm 0.616 0.601
~ AMAS | 0642 0.615
Results for GPT-3.5-turbo
TOT 0.673 0.646
GPTSwarm 0.698 0.674
- AMAS | 0717 0.692

Table 4: Experimental results for four different LLM
backbones.

our AMAS framework, we systematically evaluate
three distinct modifications: (a) AMAS-1, which
employs K = § top-ranked graph candidates; (b)
AMAS-2, which restricts candidate selection to
K = 2 top graphs; (c) AMAS-3, which omits
the weight coefficient m(i, j) from the loss formu-
lation (Equation 3). Comparative results across
Crossword and Game-of-24 benchmarks are doc-
umented in Table 5. Notably, the baseline AMAS
configuration (mirroring Table 3) achieves superior
performance over all alternative implementations.
Specifically: (a) AMAS-1 and AMAS-2 analyses
confirm K = 4 as the optimal candidate thresh-
old—reducing (K = 2) or expanding (K = 8) this
parameter degrades graph selector efficacy. (b) The

Method | Crossword Game-of-24
AMAS 0.483 0.374
“AMAS-1 | 0482 0373
AMAS-2 0.478 0.369
AMAS-3 0.476 0.365

Table 5: The comparison of AMAS’s variants.

AMAS-3 comparison substantiates the loss objec-
tive’s design (Equation 3), where m (3, j) quantifies
item-wise disparity (z vs. 7), thereby sharpening the
model’s sensitivity to ordinal relationships within
the ranking structure.

5 Conclusion

This study introduces AMAS, a novel adap-
tive framework engineered to elevate LLM-driven
multi-agent systems. We commence with an ini-
tial empirical investigation revealing task-specific
sample sensitivity inherent in conventional MAS ar-
chitectures. Subsequently, we engineer a graph se-
lector mechanism that dynamically identifies opti-
mal structural configurations for incoming queries.
This selector is synthesized through parameter-
efficient adaptation of the LLM backbone, leverag-
ing our bespoke loss formulation. Comprehensive
evaluations across question answering, mathemat-
ical reasoning, and code generation benchmarks
affirm that AMAS delivers consistent superiority
over leading single-agent and multi-agent base-
lines, across diverse LLM architectures. Crucially,
AMAS achieves comparable computational effi-
ciency to established approaches, establishing its
viability for large-scale industrial deployment.
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Limitations

While our methodology demonstrates robust ef-
ficacy across diverse benchmarks and pretrained
architectures, we recognize two key constraints: (a)
computational constraints precluded evaluation on
exceptionally large open-source LLMs, including
LlaMA-3 450B and Deepseek R1. (b) The scope
excludes more complex variants within mathemati-
cal reasoning, question answering, and information
extraction domains. Notwithstanding these bound-
aries, the architectural adaptability of AMAS per-
mits seamless integration with alternative backbone
models and task paradigms. Future investigations
will systematically examine the framework’s per-
formance across high-capacity model variants and
challenging task landscapes, thereby validating its
broader applicability beyond current experimental
boundaries.

Ethics Statement

This research establishes a paradigm for enhanc-
ing LLM-driven MAS architectures through opti-
mized downstream performance. The experimental
datasets represent established benchmarks in the lit-
erature, with comprehensive ethical clearance con-
firmed through peer-reviewed validation protocols.
Our methodology was rigorously tested across
LIaMA-3 variants, GPT-3.5-turbo, and Deepseek
R1 distilled architectures. Notably, as with all gen-
erative language models, these systems exhibit in-
herent output unpredictability, occasionally gener-
ating erroneous or biased content. Crucially, this
investigation centers on theoretical framework de-
velopment for MAS methodologies, distinct from
user-facing application deployment. Subsequent
research will comprehensively evaluate the safety
profile of AMAS within LLM operational ecosys-
tems, prioritizing robustness against harmful out-
puts in future iterations.
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