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Abstract

The reliability of Multimodal Large Language
Models (MLLMs) in real-world settings is of-
ten undermined by sensitivity to irrelevant or
distracting visual context, an aspect not cap-
tured by existing evaluation metrics. We in-
troduce the Patch Context Robustness Index
(PCRI), the first systematic and interpretable
score for quantifying MLLM robustness to vari-
ations in visual context granularity, measuring
performance changes between localized image
patches and full-image input.

Applying PCRI to 19 state-of-the-art MLLMs
across 15 vision-language benchmarks, we
find that most leading models remain brittle
to background noise, with only a few, such as
InternVL2-26B and Qwen2VL-72B, demon-
strating consistent robustness across tasks.
PCRI analysis also highlights how different
model architectures handle and integrate visual
context, offering actionable diagnostic insight
for both researchers and practitioners.

PCRI enables rigorous comparison of context
robustness, supporting principled model selec-
tion and guiding the development of future ar-
chitectures and training strategies for robust,
real-world deployment.

1 Introduction

MLLMs have rapidly transformed real-world ap-
plications such as visual question answering (Pat-
tnayak et al., 2024, 2025), e-commerce product
search (Meghwani et al., 2025; Singh, 2023, 2021),
interactive assistants, document understanding, (Pa-
tel et al., 2024, 2025; Agarwal et al., 2025a,c), ac-
cessibility for visually impaired users (Panda et al.,
2025a,b,c), and synthetic data-pipelines (Dua et al.,
2025; Agarwal et al., 2024a,b; Singh, 2022). In
these deployments, models must reliably extract
relevant cues from complex visual scenes, for ex-
ample, correctly identifying a product despite back-
ground clutter or assisting visually impaired users

in noisy environments, to support safety, fairness,
& user experience. However, despite impressive
progress in academic benchmarks, current MLLMs
often fail to generalize when exposed to complex,
noisy, or dynamic visual environments.

Current evaluation protocols typically measure
model performance on static, full-image contexts,
implicitly assuming uniform relevance of all visual
regions or relying on model’s capability to filter
the relevant information to solve a given task. This
assumption rarely holds in practice: real-world im-
ages often contain clutter, occlusions, or irrelevant
backgrounds that can mislead even advanced mod-
els. In contrast, we explicitly evaluate model behav-
ior on both full images and localized image patches
to examine the sensitivity to visual context granu-
larity. Recent studies have documented failures due
to missed local details (Zhang et al., 2024, 2023),
fragmentation from cropping (Zhu et al., 2024; Ma
et al., 2024), and performance drops under visual
perturbations (Qiu et al., 2024). Such failures have
direct implications for real-world reliability, user
trust, and downstream decision making.

Practitioners and system designers need tools
to quantify and compare the context robustness
of MLLMs, defined as the ability of the models
to maintain performance when the visual scene
changes in granularity or distractor content, en-
abling informed model selection, and mitigation of
hidden failure modes. However, to our knowledge,
no standardized metric or score currently exists to
quantify this form of robustness.

In this work, we introduce Patch Context Ro-
bustness Index (PCRI), a novel practical score to
measure the sensitivity of MLLMs to variations in
visual context granularity. PCRI directly quantifies
performance differences when models process lo-
calized image patches versus full-image contexts.
Our contributions are as follows:

* We propose PCRI, the first quantitative score

195

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 195-214
November 4-9, 2025 ©2025 Association for Computational Linguistics


mailto:hitesh.laxmichand.patel@oracle.com

designed specifically to measure the context
robustness of MLLMs under varying visual
granularities.

* We present a structured, patch-based evalua-
tion framework to systematically understand
sensitivity to visual context in MLLMs.

* We present a large-scale study of 19 state-
of-the-art MLLMs on 15 vision-language
datasets, revealing significant and previously
unmeasured context sensitivity.

Our evaluation shows that even leading MLLMs
remain surprisingly brittle to context variation,
with only a few architectures demonstrating robust,
human-like reasoning.

2 Related Work

Robustness Benchmarks for Multimodal Mod-
els. The increasing adoption of MLLMs in real-
world applications has driven extensive research on
their robustness to input variations. Recent works
have constructed challenging benchmarks to probe
model reliability under diverse perturbations (Agar-
wal et al., 2025b). Qiu et al. (2024) (MMRobust-
ness) systematically evaluate MLLMs on distribu-
tion shifts via 17 image and 16 text perturbation
techniques, introducing metrics like MultiModal
Impact (MMI) and Missing Object Rate (MOR).
Similarly, R-Bench (Li et al., 2025) targets real-
world corruptions by modeling the complete imag-
ing pipeline, including in-the-wild and machine-
induced distortions across 33 dimensions, and pro-
poses comprehensive robustness evaluations for 20
MLLMs. Both studies highlight the vulnerability
of MLLMs to common and complex perturbations,
yet focus primarily on distribution shift and abso-
lute/relative performance drops under corruptions.
Task-Specific and Contextual Robustness. Be-
yond generic robustness, certain tasks probe more
nuanced forms of context sensitivity. For exam-
ple, VCR (Zhang et al., 2025) challenges vision-
language models to restore occluded embedded
text, requiring pixel-level reasoning about local and
global context. While such tasks advance the fron-
tier of context-aware modeling, their evaluations
are task-specific and do not yield general-purpose
robustness metrics or score.

Attention Mechanisms and Visual Context in
MLLMs. Numerous studies investigate the failure
modes of attention mechanisms in MLLMSs, reveal-
ing sensitivity to object size, distractors, and spatial

arrangement (Zhang et al., 2024, 2023). Architec-
tural innovations, such as multi-resolution encod-
ing (Ma et al., 2024; Zhu et al., 2024; Thapa et al.,
2024), token pruning (Chen et al., 2024a), and text-
relevant patch selection (Ye et al., 2024) have been
developed to mitigate context distractions, but typ-
ically optimize for efficiency or accuracy without
providing standardized, interpretable measures of
context robustness.

Summary and Our Contribution. In summary,
while recent benchmarks and metrics have signifi-
cantly advanced the evaluation of MLLMs under
distributional shift, corruption, and task-specific
complexity, there remains a critical gap: no prior
work provides a unified, score-driven framework
for quantifying MLLM robustness to visual con-
text granularity across diverse tasks and architec-
tures. PCRI fills this gap, offering a standardized,
interpretable, and broadly applicable score for eval-
uating and comparing the context robustness of
MLLMs, and enabling more principled model se-
lection and deployment in practice.

3 Methodology

Our goal is to systematically evaluate whether
MLLMs can reason robustly over both localized
and global visual contexts, an essential capability
for real-world deployment, where distractors and
irrelevant background are common. Existing evalu-
ation protocols rarely measure this aspect, and ad
hoc approaches (such as object-centric cropping)
introduce biases and are impractical at scale. We
therefore introduce a simple, reproducible patch-
based framework to quantify context robustness,
suitable for diverse models and tasks.

Patch-Based Evaluation Framework. Given an
image, we partition it into n X n non-overlapping,
equally sized patches, with n controlling the gran-
ularity. For each patch, the model is evaluated
independently, isolating its ability to extract infor-
mation from other patches(see Figure 1). A regular
grid ensures unbiased, interpretable, and systematic
analysis, avoiding the pitfalls of object-centric or
saliency-based methods, and enabling direct com-
parison across models and datasets. We evaluate at
three granularities:

* Full-Image Context (n =
receives the entire image.

1): The model

* Moderate Granularity (n = 2): The model
receives each 2 x 2 patch independently.
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Figure 1: PCRI-based evaluation framework. An MLLM processes a query using either the full image (top) or
individual patches (bottom). Predictions are compared against ground truth to compute PCRI, assessing robustness

to context variations in multimodal reasoning.

¢ Fine Granularity (n 3): The model re-
ceives each 3 x 3 patch independently.

Larger n were explored in ablations (Appendix A.1
& A.4.6), with diminishing returns and substan-
tially increased computational cost (n? evaluations
per image).

Patch Context Robustness Index (PCRI).
PCRI quantifies a model’s sensitivity to changes in
visual context granularity. Formally, for a given n:

Pratch
PCRI, =1 — 2= (1)
whole
where:
* Boach,n 18 the maximum performance

achieved (per sample) over all n x n patches.

whole 18 the performance with the full image.

Aggregation policy (max over patches). We ag-
gregate patch scores with a max operator because
PCRI diagnoses whether global context distracts
the model. Patches provide minimal-context views;
contrasting the best local patch with the full image
reveals if access to global context helps or hurts.
If the best patch rivals or exceeds full-image per-
formance, the model is likely relying on spurious
global cues (global context as a distractor); if it lags,
the task or model benefits from global integration.
Averaging over patches would dilute informative
regions with many irrelevant ones and obscure this
distraction signal (see Appendix A.1).

Interpretation. PCRI is a comparative score, ag-
nostic to indiviudal metrics and dataset, that cap-
tures a model’s sensitivity to visual context granu-
larity. Table 1 summarizes the key scenarios.

PCRI Value Interpretation

~0 Model is robust; performs
equally well on full image and
patches.

<0 Global context distracts; model
harmed by irrelevant back-
ground.

>0, <1 Model needs global context to

solve the task; patch input omits
necessary information.

Pynole — 0; model cannot
solve task even on the full im-
age—interpret with caution.

< 0 or unde-
fined

Table 1: Summary of PCRI score interpretation. Each
PCRI range indicates a distinct model behavior with
respect to robustness against visual context.

Validity Domain & Chance. We interpret PCRI
only when the full-image score is meaningfully
above the dataset-specific chance floor. Let C'(d)
denote the chance level for dataset d (e.g., 1/|)| for
balanced |)|-way classification, or the documented
random baseline for retrieval/captioning metrics).
A model-dataset pair (m, d) is considered valid if:

Pwhole(da m) > C(d) + Amim
Apmin = max{d, 2SE}.

Here, SE is the standard error of Pypole, €Sti-
mated via nonparametric bootstrap over evalua-
tion examples, and J is a small absolute margin
on the native scale of the base metric. Unless oth-
erwise stated, we set 6 = 0.01 for [0, 1]-scaled
metrics (i.e., 1.0 percentage point). Model-dataset
pairs (m,d) that fail this gate are labeled near-
chance/unstable; in such cases, practitioners should
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Figure 2: Avg. PCRI across 15 benchmarks for 19 MLLMs at 2 x 2 and 3 x 3 granularities. Lower PCRI values
highlight model succeeds on local patches but fails on the whole image highlighting the sensitivity of the models.

not compute or interpret PCRI and may report only
the underlying task metrics. In our experiments, all
model—dataset pairs satisfy this gate; therefore, we
report and interpret PCRI for all results. Further
details can be found in Appendix A.2.

4 Experiments & Results

We evaluate PCRI on diverse models and datasets
to comprehensively assess MLLM robustness to
visual context granularity.
Benchmarks. We evaluate across multiple bench-
marks by categorizing them into type of tasks:

- Image Captioning: MS-COCO Captions

- Multiple-Choice QA (MCQ): AI2D, BLINK,
MMMU, MMStar, RealWorldQA, ScienceQA

- Yes/No Classification: AMBER, Hallusion-
Bench, MME, POPE

- Visual Question Answering (VQA): ChartQA,
GQA, TextVQA, VizWiz

Models. We benchmark 19 state-of-the-art
MLLMs, across various model family and sizes.

Granularity and Compute. We default to small
grids n € {2,3} (4-9 patches) for the best
insight-per-compute; evaluation cost scales with
n? relative to a single full-image pass. Larger
n tends to fragment coherent evidence and weak-
ens PCRI’s global-context distraction probe (see
Appendix A.1). For consistency & reproducibil-
ity, all evaluations use VLMEvalKit (Duan et al.,
2024). Details of the datasets & models is in Ap-

pendix A.3.

4.1 Results & Discussion

We organize our analysis around core research
questions central to evaluating PCRI’s validity, util-

ity & context robustness of MLLMs. Each subsec-
tion directly addresses one of these questions.

4.1.1 Do MLLMs Favor Localized Patches
over Full Images?

The majority of the 19 benchmarked MLLMs ex-
hibit negative PCRI values (Figure 2), indicating
better performance on localized patches than on
full images. For most models, global visual con-
text introduces noise or distraction that outweighs
its benefits for task performance. This pattern is
especially pronounced in smaller InternVL vari-
ants, NVLM, and Pixtral, which show the lowest
PCRI values, suggesting greater sensitivity to irrel-
evant context as model size or alignment decreases.
Possible contributors to this trend include:

* Visual Distraction: Difficulty in filtering
background reduces accuracy on full images.

* Cross-Modal Attention Misalignment: Sub-
optimal alignment with text prompts leads to
diluted focus in global contexts.

* Attention Overload: Increased tokens in full
images can overwhelm attention mechanisms.

In contrast, models such as InternVL2-26B &
Qwen2VL-72B display near-zero PCRI, reflecting
comparatively higher robustness to context vari-
ation & improved integration of global context.
Overall, while a few models are closing the gap,
most current MLLMs remain sensitive to context.

4.1.2 Does PCRI Align with Human-Like
Contextual Reasoning?

To validate PCRI’s interpretability, we conducted
a human study in which three annotators solved
vision-language tasks across two datasets, using
both individual patches and the full image (see
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Figure 3: Avg. PCRI on MS-COCO Captioning task for different MLLMs at 2 x 2 and 3 x 3 granularities. Lower
PCRI values highlight stronger performance on localized patches versus full-image contexts, notably in smaller

InternVL2.5 models (<26B), NVLM and Pixtral models.
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Figure 4: Avg. PCRI scores for MCQ tasks. Models exhibit moderate sensitivity to visual context granularity, with
larger models (e.g., Qwen2-VL-72B) demonstrating enhanced robustness to global contextual noise, with consistent
improved performance with finer patch granularities (3x3) highlights ongoing benefits of localized visual cues.

Appendix A.4.1 for details). Humans always per-
formed as well or better with the full image; per-
formance never exceeded the patch-only condition.
This robust pattern of context use contrasts with
MLLMs showing negative PCRI, where patch-only
input outperforms the full image: a deviation from
human-like reasoning that signals shortcut exploita-
tion or context brittleness. PCRI thus not only
quantifies robustness, but also highlights departures
from desirable, human-style contextual reasoning.

4.1.3 How does Task-Type modulate Context
Sensitivity?

Captioning Tasks: Captioning (Figure 3) consis-
tently show the strongest negative PCRI values,
notably with InternVL2.5 (up to -0.49 at 2 x 2
and -0.75 at 3 x 3 for 2B). This suggests that im-
age captioning inherently focuses on localized en-
tities rather than global scene understanding, mak-
ing these models particularly susceptible to back-
ground objects and noise.

Multiple-Choice QA (MCQ) Tasks: MCQ

tasks (Figure 4) also exhibit negative PCRI scores,
but with moderate sensitivity compared to caption-
ing. Models such as Qwen2-VL and InternVL per-
form relatively better, supporting prior claims that
MCQ tasks often leverage textual biases or selec-
tive visual attention mechanisms (Agrawal et al.,
2016). However, models like Janus-Pro-7B and
NVLM suffer significantly more, likely due to less
sophisticated visual encoding strategies. Further
details are in Appendix A.4.3.

Yes/No Classification Tasks: Yes/No tasks (Fig-
ure 5) exhibit the mildest PCRI scores, indicating
that binary visual reasoning typically involves sim-
pler or fewer visual cues, reducing the dependency
on full-image context. Nevertheless, notable excep-
tions such as Pixtral-12B (-0.30 at 3 x 3) highlight
significant variability and sensitivity, suggesting
that model-specific factors such as visual encoder
design affecting task robustness more than task
complexity alone. Further details are in Appendix
A.4.4 & Appendix A.4.2 for VQA tasks.
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Figure 5: Avg. PCRI scores for Yes/No tasks across evaluated MLLMs. Most MLLMs show lower context sensitivity
in binary decision-making scenarios compared to captioning tasks, but consistently improved performance with
finer patch granularities (3x3) highlights ongoing benefits of localized visual cues.

4.1.4 Are all Models equally Context
Sensitive?

Model-specific PCRI patterns reveal design trade-

offs and robustness behaviors; see Appendix A.4.5

for details.

InternVL Models: InternVL variants exhibit var-
ied context sensitivity across tasks. Strongly nega-
tive PCRI scores in captioning indicate that these
models excel at fine-grained object recognition, yet
struggle with holistic scene reasoning. Conversely,
InternVL'’s relatively better context robustness on
MCQ and Yes/No tasks likely stems from its dy-
namic resolution mechanisms and hierarchical at-
tention layers, which facilitate effective selective
encoding. Notably, the larger variant (26B) demon-
strates superior resilience, validating the efficacy
of hierarchical attention at larger scales.

Molmo Models: Molmo demonstrates relatively
consistent PCRI values across tasks, highlight-
ing strong robustness due to effective cross-modal
alignment strategies. However, despite stable con-
text robustness, its absolute performance is mod-
erate in tasks demanding detailed visual reason-
ing (MCQ and captioning). This suggests that
Molmo achieves robustness through generalized
visual-textual alignment but at the cost of special-
ization for context-sensitive tasks.

Qwen2-VL Models: Qwen2-VL models show
pronounced negative PCRI trends, particularly at
lower scales, emphasizing their reliance on lo-
calized visual recognition strategies established
through contrastive pre-training methods. The
largest Qwen2-VL (72B) model notably achieves
better robustness, likely benefiting from advanced
multimodal rotary positional embeddings (M-

RoPE) and resolution-adaptive encoding strategies,
enhancing its global context integration capability.

4.1.5 How does image granularity (n = 2, 3)
impact Model Robustness?

Increasing the granularity from 2 x 2 to 3 x 3
consistently amplifies negative PCRI scores across
tasks (Figures 3,4,5), indicating that finer granulari-
ties further improve localized context performance
relative to full-image contexts. Notably, larger
models like 72B & 26B exhibit relatively lower
PCRI magnitude shifts, suggesting that larger-
scale hierarchical attention mechanisms provide
enhanced robustness against visual context shifts.
See Appendix A.4.6 for additional details and Ap-
pendix A.5 for qualitative examples.

4.2 TImplications for Industry and Research

PCRI offers a rigorous, interpretable tool for eval-
uating MLLMs under real-world deployment con-
straints. Its key applications include:

e Model Selection and Qualification: PCRI
provides a standardized criterion to identify
& select models that maintain performance
under variable or noisy visual conditions, sup-
porting safer deployment in high-stakes do-
mains (e.g., content moderation).

* Model Design and Diagnosis: By reveal-
ing context brittleness and patch sensitiv-
ity, PCRI pin points architectural weaknesses
and guides targeted improvements, such as
enhancing hierarchical attention, integrating
retrieval-augmented modules, or optimizing
cross-modal alignment.
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¢ Continuous Monitoring and Auditing: In
production, PCRI enables ongoing tracking of
context robustness as data evolves, facilitating
early detection of emerging vulnerabilities,
crucial for regulatory compliance, user safety,
and long-term reliability.

For practitioners, if PCRI is strongly negative,
further investigation or model retraining is recom-
mended; if near zero, the model can be trusted to
generalize across visual contexts. See Appendix B
for practical interpretation & real-world examples.

5 Conclusion

We introduce the Patch Context Robustness Index
(PCRI), a scalable & interpretable score for sys-
tematically quantifying the sensitivity of MLLMs
to changes in visual context granularity. Our eval-
uation, spanning 19 recent MLLMs & 15 diverse
tasks, provides the first comprehensive study of
context brittleness in the field.

Our analysis reveals that most MLLMs re-
main vulnerable to irrelevant or distracting context,
with negative PCRI scores indicating performance
degradation in the presence of full-scene informa-
tion. In contrast, models such as InternVL2-26B
and Qwen2VL-72B demonstrate superior context
robustness across benchmarks, providing action-
able choices for practitioners facing real-world
noise and clutter. We also find substantial vari-
ation across task types, highlighting where global
or local context is most essential.

PCRI enables direct comparison of model ro-
bustness, supporting both diagnostic evaluation &
production deployment decisions. We demonstrate
that prioritizing models with near-zero PCRI in our
beta rollout led to measurably better user experi-
ence and reliability, even where task-level accuracy
was matched.

By establishing a unified and extensible evalua-
tion framework, our work lays the foundation for
more robust, context-aware model selection and
analysis in multimodal Al. Future directions in-
clude extending PCRI to sequential, video, and
audio domains, enabling further advances in real-
world robustness.

6 Limitations

While PCRI provides a robust, interpretable signal
of context sensitivity in MLLMs, several limita-
tions remain. First, the current analysis is restricted
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to English-language vision-language datasets; ex-
tending PCRI to multilingual and cross-cultural
tasks is an important next step. Second, PCRI
measures robustness at the granularity of patches,
but does not explicitly account for dependencies
across patches or sequential/temporal context, fu-
ture work could address these aspects. Third, our
framework focuses on task-level context sensitivity,
rather than image property variations such as res-
olution or noise; integrating these factors remains
an open challenge.

Finally, while we validate PCRI alignment with
human reasoning across two task types, broader
studies, including more diverse datasets and an-
notator pools, would further strengthen the gen-
eralizability of our findings. We encourage the
community to adopt and extend PCRI as a diagnos-
tic tool for developing and deploying trustworthy,
context-robust multimodal models.
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A Appendix

A.1 Detailed Methodology: PCRI

Let D = {(z, ¢, a)}N | denote a dataset of
N image—query—answer triples, where z(9) is an
image, ¢(%) is the associated query (e.g., question
or prompt), and a( is the ground-truth answer.

Let M (-) be the evaluation metric for the task
(e.g., accuracy, BLEU, F1), computed over D as
per the standard benchmark protocol.

The model’s performance on the dataset using
the full image is:

Pwhole =M ({(x(Z)a q(i)a a(Z)) z]il) . (2)

For each image 2%, let {z(%9) ;il denote its
n X n non-overlapping patches. The patch-based
performance at granularity 7 is:

Prschn = M <{(x(i,j*)’q(i)7a(i)) fL) )

where j* = argmax; s("7) is the index of the
patch with the highest model performance 5(0)
for instance i (with s(»7) computed per the metric
M).

The Patch Context Robustness Index (PCRI)
at granularity n is:

P patch,n

PCRI, =1 — 4)

whole

PCRI thus quantifies the (relative) performance
drop or gain when the model is restricted to its
best-performing local patch versus the full image
context. Because Pynole and Pach,, are computed
with the same metric M over the same dataset,
PCRI is invariant to the metric’s scale and is di-
rectly comparable across tasks and datasets.

Interpretation.

* PCRI,, = 0: Model is robust—global and
local context yield similar performance.

e PCRI,, > 0: Model requires global context;
patch-only input reduces performance.

* PCRI,, < 0: Model is distracted by global
context or benefits from local-only cues.

PCRI is undefined if Pyhoe = 0 for a given
model/task pair, as division by zero is not meaning-
ful. In such cases, the model cannot solve the task
even with full context.

Rationale for Max Aggregation. For each in-
stance, we select the patch j* with the highest
model performance s(»7). This “max” aggrega-
tion captures whether the model can solve the task
using any local patch. This is robust for both dis-
crete and continuous metrics and highlights cases
where a model is brittle to added context or reliant
on specific local evidence. In contrast, mean or
sum aggregation could mask context brittleness by
averaging over patches that may be trivially correct
or uninformative. The max operation thus yields a
clearer, more actionable signal for model selection
and robustness analysis.

Granularity sensitivity and compute. We ab-
late n € {3,4,5} on selected model and tasks
(Table 2). Increasing n (finer granularity) can ex-
pose local solvability but increases evaluation cost
quadratically (n? patch forward passes per image).
For n>3, patches often become too small to cap-
ture meaningful semantics; PCRI’s discriminative
power saturates and may drop because the task be-
comes infeasible under heavy fragmentation. In
practice, n =2 or n=3 provides a strong trade-off
between informativeness and efficiency.

Dataset PCRI,—3 | PCRI,,—4 | PCRI,—5
ChartQA_TEST 0.237 0.300 1.000
AMBER -0.038 -0.030 0.550
BLINK -0.516 -0.558 0.380

Table 2: PCRI values (Molmo-1B) at increasing patch
granularity (n=3, 4, 5) on representative benchmarks.
More negative = stronger global-context distraction
(best patch > full image). Very large positive values
at n=>5 indicate fragmentation-induced unsolvability
rather than new trends, motivating our default of n €

(2,3},

A.2 Chance floors and Validity gate

Chance floors. For each dataset d, we de-
fine C(d) as the task’s random baseline: 1/|)|
for balanced |Y|-way classification; the class-
prior baseline for imbalanced classification; and
the documented random/shuffle baseline for re-
trieval/captioning metrics. When an official base-
line is unavailable, we estimate C'(d) via random-
shuffle following standard protocol.

How to set C'(d). Classification: C(d) = 1/|)|
if balanced; otherwise use the empirical class-prior
baseline. Retrieval: for N candidates and one rele-
vant item, Cre x =~ K /N; if multiple relevants or
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nonstandard pools, use the dataset’s documented
random baseline or Monte Carlo shuffle. Caption-
ing/QA metrics: use the documented random or
shuffle baseline provided by dataset authors.

Uncertainty and gate application. We estimate
SE for Pynole Via nonparametric bootstrap over
evaluation examples (B=1000 by default) and ap-
ply the gate Pyhole > C(d) + max{J, 2 SE} with

0=0.01 on [0, 1]-scaled metrics.

Reporting policy. If a model-dataset pair fails
the gate, do not compute/interpret PCRI; report
only the underlying task metrics and mark PCRI as
N/A. In our experiments, all model—dataset pairs
satisfy the gate; we therefore interpret PCRI for all
results.

A.3 Benchmarks & Models

We evaluate our approach across 15 widely-used
vision-language benchmarks, covering a diverse
range of tasks. These datasets were selected to rep-
resent a balanced mix of localized perception tasks
(e.g. object recognition) and global contextual
reasoning challenges (e.g., complex multi- choice
question answering).

Our selection employs diverse realworld datasets
that inherently contain a wide range of variations
in image resolution, background complexity, and
visual distortions. Consequently, PCRI metric has
been rigorously tested across these naturally oc-
curring variations, providing strong evidence of
its robustness and practical relevance under realis-
tic, heterogeneous visual conditions. Future work
could complement these findings with controlled
ablation studies to isolate the impact of each factor.

* Visual Question Answering (VQA): Bench-
marks such as GQA (Lu et al., 2022),
ChartQA (Masry et al., 2022), TextVQA
(Singh et al., 2019), and VizWiz (Gurari
et al., 2018) are open-ended VQA tasks where
MLLMs must generate responses without re-
stricted answer choices. These benchmarks
assess a model’s ability to infer answers based
on both localized and global scene informa-
tion.

* Multiple-Choice Question Answering
(MCQ): Benchmarks including BLINK (Fu
et al.,, 2024b), RealWorldQA (XAI-Org,
2024), AI2D (Kembhavi et al.,, 2016),
ScienceQA (Lu et al., 2022), and MMStar

(Chen et al., 2024b) provide multiple answer
choices, requiring MLLMs to differentiate
between options and select the most accurate
response. These tasks evaluate multimodal
reasoning and answer disambiguation, offer-
ing insights into whether datasets support
global contextual reasoning.

* Yes/No Questions (Binary Classification):
Datasets such as POPE (Li et al., 2023), Hal-
lusionBench (Guan et al., 2024), AMBER
(Wang et al., 2024a), and MME (Fu et al.,
2024a) focus on binary (yes/no) questions.
AMBER, in particular, tests the ability of the
model to capture fine-grained spatial relation-
ships, making it useful for evaluating whether
a dataset enforces strict spatial comprehen-
sion.

* Image Captioning and Semantic Under-
standing: We include MS-COCO (COCO
Captions) (Chen et al., 2015) to evaluate se-
mantic understanding at the global level. Cap-
tioning tasks assess whether models can gen-
erate accurate textual descriptions based on
an entire image rather than relying on isolated
object-level information.

Models: We benchmark 19 state-of-the-art
MLLMs, including InternVL (Chen et al., 2024d;
Gao et al., 2024; Chen et al., 2024c,e), Janu,
LlaVaOneVision (Li et al., 2024), Molmo (Deitke
et al., 2024), Qwen2-VL (Wang et al., 2024b), Phi-
3 Series (Abdin et al., 2024), Ovis (Lu et al., 2024)
and Pixtral (Agrawal et al., 2024) across various
model sizes.

A.4 Extended Results

This section provides detailed experimental results
to supplement the main paper, including human-
study, model and task-level PCRI breakdowns,
granular ablations, and additional qualitative analy-
ses. These extended results offer further evidence
for the robustness patterns and context sensitivity
described in the main text, supporting both repro-
ducibility and deeper diagnostic insight for practi-
tioners and researchers.

A.4.1 Human Study: Protocol and Production
Validation

Protocol. To assess whether PCRI aligns with hu-
man context reasoning, we conducted a controlled
study on two representative benchmarks: AI2D
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Dataset PCRI Full Img. Perf. Patch Perf. A Perf.
AI2D -0.23 96.7% 96.7% 0%
RealWorldQA  -0.29 98% 96% -2%

Table 3: Human study accuracy (%) in patch vs. full image conditions, compared to model PCRI(InternVL-2.5-1B)
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Figure 6: Avg. PCRI scores across different MLLMs for VQA tasks at patch granularities 2 x 2 and 3 x 3 Positive
PCRI values indicate improved model performance with full-image contexts.

and RealWorldQA. For each, we randomly sam-
pled approximately 20% of the data (AI2D: 300
samples; RealWorldQA: 80 samples). Three anno-
tators (authors, blinded to model outputs and labels)
independently answered each query in two settings:
(1) with all the patches (one at a time), and (2) with
the full image. Annotators strictly followed official
task instructions and provided both answers and
qualitative feedback for each condition.

Findings. Table 3 summarizes results. In all
cases, human accuracy with the full image was
equal to or higher than with any patch: for AI2D,
performance was nearly identical in both settings;
for RealWorldQA, accuracy increased slightly with
the full image (from 96% patch-only to 98%). An-
notators consistently reported higher confidence
and less ambiguity when presented with the full
image, reinforcing the value of global context for
human reasoning.

By contrast, several MLLMs exhibited negative
PCRI on these benchmarks, performing better on
patches than on the full image, behavior never ob-
served in humans. This suggests that such models
are either overfitting to spurious cues in isolated
patches or are distracted by irrelevant global in-
formation, leading to brittle and non-human-like
reasoning. Qualitative annotator feedback further
supports this diagnosis, with patch-only settings de-
scribed as “ambiguous” or “lacking key context.”

Production Deployment and User Feedback.
To validate the practical impact of PCRI in real-
world settings, we used PCRI to guide model selec-
tion for an internal MLLM-powered product during
a closed beta launch (over 300 users, proprietary
dataset). Models with near-zero PCRI were consis-
tently preferred over negative-PCRI models, even
when overall task accuracy was similar. User feed-
back highlighted greater reliability, consistency,
and stability in outputs from models with higher
context understanding, confirming that PCRI is pre-
dictive of real deployment success.

Conclusion. Our results confirm that negative
PCRI is a non-human-like model behavior, while
human reasoning mostly benefits from additional
context. PCRI thus provides a valuable, inter-
pretable signal for practitioners seeking robust,
trustworthy MLLMs for production use.

A.4.2 PCRI on VQA Tasks

Visual Question Answering (VQA) tasks uniquely
require integrating textual queries with visual de-
tails that may span broader contextual information
across an image. Unlike MCQ or captioning tasks,
where localized image patches consistently out-
perform full-image contexts (negative PCRI), our
analysis reveals that VQA tasks exhibit a slight
preference for full-image contexts, as indicated
by uniformly small but positive PCRI scores (Fig-
ure 6).

207



1. Mild Positive PCRI: Preference for Broader
Context Across the models evaluated, PCRI val-
ues for VQA tasks remain modestly positive (typ-
ically between 0.003 and 0.19), signifying slight
but consistent benefits from broader image con-
texts compared to localized patches. This pattern
diverges notably from the strong negative PCRI ob-
served in Captioning and MCQ tasks, underscoring
VQA’s inherent requirement for integrating more
comprehensive visual information and relational
context rather than isolated visual details.

2. Model-specific Variability Significant vari-
ability exists across models.  For instance,
Pixtral-12B (PCRI=0.19 at 3 x 3) and Phi-3-
Vision (PCRI=0.16 at 3 x 3) demonstrate the
strongest preference for broader contexts.In con-
trast, InternVL2.5-2B and molmoE-1B-0924 show
negligible PCRI scores ( 0.01), indicating minimal
differentiation between localized and full-context
settings.

3. Impact of Patch Granularity Increasing
patch granularity from 2 x 2 to 3 x 3 generally
results in moderately higher PCRI scores, indicat-
ing that models slightly prefer broader contexts
(coarser granularity) over highly localized seg-
ments in VQA tasks. This suggests that global
visual cues and contextual relationships become
more salient and beneficial at lower granularities.
However, the magnitude of these improvements re-
mains moderate, implying that current MLLMs are
already relatively effective at integrating visual in-
formation at coarser scales, and finer patches offer
limited incremental advantages.

4. Contrasting VQA with MCQ and Captioning
Tasks Unlike Captioning and MCQ tasks, where
models consistently prefer localized patches (nega-
tive PCRI scores), the VQA task demonstrates an
inherent need for broader visual context integration.
This difference likely arises from the open-ended
nature of VQA tasks, requiring more comprehen-
sive visual reasoning and understanding of inter-
object relationships and semantic context. This
finding aligns with recent insights in the literature
emphasizing the importance of global visual con-
text for effective VQA reasoning (Jiang et al., 2022)

A.4.3 PCRI on MCQ Tasks

Multiple-Choice Question (MCQ) tasks require
models to extract task-relevant information and
choose a correct option to successfully solve the

task. Figure 4 presents the PCRI across different
models for 2 x 2 and 3 x 3 patch-based inputs,
averaged over multiple MCQ datasets.

Across all models, PCRI remains negative, in-
dicating that patch-based inputs consistently out-
perform full-image contexts. This suggests that
global image representations potentially introduce
unnecessary distractions or miss capturing neces-
sary information during image encoding , diluting
attention mechanisms and reducing task-specific
accuracy.

We also observe that models generally perform
better at n = 3 (more localized patches) compared
to n = 2, reinforcing the hypothesis that MLLMs
struggle to process global context effectively. Cer-
tain architectures, such as Molmo-1B, NVLM, and
Janus-Pro, show more significant improvements
in localized patch-based settings, implying that
these models are particularly vulnerable to irrel-
evant background information. Conversely, larger-
scale models like InternVL2.5-26B and Qwen2-
VL-72B exhibit more stable PCRI, suggesting that
increased capacity may improve context handling,
though not entirely eliminate sensitivity to global
context.

A.4.4 PCRI on Yes/No Question Answering
Tasks

Yes/No question-answering tasks present a distinct
challenge for multimodal models, as they often
require binary reasoning over image content. Un-
like open-ended VQA tasks, Y/N datasets tend to
emphasize disambiguation of objects, attributes,
or relationships within an image, making them an
important benchmark for evaluating the impact of
full-image versus localized context processing.

1. Localized Patches Improve Y/N Answering
Across nearly all models, we observe consistently
negative PCRI values, indicating that the mod-
els perform better when using localized patches
rather than full-image input. This suggests that
full-image representations introduce unnecessary
context, leading to increased ambiguity in binary
classification tasks.

2. Patch Size Influences Performance Gains
When comparing 2 x 2 and 3 x 3 patches, the latter
consistently yields lower PCRI values, meaning
greater patch granularity improves performance.
This supports the hypothesis that more focused im-
age regions help models resolve Y/N questions by
minimizing distractions.
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3. Relationship Between Model Scale and Con-
text Handling Larger models, such as Pixtral-
12B, demonstrate a more stable PCRI, suggesting
that scaling helps manage full-image context better.
However, even for high-capacity models, localized
patches still provide a performance boost, indicat-
ing that current attention mechanisms remain sub-
optimal for global reasoning in binary tasks.

These results further emphasize the need for
adaptive attention filtering, where models dynami-
cally adjust the level of contextual information they
consider based on task requirements.

A.4.5 Model Level Analysis

Phi-3 Models: Phi-3 models consistently display
moderate negative PCRI scores across tasks. De-
spite their compact size, Phi-3 architectures lever-
age efficient attention and optimized training strate-
gies, mitigating severe performance degradation
at higher granularities. However, their robustness
still trails behind larger architectures like InternVL-
26B and Qwen2-VL-72B, reflecting inherent ca-
pacity limitations for managing extensive visual
context (Abdin et al., 2024).

Janus-Pro Models: Janus-Pro shows significant
negative PCRI values across all tasks, notably se-
vere in MCQ and captioning. This indicates sub-
stantial sensitivity to global context, attributable to
its dual visual encoder approach, separately opti-
mized for understanding and generation. Although
Janus-Pro excels at specific multimodal generation
tasks, its fragmented encoding strategy negatively
impacts robustness in holistic scene comprehen-
sion, highlighting trade-offs in encoder specializa-
tion (Chen et al., 2025).

Ovis Models: Ovis variants present mixed PCRI
scores, with smaller versions (Llama3.2-3B) heav-
ily context-sensitive, while larger ones (Gemma2-
9B) demonstrate improved robustness. The struc-
tured visual embedding strategy employed by Ovis
provides a clear theoretical advantage for cross-
modal embedding alignment, yet smaller variants
still struggle with overwhelming contextual infor-
mation due to limited embedding capacity. Larger
Ovis models better leverage structured embeddings,
balancing detailed visual perception with enhanced
robustness (Lu et al., 2024).

Pixtral Models: Pixtral-12B exhibits notably
high PCRI sensitivity, particularly in Yes/No and
captioning tasks, suggesting challenges in effec-

tively processing global contexts despite advanced
ROPE-2D encoding strategies. This sensitivity
highlights inherent trade-offs associated with high-
resolution, multi-image reasoning, where detailed
attention enhances local perception at the cost of
global context integration (Agrawal et al., 2024).

A.4.6 Impact of Patch Granularity on PCRI
Across Tasks

To further explore how varying visual granularities
influence context robustness, we analyze the rel-
ative changes in PCRI scores when moving from
2 x 2 to finer-grained 3 x 3 patches across three
primary task types: Multiple-choice QA (MCQ),
Captioning, and Yes/No (Y/N) classification (Fig-
ure 7). This analysis complements the absolute
PCRI evaluations (Figures 4, 3, 5) from our main
results, highlighting important subtleties in the in-
teraction between visual granularity and model per-
formance. Performance across different models
and datasets can be found in Table 5, 6, 7, and 8.

1. Interpreting Relative Drop in PCRI  Figure 7
depicts the percentage drop in PCRI, measuring
the magnitude of performance change when visual
context granularity increases. Importantly, these
relative changes must be interpreted in conjunc-
tion with absolute PCRI values to avoid misleading
conclusions. A higher percentage drop may not
necessarily indicate poor absolute robustness if ini-
tial PCRI magnitudes are small.

2. MCQ Tasks: High Relative Drops with Mod-
erate Absolute Impact MCQ tasks exhibit the
largest average relative PCRI drop (68.24%), sug-
gesting that further granularity greatly enhances
the advantage of localized patches over full im-
ages. For instance, InternVL2.5-26B shows an
extreme relative drop (119.6%), yet its absolute
PCRI remains relatively moderate (—0.036 at 2 x 2
to —0.079 at 3 x 3). Similarly, Qwen2-VL-72B-
Instruct displays a 99.1% relative drop but main-
tains low absolute PCRI (—0.013 to —0.027). This
highlights that hierarchical models exhibit substan-
tial robustness to image and context granularity,
with a slight improvement in performance on MCQ
tasks as granularity increases.

3. Captioning Tasks: Moderate Relative Drops
with Significant Absolute PCRI Captioning
tasks have a smaller average relative PCRI drop
(34.95%) compared to MCQ, but their absolute
PCRI magnitudes are notably higher. For example,
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Figure 7: Percentage change in PCRI from 2 x 2 to 3 x 3 patches across MCQ, Caption, and Y/N datasets. A
higher drop in PCRI suggests greater sensitivity to patch granularity, while a smaller drop indicates better stability

in handling full-image contexts.

InternVL2.5-2B experiences a moderate relative
change (53.4%) but displays significant absolute
PCRI values (—0.492 at 2 x 2 to —0.755 at 3 x 3).
Thus, captioning tasks consistently emphasize lo-
calized context, as previously noted, and even mod-
est increases in granularity substantially amplify
models’ preference for localized patches, due to
inherent task characteristics.

4. Yes/No Tasks: Balanced Relative and Ab-
solute PCRI Values Yes/No classification tasks
demonstrate intermediate behavior, with an aver-
age relative PCRI drop of 52.16% and moderate
absolute PCRI magnitudes (typically below —0.15
at 3 x 3). Notably, some models like Phi-3-Vision
(120.6% relative drop) and Qwen2-VL-72B (92.7%
relative drop) exhibit significant sensitivity to gran-
ularity, indicating that while binary classification
generally relies on simpler visual cues, specific
architectural choices significantly influence robust-
ness.

5. Architectural Implications and Context Sen-
sitivity The variability observed underscores the
complexity of interpreting PCRI in context. Mod-
els with sophisticated hierarchical attention (e.g.,
InternVL and Qwen2-VL larger models) tend to
achieve strong absolute robustness, despite higher
relative sensitivity to granularity. Conversely,
smaller or simpler architectures experience pro-
nounced absolute and relative degradation, high-

lighting critical vulnerabilities in their visual en-
coding and attention mechanisms.

A.5 Illustrative Examples of Context
Granularity

To qualitatively illustrate how PCRI captures model
sensitivity to context, Table 4 presents examples
from RealWorldQA. For each question, we show
the original image, its 2 X 2 and 3 x 3 patch splits,
and highlight each patch: green boundaries indi-
cate that the model answered correctly using only
that patch, while red boundaries indicate incorrect
predictions at that context level.
These examples highlight several key points:

* Varied context requirements: Some ques-
tions can be answered correctly from a single
local patch (e.g., detection of a stop sign),
while others require more global context or in-
tegration across regions (e.g., counting pedes-
trians).

* PCRI as a diagnostic tool: By analyzing
which patches yield correct versus incorrect
predictions, practitioners can diagnose local
and global reasoning capabilities, as well as
identify where context brittleness emerges.

* Practical implications: Such analysis in-
forms targeted dataset curation, model de-
velopment, and real-world deployment, by
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Question Original

2x2 Split

3x3 Split Answerable with

Is the crosswalk
sign active? Please
answer  directly
with a single word
or number.

Full image, 2x2
split (row 1, column
1), 3x3 split (row 2,
column 1)

Is there a stop
sign in this image?
Please answer di-
rectly with a single

2x2 split (row 1,
column 2), 3x3
split (row 2, col-

rectly with a single
word or number.

umn 2
word or number. )
How many pedes-

trians are there?

Please answer di- Full image

Table 4: Illustrative examples from the RealWorldQA dataset demonstrating how context granularity (full image vs.
2x2 and 3x3 splits) affects answerability and model accuracy. Green boundaries indicate correct answers at that
patch/context; Red boundaries indicate incorrect predictions.

matching model selection and training to the
true context requirements of end-user tasks.

Overall, these qualitative examples reinforce the
value of PCRI as a fine-grained, interpretable mea-
sure of context robustness in vision-language mod-
els.

B Practical Implications and Usage Guide

The Patch Context Robustness Index (PCRI) offers
a concrete, actionable tool for practitioners design-
ing, auditing, and maintaining multimodal models
for real-world applications. PCRI can be integrated
throughout the MLLM lifecycle to:

* Benchmark Model Robustness: Rank can-
didate models on context sensitivity before
deployment, ensuring chosen models remain
reliable in environments with background clut-
ter, occlusions, or incomplete views.

¢ Monitor Deployed Systems: Track PCRI
over time to detect emerging vulnerabilities
as data distributions shift, e.g., in dynamic
environments or after retraining.

* Auditing and Debugging: Use PCRI to iden-
tify tasks or datasets where a model is brittle
(negative or high PCRI), guiding further data
collection or model refinement.

¢ Compare Training Strategies: Evaluate the
effect of architectural choices or pretraining
schemes on context robustness, providing a
rigorous basis for model design.

B.1 Interpretation Guide

PCRI values provide actionable signals:

* PCRI =~ 0: Model is robust; context granu-
larity does not affect performance. Suitable
for deployment in unpredictable visual condi-
tions.

* PCRI > 0: Model requires global context
(e.g., scene-level tasks); patch-only input in-
sufficient.

* PCRI < 0: Model exploits local cues but fails
globally, indicative of shortcut or brittle be-
havior; not human-like and poses deployment
risk.

* Undefined/large values: Denominator is
too small or zero; metric unreliable for that
task/model combination.

Best practices: Use PCRI with other robustness
metrics. Investigate negative PCRI to diagnose
spurious correlations. Monitor PCRI regularly in
production as model and data evolve.

B.2 Use-Cases

PCRI can be integrated at multiple stages of Al
product development, deployment, and mainte-
nance, offering value for robustness, reliability, and
transparency in diverse settings:

* Retail Product Search and E-Commerce:
Cluttered, dynamic shelves and varied camera
angles can introduce substantial background
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noise and distractors. PCRI enables teams to
benchmark and select models that sustain high
retrieval or classification accuracy despite ir-
relevant objects, reducing false positives and
improving user trust in product recommenda-
tions, search and survellaince.

Assistive Technology for Accessibility: For
screen readers, object recognizers, and naviga-
tion aids used by visually impaired individu-
als, input images are often cropped, occluded,
over-zoomed or partially visible. PCRI en-
sures selected models are robust in such sce-
narios, decreasing risk of missed cues or mis-
leading outputs, and supporting safer user ex-
periences in everyday environments.

Autonomous Vehicles and Robotics: Chang-
ing backgrounds (construction, seasonal fo-
liage, weather conditions, or dynamic obsta-
cles) can degrade MLLM performance. By
tracking PCRI over time, operators can iden-
tify when models become brittle to new en-
vironmental context, triggering targeted data
augmentation, model retraining, or human-in-
the-loop overrides before safety-critical fail-
ures.

Industrial Inspection and Quality Control:
Automated inspection systems (e.g., for manu-
facturing defects) must distinguish true faults
from distracting background patterns or par-
tial occlusions. PCRI supports the benchmark-
ing of new models for robustness against such
nuisance variation, guiding dataset augmenta-
tion and QA pipelines.

Content Moderation and Safety: Social me-
dia and online platforms face adversarial at-
tempts to evade detection via occlusion, crop-
ping, or clutter. PCRI can flag models that are
sensitive to such manipulations, helping de-
sign systems that maintain detection accuracy
in the presence of adversarial context modifi-
cation.

Medical Imaging and Diagnostics: Context
brittleness in radiology or pathology images
can lead to missed findings or false alarms
due to artifacts, cropping, or scanner noise.
PCRI helps validate models on edge cases
where only local detail is diagnostic, support-
ing higher reliability for clinical deployment
and regulatory clearance.

* Continuous Model Monitoring and Drift
Detection: In production, real-world data dis-
tributions evolve. Integrating PCRI into moni-
toring dashboards enables early detection of
performance drift due to novel backgrounds or
scene elements, supporting proactive retrain-
ing and minimizing negative user impact.

Model Regression Testing and Compliance
Audits: PCRI offers a standardized, quanti-
tative metric for comparing successive model
versions on context robustness, providing a
clear “go/no-go” signal for deployment. In-
cluding PCRI in model cards or audit logs
supports regulatory compliance and transpar-
ent documentation for stakeholders.

Benchmark and Dataset Curation: PCRI
can highlight underrepresented context chal-
lenges in existing benchmarks. Dataset de-
signers can use PCRI analysis to guide new
data collection—adding samples with clut-
tered, ambiguous, or challenging backgrounds
to improve model generalization.

Internal Model Selection and Beta Test-
ing: As shown in our production beta launch
(see Section A.4.1), models with higher (near-
zero) PCRI delivered improved user feedback
and reliability, even when overall accuracy
was matched, highlighting PCRI’s value for
practitioner-facing decision-making.

B.3 Limitations and Caveats
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* Small denominators: PCRI is unstable or
undefined if few images are correct globally.
Exclude such tasks or use bootstrapped inter-
vals.

* Patch granularity: Excessively large n re-
sults in tiny, meaningless patches; use n = 2
orn = 3.

* Metric agnosticism: PCRI can use any
base metric (accuracy, F1, etc.) as long as
patch/whole scores are defined.

* Independence: PCRI ignores spatial depen-
dencies between patches; future work may
address this.



Model AI2D BLINK MMMU MMStar RealWorldQA ScienceQA
PCRI,,—2 PCRI,,—3 PCRI,,=2 PCRI,,—3 PCRI,,—2 PCRI,,—3 PCRI,,—2 PCRI,,—3 PCRI,,=2 PCRI,,—3 PCRI,,=2 PCRI,,—3
InternVL2_5-1B -0.17 -0.23 -0.05 -0.23 -0.21 -0.04 -0.22 -0.29 -0.05 -0.29 -0.31 -0.03
InternVL2_5-26B -0.05 -0.03 -0.03 -0.09 -0.07 -0.06 -0.07 -0.16 -0.03 -0.13 -0.13 -0.05
InternVL2_5-2B -0.09 -0.38 -0.01 -0.11 -0.20 -0.04 -0.13 -0.45 0.01 -0.23 -0.28 -0.02
InternVL2_5-4B -0.08 -0.15 -0.04 -0.11 -0.17 -0.07 -0.10 -0.25 -0.04 -0.20 -0.25 -0.06
InternVL2_5-8B -0.05 -0.01 -0.03 -0.09 -0.16 -0.07 -0.08 -0.10 -0.03 -0.17 -0.18 0.05
Janus-Pro-7B -0.12 -0.50 -0.02 -0.19 -0.24 -0.01 -0.19 -0.70 0.02 -0.34 -0.62 -0.07
NVLM -0.16 -0.47 -0.08 -0.13 -0.17 -0.05 -0.22 -0.70 -0.15 -0.24 -0.29 -0.10
Ovisl.6-Gemma2-9B -0.04 -0.20 -0.02 -0.04 -0.12 -0.04 -0.08 -0.33 -0.08 -0.15 -0.18 -0.01
Ovisl.6-Llama3.2-3B | -0.13 -0.45 -0.10 0.23 0.17 0.04 0.17 -0.70 -0.14 -0.32 0.24 0.07
Phi-3-Vision -0.09 -0.24 -0.08 -0.24 -0.26 -0.04 -0.12 -0.35 -0.11 -0.33 -0.33 0.02
Phi-3.5-Vision -0.10 -0.04 -0.06 -0.27 -0.31 0.02 -0.13 -0.10 -0.09 -0.37 -0.45 -0.01
Pixtral-12B -0.18 -0.12 -0.12 -0.17 -0.14 -0.13 -0.27 -0.37 -0.28 -0.38 -0.23 -0.17
Qwen2-VL-2B-Instruct | -0.11 -0.20 -0.04 -0.26 -0.17 -0.07 -0.16 -0.37 -0.04 -0.39 -0.27 -0.12
molmo-72B-0924 -0.12 031 0.02 -0.03 -0.09 0.02 -0.16 0.43 -0.07 0.11 0.17 0.12
molmo-7B-D-0924 -0.12 -0.33 -0.07 -0.13 -0.10 0.00 -0.15 -0.41 -0.12 -0.23 -0.20 -0.03
molmo-7B-0-0924 -0.13 027 -0.08 0.18 0.11 0.03 0.17 -0.40 -0.12 -0.29 -0.20 0.04
molmoE-1B-0924 -0.22 -0.38 -0.17 -0.30 -0.22 -0.04 -0.32 -0.52 -0.27 -0.46 -0.31 -0.08
Table 5: PCRI MCQ scores for different models across datasets.
Model AMBER HallusionBench MME POPE
PCRI,—y :PCRI,_3 |PCRL,_, {PCRI,—3 |PCRI,_y :PCRI,_3 |PCRL,_ i PCRI,_3
InternVL2_5-1B -0.01 -0.27 -0.06 -0.05 -0.03 -0.35 -0.10 -0.06
InternVL2_5-26B -0.01 -0.10 -0.02 -0.06 -0.03 -0.15 -0.04 -0.07
InternVL2_5-2B -0.06 -0.22 -0.05 -0.05 0.04 -0.27 -0.08 -0.06
InternVL2_5-4B -0.01 -0.17 -0.05 -0.05 -0.03 -0.26 -0.06 -0.07
InternVL2_5-8B -0.02 -0.16 -0.03 -0.05 -0.04 -0.22 -0.05 -0.05
Janus-Pro-7B -0.01 -0.22 -0.05 -0.05 0.00 -0.28 -0.07 -0.06
NVLM -0.02 -0.27 -0.07 -0.04 -0.04 -0.49 -0.09 -0.05
Ovis1.6-Gemma2-9B -0.03 -0.19 -0.08 -0.05 -0.05 -0.26 -0.12 -0.06
Ovisl.6-Llama3.2-3B -0.04 -0.29 -0.10 -0.07 -0.06 -0.37 -0.13 -0.08
Phi-3-Vision -0.03 -0.09 -0.09 -0.05 -0.01 -0.16 -0.20 -0.06
Phi-3.5-Vision -0.04 -0.14 -0.11 -0.08 0.02 -0.22 -0.14 -0.09
Pixtral-12B -0.17 -0.36 -0.06 -0.18 -0.21 -0.65 -0.09 -0.26
Qwen2-VL-2B-Instruct | -0.07 -0.22 -0.11 -0.06 -0.02 -0.35 -0.12 -0.07
Qwen2-VL-72B-Instruct | -0.01 -0.10 -0.03 -0.05 -0.04 -0.22 -0.05 -0.07
Qwen2-VL-7B-Instruct | -0.02 -0.19 -0.06 -0.05 -0.05 -0.27 -0.09 -0.06
molmo-72B-0924 -0.04 -0.23 -0.06 -0.05 -0.06 -0.35 -0.11 -0.06
molmo-7B-D-0924 -0.02 -0.20 -0.12 -0.06 -0.04 -0.33 -0.14 -0.06
molmo-7B-0-0924 -0.04 -0.26 -0.11 -0.05 -0.05 -0.34 -0.10 -0.06
molmoE-1B-0924 -0.02 -0.22 -0.13 -0.04 -0.04 -0.35 -0.17 -0.05
Table 6: PCRI YN scores for different models across additional datasets.
Model ChartQA GQA TestDev Balanced TextVQA VAL VizWiz
PCRI,,—; PCRI,—3 | PCRI,_ :PCRI,—3 |PCRI,—; :PCRI,—3 |PCRI,_ : PCRIL,_3
InternVL2_5-1B 0.202 -0.207 0.063 -0.099 0.190 -0.266 0.112 -0.122
InternVL2_5-26B 0.264 -0.159 0.080 -0.115 0.266 -0.215 0.121 -0.149
InternVL2_5-2B 0.260 -0.210 0.078 -0.143 0.263 -0.276 0.128 -0.175
InternVL2_5-4B 0.286 -0.175 0.086 -0.077 0.257 -0.221 0.123 -0.083
InternVL2_5-8B 0.302 -0.142 0.076 -0.116 0.282 -0.179 0.127 -0.103
Janus-Pro-7B -0.035 0.115 -0.095 -1.231 -0.173 0.320 -0.052 2231
NVLM 0.193 -0.164 0.062 -0.242 0.169 -0.223 0.108 -0.248
Ovisl.6-Gemma2-9B 0.251 -0.262 0.090 0.131 0.189 -0.322 0.155 0.211
Ovisl.6-Llama3.2-3B 0.166 -0.251 0.070 1.000 0.105 -0.333 0.135 1.000
Phi-3-Vision 0.198 -0.160 0.070 -0.545 0.145 -0.212 0.107 -1.273
Phi-3.5-Vision 0.080 -0.190 -0.025 0.265 0.026 -0.259 -0.008 0.184
Pixtral-12B 0.228 -0.212 0.102 0.626 0.178 -0.258 0.153 0.667
Qwen2-VL-2B-Instruct | 0.243 -0.189 0.075 -0.030 0.190 -0.265 0.119 0.006
Qwen2-VL-72B-Instruct | 0.231 -0.137 0.095 -0.059 0.226 -0.179 0.145 -0.048
Qwen2-VL-7B-Instruct | 0.288 -0.162 0.099 -0.075 0.257 -0.217 0.152 -0.076
molmo-72B-0924 0.217 -0.199 0.111 -0.020 0.167 -0.255 0.156 0.010
molmo-7B-D-0924 0.211 -0.229 0.113 -0.036 0.163 -0.283 0.145 -0.020
molmo-7B-0-0924 0.199 -0.224 0.097 -0.036 0.139 -0.296 0.136 -0.016
molmoE-1B-0924 0.198 -0.235 0.093 -0.083 0.137 -0.310 0.136 -0.092

Table 7: PCRI VQA scores for different models across additional datasets.

213




Model COCO VAL
PCRI,,—» PCRI,,_3

InternVL2_5-1B -0.2429 -0.3047
InternVL2_5-26B -0.4921 -0.7547
InternVL2_5-2B -0.1009 -0.1285
InternVL2_5-4B -0.2773 -0.4005
InternVL2_5-8B -0.3941 -0.5588
Janus-Pro-7B -0.1302 -0.1613
NVLM -0.1665 -0.3097
Ovisl.6-Gemma2-9B -0.1447 -0.1042
Ovisl.6-Llama3.2-3B -0.0932 -0.0646
Qwen2-VL-2B-Instruct | -0.0231 -0.0079
Qwen2-VL-72B-Instruct | -0.0354 0.0082
Qwen2-VL-7B-Instruct | -0.0492 -0.0598
molmo-72B-0924 -0.1286 -0.1354
molmo-7B-D-0924 -0.1714 -0.1599
molmo-7B-0-0924 -0.0534 -0.0570
molmoE-1B-0924 -0.1304 -0.1357

Table 8: PCRI Caption scores for different models on COCO dataset.
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