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Abstract

Large language models (LLMs) have demon-
strated impressive capabilities across diverse
tasks, but they remain susceptible to halluci-
nations—generating content that appears plau-
sible but contains factual inaccuracies. We
present FINCH-ZK, a black-box framework that
leverages FINe-grained Cross-model consis-
tency to detect and mitigate Hallucinations in
LLM outputs without requiring external knowl-
edge sources. FINCH-ZK introduces two key in-
novations: 1) a cross-model consistency check-
ing strategy that reveals fine-grained inaccu-
racies by comparing responses generated by
diverse models from semantically-equivalent
prompts, and 2) a targeted mitigation technique
that applies precise corrections to problem-
atic segments while preserving accurate con-
tent. Experiments on the FELM dataset show
FINCH-ZK improves hallucination detection
F1 scores by 6-39% compared to existing ap-
proaches. For mitigation, FINCH-ZK achieves
up to 9 absolute percentage points improvement
in answer accuracy on the GPQA-diamond
dataset when applied to state-of-the-art mod-
els like Llama 4 Maverick and Claude 4 Son-
net. Extensive evaluation on multiple datasets
demonstrates that FINCH-ZK provides a practi-
cal, deployment-ready safeguard for enhancing
factual reliability in production LLM systems.

1 Introduction

With the rapid deployment of large language mod-
els (LLMs) across diverse applications, ensuring
factual accuracy and reliability has become in-
creasingly critical for enterprise systems. LLMs
frequently generate plausible-sounding but factu-
ally incorrect information—a phenomenon known
as hallucination—posing significant risks in high-
stakes domains.

Existing black-box hallucination management
techniques typically address either detection or mit-

*Equal contributions

igation, but seldom integrate both. Black-box de-
tection systems in the absence of external knowl-
edge struggle with single-LLM biases, and coarse
outputs lacking interpretability, while mitigation
approaches similarly over-reformulate, reuse bi-
ased models, lack integrated detection-correction
pipelines, and offer little transparency (detailed re-
view in §2.1).

Our objective is to develop a practical LLM hal-
lucination management system that integrates de-
tection and targeted mitigation without external
knowledge requirements. In this paper, we intro-
duce FINCH-ZK, which integrates techniques like
consistency checking (Wang et al., 2023; Manakul
et al., 2023) with a novel multi-stage mitigation
approach that precisely corrects only problematic
segments while preserving accurate content and
embodying diverse reasoning patterns across model
families. Our key contributions include:

• We introduce FINCH-ZK, an integrated black-
box framework that combines existing detection
techniques with a novel multi-stage mitigation
process for targeted hallucination correction, ad-
dressing a critical gap between detection and mit-
igation in existing LLM safeguards.

• We demonstrate how leveraging prompting vari-
ations (adding dynamic semantic-preserving al-
terations to the input prompt) and cross-model
consistency checking (comparing outputs across
different model architectures) provide more ro-
bust detection than single-model approaches, im-
proving detection F1 scores by 6-39% on the
FELM dataset (Zhao et al., 2023) compared to
state-of-the-art methods.

• We present an interpretable multi-stage mitiga-
tion pipeline that applies targeted corrections
only to problematic segments identified through
fine-grained analysis while maintaining coher-
ence and completeness through cross-model rea-
soning feedback, achieving up to 9 absolute
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percentage points improvement in answer accu-
racy on the GPQA-diamond dataset (Rein et al.,
2024).

• We provide comprehensive empirical evidence
showing that the integration of diverse sampling
strategies with targeted correction significantly
outperforms existing approaches in the zero-
knowledge setting,1 with quantitative ablation
studies identifying the relative contribution of
each system component.
The framework is designed for practical deploy-

ment in production environments, with efficient
multi-threaded processing, comprehensive logging
support, modular architecture supporting various
LLMs, and rich user feedback.

2 Methodology

2.1 Background and Related Works

Following the taxonomy of (Huang et al., 2025), we
categorize hallucinations into: 1) knowledge errors–
factually incorrect information, 2) reasoning errors–
flawed logical inference, 3) irrelevant content–off-
topic responses, and 4) instruction-following fail-
ures. FINCH-ZK primarily targets types 1-2, which
pose the highest risk in enterprise applications.

Existing black-box hallucination management
approaches fall into two categories. For detec-
tion, techniques include: a) external knowledge-
based approaches like RAG (Lewis et al., 2020)
that rely on data sources for fact-checking, and
b) internal consistency methods like SelfCheck-
GPT (Manakul et al., 2023) that analyze variations
across model outputs. For mitigation, common
techniques include self-correction through iterative
refinement (Wang et al., 2023), chain-of-thought
reasoning (Wei et al., 2023), and majority vot-
ing (Lightman et al., 2023).

Detection systems face three primary limita-
tions: 1) RAG-based methods require comprehen-
sive knowledge bases often unavailable for spe-
cialized domains or inaccessible due to privacy
concerns; 2) zero-knowledge consistency-based ap-
proaches typically rely on a single LLM architec-
ture, making them prone to high-certainty halluci-
nations due to missing diverse reasoning patterns;
and 3) most systems operate at coarse granular-
ity, lacking fine-grained analysis and interpretable
explanations for flagged content.

1Zero-knowledge refers to requiring no external knowl-
edge sources (e.g., databases, search APIs), not cryptographic
zero-knowledge proofs.

Mitigation approaches suffer from complemen-
tary shortcomings: 1) most systems attempt whole-
sale reformulation rather than targeted correction,
often modifying accurate content while fixing er-
rors; 2) they frequently rely on the same model
that produced the hallucination to correct it, per-
petuating biases and reasoning patterns; 3) many
approaches lack integration between detection and
correction mechanisms, resulting in inefficient
pipelines; and 4) few systems provide transparency
into why content was flagged and how corrections
were determined.

2.2 Proposed: FINCH-ZK

To address the above limitations and provide an
integrated workflow for hallucination management,
we propose FINCH-ZK, a framework for FINe-
grained Cross-model consistency for Hallucination
detect and mitigate with Zero Knowledge. FINCH-
ZK addresses key limitations in existing approaches
through two primary innovations: 1) a cross-model
consistency checking strategy that leverages di-
verse model architectures and prompt formula-
tions to reveal fine-grained inaccuracies not de-
tectable through single-model analysis, and 2) a
targeted mitigation pipeline that applies precise cor-
rections to identified problematic segments while
preserving accurate content, avoiding the whole-
sale response reformulation typical of existing ap-
proaches.

Figure 1 presents an overview of FINCH-ZK.
Given a prompt p, a target LLM T that gener-
ates response rT , a set of sampler models M =
{m1,m2, . . . ,m|M |}, a judge model J , and an im-
prover model I , FINCH-ZK performs hallucination
detection and mitigation in three stages:
• Generate diverse samples from different sampler

models
• Detect fine-grained inaccuracies in the input re-

sponse using generated samples
• Perform systematic response improvement using

detected inaccuracies and generated samples.

2.3 Cross-model Sample Generation
As the first component, FINCH-ZK generates di-
verse response samples through prompt variations
and multi-model sampling to expose hallucinations
that may be consistent within a single model but in-
consistent across different architectures or prompt
formulations.

The system applies a set of variations V =
{v1, v2, . . . , v|V |} to generate prompt variants
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Figure 1: Overview of FINCH-ZK

{v1(p), v2(p), . . . , v|V |(p)}. These variations in-
clude syntactic transformations (rephrasing, expan-
sion) and semantic modifications (chain-of-thought
prompting, question decomposition) designed to
elicit varied reasoning patterns while preserving the
original information requirements (Appendix A.2).

The system then collects |S| responses by
prompting different sampler models in M with dif-
ferent variants from V to create the sample set
S = {s1, s2, . . . , s|S|}. Each sample si ∈ S is
generated by randomly selecting a prompt vari-
ant vi ∈ V and sampler model mi ∈ M . This
cross-model sampling strategy captures architec-
tural differences in reasoning patterns, knowledge
representation, and potential systematic biases that
single-model approaches cannot detect.

2.4 Fine-grained Hallucination Detection

As the second component, FINCH-ZK performs
fine-grained hallucination identification through
automated cross-consistency evaluation, enabling
precise localization of potentially hallucinated con-
tent segments.
Response Segmentation. Target response
rT is segmented into semantic blocks B =
{b1, b2, . . . , b|B|} using sentence-level segmenta-
tion. This granular approach enables the system to
identify specific hallucinated segments rather than
classifying entire responses, providing actionable
feedback for targeted correction.
Cross-consistency Evaluation. Each block bi ∈
B is evaluated against each sample sj ∈ S using
the judge model J with structured prompts. The
judge model classifies each (bi, sj) pair into:
• ACCURATE: Block is factually consistent and sup-

ported by the sample
• CONTRADICTION: Direct factual contradiction de-

tected between block and sample
• NEUTRAL: Insufficient information for definitive

assessment.

Weighted Scoring. Block-level hallucination
scores are computed using weighted aggregation
across all samples:

score(bi) =

∑|S|
j=1wj(bi) · score(bi, sj)

∑|S|
j=1wj(bi)

where wj(bi) represents the reliability weight
assigned to sample sj for evaluating block bi
and score(bi, sj) ∈ {0, 0.5, 1} corresponds to
ACCURATE, NEUTRAL, and CONTRADICTION labels
respectively. Factuality labels are assigned to each
block bi based on a threshold τ as: ACCURATE for
score(bi) ∈ [0, τ ], CONTRADICTION for score(bi) ∈
[1− τ, 1], and NEUTRAL otherwise. Response-level
hallucination score is computed as score(rT ) =
1
|B|

∑|B|
i=1 score(bi), with overall response label

computed as: NON-FACTUAL if any block in rT is la-
belled as CONTRADICTION, and FACTUAL otherwise.
Summarize Errors. For blocks identified as poten-
tially hallucinated (i.e., labeled as CONTRADICTION
or NEUTRAL), the system generates concise error
summaries ei using the judge model to characterize
the nature and severity of detected inconsistencies,
providing interpretable explanations for actionable
user feedback and downstream correction.

2.5 Multi-stage Hallucination Mitigation

The mitigation stage applies targeted corrections
to identified problematic segments through a two-
stage approach: fine-grained block correction fol-
lowed by response-level coherence improvement.
Block-level Correction. For each hallucinated
block bi with error summary ei, FINCH-ZK gen-
erates a corrected version b′i using an improver
model I with a structured correction prompt that
includes: 1) the original block text, 2) the auto-
matically generated error summary, and 3) detailed
contradiction evidence from the cross-consistency
analysis. This approach ensures corrections are
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grounded in specific identified issues rather than
generic reformulation. The corrected response is
reconstructed as:

r′T = concat(c1, c2, . . . , c|B|)

where ci = b′i if block i was flagged for correction,
and ci = bi otherwise. This selective correction
strategy preserves accurate content while targeting
only problematic segments.
Response-level Improvement. To address broader
coherence and completeness issues that may arise
from localized corrections, the system performs
cross-model reflection by generating an improved
response r′′T that synthesizes insights from all gen-
erated samples S. The improver model receives
the original prompt, the block-corrected response
r′T , and representative samples from S to produce a
final response that maintains factual accuracy while
ensuring overall coherence and completeness.

This multi-stage approach addresses the key lim-
itation of existing mitigation systems that apply
wholesale reformulation, often corrupting accurate
content while attempting to fix errors. By preserv-
ing the accurate segments, FINCH-ZK provides
targeted correction that maintains response quality
while eliminating hallucinations.

2.6 Production Deployment Features
FINCH-ZK includes enterprise-ready capabilities:
• Modular Architecture: Pluggable components

for sampler, judge, and improver models enable
seamless integration with LLM infrastructure.

• Performance Optimization: Multi-threaded
processing with configurable parallelism and
batch judgment option to reduce API calls.

• Monitoring & Observability: Comprehensive
CSV logging, per-block explanations, and cor-
rection summaries for audit trails.

• Flexible Configuration: CLI interface with ad-
justable sample counts, model selection, etc.

3 Experiments

We conducted experimental evaluation to answer:

RQ1: How effective is FINCH-ZK at detecting
hallucinations compared to other approaches?

RQ2: How effective is FINCH-ZK for mitigat-
ing hallucinations?

RQ3: Which components significantly influ-
ence FINCH-ZK’s detection capabilities?

RQ4: How does different factors affect FINCH-
ZK’s hallucination mitigation?

RQ5: What are the computational trade-offs
of FINCH-ZK in terms of latency and cost?

Datasets. We utilize two challenging benchmarks
for evaluation: 1) FELM (Zhao et al., 2023) com-
posed of 847 questions & responses across di-
verse domains supplemented with fine-grained
human-annotated factuality labels, and 2) GPQA-
diamond (Rein et al., 2024) composed of 198
graduate-level multiple-choice questions.
Baseline Methods. For RQ1 & RQ2, we com-
pared against GPT4-based judge variants (Vanilla,
CoT, RAG) as utilized in (Zhao et al., 2023)
and SelfCheckGPT (Manakul et al., 2023). For
RQ2 & RQ4, we compared against SelfCheckGPT
and hallucination mitigation techniques: few-shots
CoT (Wei et al., 2023) using 5 in-context exam-
ples, self-consistency (Wang et al., 2023), a cross-
model variant of self-consistency that uses multiple
LLMs (call it cross-consistency), and best-of-N
majority selection (Lightman et al., 2023). For
a fair comparison, we used equivalent configura-
tions across different techniques (Appendix A.5)
and added equivalent engineering upgrades (Ap-
pendix A.3) to SelfCheckGPT.

RQ1: How effective is FINCH-ZK at detecting
hallucinations compared to other approaches?

Table 1 presents results for hallucination detec-
tion on the FELM dataset. At both fine-grained
(i.e., sentence) as well as aggregated response level,
FINCH-ZK showed better precision-recall balance,
consistently outperforming all baselines. In par-
ticular, FINCH-ZK achieved 39% better sentence-
level F1-score compared to GPT4-Judge (Vanilla).
Surprisingly, FINCH-ZK even outperformed the
knowledge-source dependent RAG-based baseline,
achieving around 17% better F1-score and 8% bet-
ter balanced accuracy respectively at response level.
Diverse sample generation through prompt varia-
tions and cross-model sampling enabled FINCH-
ZK to achieve around 6% better F-1 scores and
Pearson correlation compared to SelfCheckGPT.

RQ2: How effective is FINCH-ZK for mitigating
hallucinations?

Table 2 presents a comparison of FINCH-ZK

against different mitigation baselines on GPQA-
diamond dataset. We evaluate performance using
three distinct judging methodologies: regex-based
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Table 1: Comparison of hallucination detection methods on FELM (Zhao et al., 2023) dataset. P/R/F1/BA, respectively, denote
precision, recall, F-1 score, and balanced accuracy of predicted factuality labels vs human-annotations. For response-level, we
additionally show Pearson and Spearman correlations of predicted hallucination scores. GPT-4 Judge variants are from (Zhao
et al., 2023) that use GPT-4 for judgment based on the prompt and sentence directly (Vanilla), with chain-of-thought (CoT),
or with retrieved content from reference sources (RAG). Delta percentages are shown for F1/BA metrics, with positive values
indicating improvements compared to GPT-4 Judge (Vanilla).

Method Sentence-level Response-level
P R F1 (∆%) BA (∆%) P R F1 (∆%) BA (∆%) Pearson Spearman

GPT-4 Judge (Vanilla) 64.0 24.4 35.4 60.7 62.4 39.4 48.3 63.8 — —
GPT-4 Judge (CoT) 68.1 30.4 42.0 (+18.6%) 63.7 (+4.9%) 64.7 46.1 53.8 (+11.4%) 66.8 (+4.7%) — —
GPT-4 Judge (RAG) 62.9 39.2 48.3 (+36.4%) 67.1 (+10.5%) 64.3 51.1 56.9 (+17.8%) 68.5 (+7.4%) — —
SelfCheckGPT 41.2 54.1 46.8 (+32.2%) 68.7 (+13.2%) 73.7 53.5 62.0 (+28.4%) 72.0 (+12.9%) 59.5 59.9

FINCH-ZK 45.8 53.1 49.2 (+39.0%) 69.8 (+15.0%) 83.8 53.2 65.1 (+34.8%) 74.0 (+16.0%) 63.1 61.5

answer-choice accuracy, RAG-based LLM judging
of the full response, and FINCH-ZK’s based judge.

In answer-choice accuracy, FINCH-ZK achieved
the best performance—reaching ∼76% accuracy,
up +5.6% for Claude 4 Sonnet and +12.6% for
Llama 4 Maverick. For full response accuracy,
FINCH-ZK outperformed the next best baseline
(SelfCheckGPT) by around 9-15% for RAG-based
judging and 7-9% for FINCH-ZK-based judge.

These results demonstrate that FINCH-ZK’s com-
bination of cross-model sampling, fine-grained er-
ror detection, and targeted correction offers supe-
rior hallucination mitigation compared to existing
approaches. The system is particularly effective at
improving full response factuality, as evidenced by
the substantial gains in RAG-based and FINCH-ZK-
based judging metrics. The effectiveness across
different model families (Claude and Llama) high-
lights FINCH-ZK’s model-agnostic design, making
it a versatile solution for production environments.

Notably, while Self-Consistency and Best-of-N
offer modest improvements in answer-choice ac-

curacy (2-3%), they often fail to meaningfully im-
prove full response factuality. This underscores
the limitations of approaches that don’t explicitly
target hallucinations at a fine-grained level.

RQ3: Which components significantly influence
FINCH-ZK’s detection capabilities?

Table 3 summarizes ablation studies to understand
the influence of each component in FINCH-ZK for
hallucination detection. Key observations include:
• Detection capabilities do not monotonically in-

crease with more samples (G1.a-c vs G0).
• Disabling cross-model sampling (i.e., all sam-

ples generated with Claude 4 Sonnet) degraded
detection at the response-level (G2.a vs G0).

• Adding additional cross-model sampler LLMs,
both weaker models (G2.b adds Claude 3.5 Son-
net and Llama 4 Scout) or stronger models (G2.c
adds Claude 4 Opus), improves detection.

• Using a coarse, response-level judge significantly
limits detection due to poor recall (G3.a vs G0).

• Using a single judge query to evaluate all blocks

Table 2: Comparison of hallucination mitigation methods on the GPQA-diamond (Rein et al., 2024) dataset. All methods are
evaluated against the same zero-shot CoT baseline. Positive delta percentages indicate relative improvements compared to the
baseline. Regex-based judge matches answer choice against ground truth, RAG-based judge uses answer explanations from the
dataset as trusted content for LLM-based judgment, FINCH-ZK-based judge is based on §2.4.

T Method Regex-based Judge RAG-based LLM Judge FINCH-ZK Judge
Answer Acc. ∆% Full Resp. Acc. ∆% Full Resp. Acc. ∆%

C
la

ud
e

4
So

nn
et Zero-shot CoT (baseline) 71.7 — 50.0 — 69.7 —

Few-shots-CoT 68.2 -4.9% 47.5 -5.1% 70.7 +1.4%
Self-Consistency 73.2 +2.1% 48.5 -3.0% 66.7 -4.3%
Cross-Consistency 71.2 -0.7% 52.5 +5.1% 71.2 +2.2%
Best-of-N 73.7 +2.8% 52.5 +5.1% 69.7 0.0%
SelfCheckGPT 71.2 -0.7% 54.5 +9.1% 75.3 +8.0%

FINCH-ZK 75.8 +5.6% 59.1 +18.2% 80.3 +15.2%

L
la

m
a

4
M

av
er

ic
k Zero-shot CoT (baseline) 68.2 — 42.9 — 63.1 —

Few-shots-CoT 67.7 -0.7% 43.4 +1.2% 64.7 +2.4%
Self-Consistency 67.7 -0.7% 45.0 +4.7% 64.1 +1.6%
Cross-Consistency 73.7 +8.2% 50.5 +17.7% 69.7 +10.4%
Best-of-N 67.2 -1.5% 41.9 -2.4% 61.1 -3.2%
SelfCheckGPT 75.8 +11.1% 84.3 +96.5% 86.9 +37.6%

FINCH-ZK 76.8 +12.6% 90.9 +111.8% 92.4 +46.4%
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Table 3: Ablation studies for hallucination detection on FELM (Zhao et al., 2023) dataset. Group G1 shows the effect of
changing number of samples (§2.3), G2 compares the effect of changing sampler LLMs (§2.3), G3 shows the effect of changing
LLM-based judge (§2.4).

Group Configuration Sentence-level Response-level
P R F1 BA P R F1 BA Pearson Spearman

G0 FINCH-ZK 45.8 53.1 49.2 69.8 83.8 53.2 65.1 74.0 63.1 61.5

G1
a. 3 samples 46.0 52.0 48.8 69.4 77.6 55.3 64.6 73.7 57.8 55.5
b. 5 samples 43.1 59.5 50.0 71.2 78.7 57.8 66.7 75.0 61.9 59.8
c. 20 samples 48.0 54.5 51.0 70.9 81.2 53.5 64.5 73.7 63.7 61.5

G2
a. (-) cross-model sampling 43.2 55.3 48.5 69.8 77.2 51.8 62.0 72.1 62.1 59.8
b. (+) weak samplers 46.6 56.0 50.9 71.1 81.6 53.5 64.7 73.8 63.0 60.7
c. (+) strong samplers 46.3 56.2 50.7 71.0 79.5 53.5 64.0 73.3 63.2 62.2

G3

a. (-) fine-grained judge — — — — 88.1 31.6 46.5 64.7 58.7 59.7
b. (+) use batch judge 37.2 72.2 49.1 72.9 69.8 73.8 71.7 78.9 63.9 61.5
c. Llama 4 Scout judge 39.6 81.4 53.3 77.3 72.5 80.5 76.3 82.6 71.2 67.9
d. Llama 4 Scout batch judge 35.5 83.2 49.8 75.3 69.4 84.4 76.2 82.9 65.5 64.6
e. Claude 4 Sonnet batch judge 41.5 86.7 56.1 80.1 65.6 85.8 74.3 81.7 69.3 66.9

together in a batch (instead of separate LLM calls
for each sample-block pair) is an effective way
to reduce LLM costs without compromising de-
tection performance (G3.b vs G0).

• Judge model can significantly influence detection
performance (G3.c-e vs G0).

RQ4: How does different factors affect
FINCH-ZK’s hallucination mitigation?

Table 4 summarizes ablation studies to understand
mitigation effectiveness using Claude 4 Sonnet as
the target model. Key observations include:
• FINCH-ZK typically reaches higher accuracy

with more samples, though with diminishing re-
turns (G1.a-c vs G0).

• Disabling cross-model sampling degrades miti-
gation capability significantly (G2.a vs G0).

• Using coarse response-level judge reduced accu-
racy improvements significantly (G3.a vs G0).

• Judge variations have modest effects on answer-
choice accuracy, but significant impact on full
response accuracy (G3.b-d vs G0).

• Disabling fine-grained correction drastically lim-
its mitigation performance, underscoring the im-
portance of targeted correction (G4.a vs G0).

• Using Llama 4 Maverick as the improver LLM
(instead of Claude 4 Sonnet) significantly im-
proved full response accuracy, suggesting cross-
model reflection can help remedy perpetuating
biases and reasoning patterns inherent in single-
model architectures (G4.b vs G0).

• FINCH-ZK boosts accuracy even with extended
thinking enabled, achieving 80.3% answer-
choice accuracy (+11.3% over extended thinking

Table 4: Ablation studies for hallucination mitigation on GPQA-diamond (Rein et al., 2024) dataset. Group G1 shows the
effect of changing number of samples (§2.3), G2 compares the effect of changing sampler LLMs (§2.3), G3 shows the effect of
changing LLM-based judge (§2.4), G4 shows the effect of changing multi-stage mitigation (§2.5), G5 shows the comparison
with extended thinking enabled. Delta percentages indicate improvement compared to zero-shot CoT baseline.

Group Configuration Regex-based Judge RAG-based LLM Judge FINCH-ZK Judge
Answer Acc. ∆% Full Resp. Acc. ∆% Full Resp. Acc. ∆%

G0 a. Zero-shot CoT (baseline) 71.7 — 50.0 — 69.7 —
b. FINCH-ZK 75.8 +5.6% 59.1 +18.2% 80.3 +15.2%

G1
a. 3 samples 69.7 -2.8% 54.0 +8.1% 72.2 +3.6%
b. 5 samples 71.2 -0.7% 61.1 +22.2% 76.8 +10.1%
c. 20 samples 78.8 +9.9% 59.6 +19.2% 77.8 +11.6%

G2
a. (-) cross-model sampling 71.7 0.0% 57.6 +15.2% 74.2 +6.5%
b. (+) weak samplers 72.7 +1.4% 56.1 +12.1% 75.3 +8.0%
c. (+) strong samplers 75.8 +5.6% 56.1 +12.1% 76.3 +9.4%

G3

a. (-) fine-grained judge 74.2 +3.5% 56.6 +13.1% 77.3 +10.9%
b. (+) use batch judge 75.8 +5.6% 56.6 +13.1% 79.3 +13.8%
c. Llama 4 Scout judge 74.2 +3.5% 56.6 +13.1% 82.8 +18.8%
d. Claude 4 Sonnet batch judge 74.2 +3.5% 56.1 +12.1% 78.8 +13.0%

G4 a. (-) fine-grained correction 72.7 +1.4% 50.5 +1.0% 76.8 +10.1%
b. Llama 4 Maverick improver 74.8 +4.2% 90.4 +80.8% 94.4 +35.5%

G5 a. (+) thinking (baseline) 72.2 — 65.7 — 82.3 —
b. (+) thinking (FINCH-ZK) 80.3 +11.3% 64.7 -2.0% 90.4 +11.6%
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Table 5: Latency and cost analysis for hallucination detection and mitigation on GPQA-diamond dataset with Claude 4 Sonnet as
the target model. Overhead factors are computed relative to the zero-shot CoT baseline. Grouped rows summarize latency and
cost for response generation (G0), for hallucination detection (G1), and for both hallucination detection and mitigation (G2).

Group Method Latency Cost Latency Cost
(sec) (USD) Overhead Overhead

Response generation

G0 a. Zero-shot CoT (baseline) 11.1 0.0096 1.0× 1.0×
b. Zero-shot CoT w/ extended thinking 36.6 0.0165 3.3× 1.7×

Detection only

G1

a. SelfCheckGPT (10 samples) 12.2 0.2777 1.1× 28.9×
b. FINCH-ZK (10 samples) 19.0 0.3488 1.7× 36.3×
c. FINCH-ZK (3 samples) 19.2 0.1203 1.7× 12.5×
d. FINCH-ZK (10 samples, batch judge) 28.5 0.1709 2.6× 17.8×
e. FINCH-ZK (3 samples, batch judge) 24.5 0.0780 2.2× 8.1×

Detection + Mitigation

G2

a. SelfCheckGPT (10 samples) 26.7 0.3113 2.4× 32.4×
b. FINCH-ZK (10 samples) 37.9 0.3877 3.4× 40.4×
c. FINCH-ZK (3 samples) 35.8 0.1537 3.2× 16.0×
d. FINCH-ZK (10 samples, use batch judge) 48.7 0.2361 4.4× 24.6×
e. FINCH-ZK (3 samples, use batch judge) 39.2 0.1182 3.5× 12.3×

baseline). This demonstrates our proposed tech-
niques complements internal extended reasoning,
rather than competing with it (G5.b vs G5.a).

RQ5: What are the computational trade-offs of
FINCH-ZK in terms of latency and cost?

Table 5 presents a comparative analysis of compu-
tational overhead to quantify latency and costs on
GPQA-diamond dataset using Claude 4 Sonnet as
the target LLM. Key observations include:
• FINCH-ZK incurs significantly higher costs than

the response generation baseline and with ex-
tended thinking (G0 a-b vs G1.b and G2.b).
FINCH-ZK also incurs higher costs than Self-
CheckGPT (G1.a vs G1.b), primarily due to the
additional prompt variations step.

• FINCH-ZK’s detection plus mitigation latency
matches the latency of response generation with
extended thinking (G0.b vs G2.b) while provid-
ing explicit hallucination detection and targeted
corrections (rather than opaque internal reason-
ing) and superior accuracy (Table 4).

• Reducing samples to 3 and enabling batch judge
maintains accuracy (Table 4) while reducing la-
tency and cost overhead (G2.b vs G2.c-e).

4 Human Evaluation Study

To further validate our automated evaluation, we
conducted a human evaluation study on the Natural
Questions (NQ) dataset (Kwiatkowski et al., 2019).
Setup. We randomly sampled 50 questions from
NQ and generated responses using Claude 4 Sonnet.
Each response was processed through FINCH-ZK

(3 samples, batch judge configuration) for hallu-

cination detection and mitigation to produce an
improved version. Three independent human an-
notators performed blind pairwise comparisons be-
tween original and improved responses, with access
to external resources for fact-checking.
Results. Human annotators preferred FINCH-
ZK improved responses in 84% (42/50) of cases,
demonstrating strong alignment with our auto-
mated evaluation from Table 2. The improved
responses averaged 229 tokens compared to 153 to-
kens for originals, indicating that FINCH-ZK adds
substantive content rather than merely reformulat-
ing. Annotators noted improvements in compre-
hensiveness, accuracy, and factual detail, while
occasionally preferring originals when additions
seemed excessive for straightforward queries.

The human study affirmed FINCH-ZK’s mitiga-
tion represent genuine improvements in response
quality, not artifacts of circular LLM evaluation.

5 Conclusions

We introduce FINCH-ZK, an integrated black-box
framework that closes the gap between hallucina-
tion detection and mitigation by combining ad-
vanced detection techniques with a novel multi-
stage process for targeted correction. Leveraging
dynamic prompt variations and cross-model consis-
tency, FINCH-ZK delivers significantly more robust
detection than single-model approaches. Its multi-
stage mitigation pipeline makes precise, segment-
level corrections while maintaining overall coher-
ence. The system’s performance scales with com-
putational resources, but even resource-efficient
configurations offer substantial improvements.
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Limitations

While FINCH-ZK represents a meaningful step to-
ward improving the reliability of large language
model outputs, it is not without important limi-
tations. The underlying approach fundamentally
relies on the assumption that a truly reliable an-
swer will emerge as the most frequent or stable
across repeated sampling. However, for complex
or ambiguous queries, models may consistently re-
produce similar hallucinated content, leading to
a false sense of confidence in its correctness. In
such cases, consistency can inadvertently reinforce
errors rather than expose them. In domains requir-
ing absolute certainty, human oversight remains
essential. Additionally, the computational over-
head of generating multiple cross-model samples
represents a substantial cost increase compared to
alternative approaches, which may limit real-time
applications.

Future work includes exploring extensions like—
1) extending hallucination detection and mitiga-
tion for languages beyond English, 2) domain-
specific applications including code generation
and medical QA, 3) streaming/real-time scenarios
with incremental correction 4) exploring paragraph-
and page-level segmentation for very long-form
responses, 5) reducing computational costs with
batch processing, 6) rigorous evaluation on domain-
specific benchmarks, 7) adversarial robustness eval-
uation against prompt injection attacks, and 8) in-
vestigating solutions for agentic applications.

Ethics Statement

Our cross-model approach assumes that consen-
sus among different models indicates accuracy, but
this may amplify shared biases across model fam-
ilies rather than eliminate them. We emphasize
that FINCH-ZK should complement, not replace,
human oversight in high-stakes applications. Users
must understand the system’s limitations and main-
tain appropriate skepticism of AI-generated content.
We encourage responsible deployment with clear
communication about the system’s capabilities and
limitations to end users.
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A Appendix

A.1 Additional Related Works

Uncertainty Quantification and Calibration
Methods. Recent work on uncertainty quantifi-
cation includes LLM self-calibration (Kadavath
et al., 2022) and semantic or natural language uncer-
tainty quantification (Kuhn et al., 2023; Lin et al.,
2022). FINCH-ZK differs from these works by
using cross-model consistency rather than single-
model uncertainty, but can be enhanced by utilizing
model-derived confidence scores.
Constitutional AI and Self-Correction Ap-
proaches. Constitutional AI (Bai et al., 2022),

Self-Refine (Madaan et al., 2023), Reflexion (Shinn
et al., 2023), and other self-correction methods
train models to critique and improve their own out-
puts through principles or self-reflection. FINCH-
ZK complements these approaches by providing
external cross-model validation, avoiding single-
model architectures from perpetuating their own
systematic biases and reasoning patterns.

Alternative Hallucination Detection Paradigms.
Alternative detection methods include knowledge
graph integration (Petroni et al., 2019), detec-
tion using internal representations (Chen et al.,
2024), and sophisticated retrieval-augmented verifi-
cation (Nakano et al., 2021) that operate with differ-

Prompt: Write a short passage about Leslie Lamport.

Response: Leslie Lamport is a renowned computer scientist and mathematician who has made significant contributions to the field of distributed 
computing. He is best known for his work on the development of the Paxos algorithm, a fundamental protocol for achieving consensus in distributed 
systems. Lamport was born in 1941 in New York City and received his Ph.D. in mathematics from the University of California, Berkeley in 1972. He has 
worked at various research institutions, including the Massachusetts Institute of Technology (MIT), the Digital Equipment Corporation, and Microsoft 
Research. Throughout his career, Lamport has been recognized for his groundbreaking work in distributed systems. He is the recipient of numerous 
prestigious awards, including the Turing Award, often referred to as the "Nobel Prize of Computing," which he received in 2013 for his contributions to 
the theory and practice of distributed and concurrent systems. Lamport's work has had a profound impact on the development of modern computer 
systems, particularly in areas such as cloud computing, blockchain technology, and the Internet of Things. His ideas and algorithms have been widely 
adopted and have become essential building blocks for many of the technologies we rely on today. Beyond his technical contributions, Lamport is also 
known for his clear and concise writing style, which has helped to make complex concepts in computer science more accessible to a wider audience. 
He is the author of several influential books and papers that have shaped the field of distributed computing. Overall, Leslie Lamport's legacy as a 
pioneering computer scientist and mathematician continues to inspire and influence the next generation of researchers and developers working in the 
field of distributed systems.

Fine-grained Detection: NON-FACTUAL with 0.10 hallucination score (10/11 blocks factual)
Possible Inaccuracies:

Block 3: “Lamport was born in …”  - The passage contains an inaccuracy regarding the university where Lamport received his Ph.D. in 
mathematics, which was Brandeis University, not the University of California, Berkeley.

Multi-stage Mitigation:
Fine-grained Correction:

Block 3: “Lamport was born in …”  - Lamport was born in 1941 in New York City and received his Ph.D. in mathematics from Brandeis 
University in 1972.

Cross-model Reflection: FACTUAL with 0.06 hallucination score (12/12 blocks factual)
Leslie Lamport is a renowned computer scientist and mathematician who has made groundbreaking contributions to distributed systems, 
concurrent computing, and formal verification. Born on February 7, 1941, in New York City, Lamport received his B.S. in mathematics from 
the Massachusetts Institute of Technology (MIT) in 1960 and his Ph.D. in mathematics from Brandeis University in 1972.

Lamport is best known for his work on the development of the Paxos algorithm, a fundamental protocol for achieving consensus in 
distributed systems. He also introduced the concept of logical clocks and the happens-before relation, which help solve the challenging 
problem of ordering events across distributed networks. His 1978 paper, "Time, Clocks, and the Ordering of Events in a Distributed 
System," laid the theoretical foundations for understanding causality in distributed systems.

In addition to his work on distributed systems, Lamport developed LaTeX, a document preparation system built on Donald Knuth's TeX, 
which revolutionized academic publishing by enabling precise typesetting of complex mathematical notation. He also created TLA+ 
(Temporal Logic of Actions), a formal specification language used to model and verify complex software and hardware systems.

Lamport's contributions to computer science have been recognized with numerous prestigious awards, including the Turing Award in
2013, often referred to as the "Nobel Prize of Computing," for his contributions to the theory and practice of distributed and concurrent 
systems. He is also a recipient of the Dijkstra Prize, the IEEE Emanuel R. Piore Award, and the IEEE John von Neumann Medal.

Throughout his career, Lamport has worked at various research institutions, including SRI International, Digital Equipment Corporation, 
and Microsoft Research, where he is currently a Principal Researcher. His work continues to underpin critical technologies from cloud 
computing to blockchain systems, making him one of the most influential figures in computer science. Lamport's legacy endures through 
his emphasis on precise thinking, mathematical rigor, and elegant solutions to complex problems, inspiring new generations of
researchers and practitioners in the field.

Changes Summary:
The initial response provided a good overview of Leslie Lamport's contributions to computer science, but it lacked some details and 
accuracy found in the provided contexts. Specifically, it did not mention his work on the Byzantine Generals' Problem, his development of 
TLA+, or his extensive list of awards. The response also contained some minor inaccuracies, such as his educational background. The 
improved response aims to provide a more comprehensive and accurate account of Lamport's achievements and contributions.

Figure 2: Motivating Example
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ent levels of model access and external knowledge.
FINCH-ZK complements these approaches for prac-
tical deployment necessitating zero-knowledge and
black-box constraints.

Additional relevant work includes ensemble
methods (Chen et al., 2023), contrastive decoding
techniques (Li et al., 2022), multi-agent verifica-
tion systems (Shi et al., 2025), and domain-specific
benchmarks (Chen et al., 2021), which represent
opportunities for future enhancements and evalua-
tion of this work.

A.2 Prompt Variations
FINCH-ZK employs three static and four dynamic
LLM-based prompt reformulation strategies to
probe different aspects of the model’s knowledge
and reasoning:
• Static Variations.

1. Identity: Uses the original prompt un-
changed as a baseline.

2. Zero-shot CoT: Appends “Let’s think step
by step” to encourage structured reasoning.

3. Long Answer: Requests detailed responses
to reveal potential inconsistencies by adding
“Provide an answer with at least a 1000
words to the following prompt:” at the be-
ginning of the original prompt.

• LLM-based Variations.
1. Rephrase: Use an LLM to generate

semantically-equivalent reformulations of
the original prompt (Fig. 3).

2. Expand-Before: Use an LLM to add
contextual information before the original
prompt (Fig. 4).

3. Expand-After: Use an LLM to add clar-
ifying questions after the original prompt
(Fig. 5).

4. Break-Down: Use an LLM to break down
complex queries into multiple sub-questions
(Fig. 6).

These prompt variations are designed to systemati-
cally explore the response space without changing
the semantic intent of the original query.

A.3 Engineering Upgrades
FINCH-ZK adds a collection of engineering up-
grades to improve the effectiveness and ease of
usage, as follows:
• Improved prompt for LLM-based judgment. For

fine-grained consistency-based hallucination de-
tection (§ 2.4), FINCH-ZK upgrades the LLM-as-

judge prompt used in SelfCheckGPT (Manakul
et al., 2023) by adding— 1) systematic structure,
2) contextual information, 3) descriptive rules,
and 4) output format instructions (Fig. 7).

• Batch LLM-based judgment. For efficiency and
computation costs savings, we implemented an
option for judging all blocks against a sample in
a single LLM query (Fig. 8).

• Multi-threading support. FINCH-ZK supports
efficient multi-threading with configurable par-
allelism support. FINCH-ZK evaluates multiple
responses concurrently, with each response eval-
uation utilizing multiple threads for each com-
ponent (sample generation, fine-grained block
evaluation, and fine-grained block correction).

• Usability upgrades. FINCH-ZK provides im-
proved command-line interface, comprehensive
logging through CSV outputs, statistics summary,
results reporting, judgement explanations, and
response changes summary to enhance usage ex-
perience and results analysis.

A.4 Implementation Details
We implemented FINCH-ZK in ∼2.3K lines of
code in Python. The framework utilizes a mix of
Claude 4 Sonnet, Llama 4 Maverick, Claude 3.7
Sonnet and DeepSeek-R1 (Jan’25) for generating
10 cross-model samples by default. FINCH-ZK uti-
lizes PySBD (Sadvilkar and Neumann, 2020) to
segment the response into fine-grained blocks at
sentence boundaries. For fast fine-grained halluci-
nation assessment, FINCH-ZK uses Claude 3 Haiku
as the default judge model. By default, FINCH-ZK

uses the same model as the one used for generat-
ing input responses for multi-stage hallucination
mitigation.

FINCH-ZK provides command-line options to
easily change key hyper parameters, including dif-
ferent LLMs used in the framework. Here is a
summary of hyper parameter values we used as
defaults:
• Models

– Prompt reformulation model: Claude 3 Sonnet
– Sampler models: Claude 4 Sonnet, Llama 4

Maverick, Claude 3.7 Sonnet, DeepSeek R1
(Jan’2025)

– Judge model: Claude 3 Haiku
– Improver model: Same as target model

• Hyperparameters
– Temperature: 0.0 for input response genera-

tion, 1.0 otherwise
– Max output tokens: 4096
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– Block labeling threshold τ : 0.33
– Batch LLM-based judgment: disabled

Scoring Function Details. The reliability weights
wj(bi) in the block-level scoring function are deter-
mined by the confidence level of each judge evalua-
tion. Specifically, the system assigns fixed weights
based on the judge’s classification: ACCURATE eval-
uations receive weight 2, NEUTRAL evaluations re-
ceive weight 1, CONTRADICTION evaluations re-
ceive weight 4, and UNKNOWN evaluations receive
weight 0 (excluded from aggregation). This weight-
ing scheme prioritizes high-confidence contradic-
tions while still incorporating uncertain evaluations,
computed as:

wj(bi) =





4 CONTRADICTION

2 ACCURATE

1 NEUTRAL

0 UNKNOWN

Threshold Selection. The block labeling thresh-
olds τ = 0.33 and 1− τ = 0.67 create three confi-
dence intervals for factuality assessment: [0, 0.33]
for ACCURATE, (0.33, 0.67) for NEUTRAL, and [0.67,
1.0] for CONTRADICTION. These values were empir-
ically determined to provide balanced precision-
recall performance across both FELM and GPQA
datasets. The symmetric threshold design ensures
that high-confidence accurate and contradictory
content receive equal treatment, while the mid-
dle range captures genuinely ambiguous cases
where samples provide conflicting evidence about
a block’s factuality.
Cross-model Sampling Strategy. The sampler
model set M consists of diverse LLM architectures
selected to maximize reasoning diversity while
maintaining practical computational constraints.
By default, M includes four models represent-
ing different architectural families: Claude 4 Son-
net (transformer-based), Llama 4 Maverick (open-
source transformer), Claude 3.7 Sonnet (earlier gen-
eration), and DeepSeek-R1 (reasoning-specialized).
This selection balances three criteria: 1) architec-
tural diversity to capture different reasoning pat-
terns, 2) performance quality to ensure reliable
samples, and 3) API availability for practical de-
ployment.

The relationship between prompt variations V
and model selection follows a structured round-
robin approach rather than pure randomization. For
each prompt, both the prompt variations set and
sampler models set are shuffled once, then samples

are generated by cycling through these shuffled
lists: sample si uses prompt variant vi mod |V | and
sampler model mi mod |M |. With 7 variants and
4 models generating 10 samples by default, this
ensures comprehensive coverage of variant-model
combinations while maintaining deterministic re-
producibility when random seeds are fixed.

This systematic assignment addresses variance
concerns in two ways: 1) the initial shuffle pro-
vides randomization benefits without introducing
per-sample variance, and 2) the round-robin cy-
cling ensures that all (model, prompt variant) com-
binations are explored fairly across the sample set.
Empirical analysis shows this approach produces
more stable cross-model consistency scores com-
pared to fully random assignment, with standard
deviation reduced by approximately 15% across
repeated runs.

A.5 Experiment Details

Dataset Details. We selected FELM and GPQA-
diamond as our evaluation benchmarks based on
their unique characteristics that align with our zero-
knowledge, fine-grained hallucination management
objectives.

We chose FELM (Zhao et al., 2023) for halluci-
nation detection evaluation for several key reasons:
• Fine-grained annotations: FELM provides

segment-level (sentence-level) human-annotated
factuality labels rather than coarse response-level
labels, enabling evaluation of our fine-grained
detection capabilities. The dataset contains 4,425
annotated segments across 847 samples with high
inter-annotator agreement (91.3%).

• Diverse domains: Unlike benchmarks fo-
cused solely on world knowledge (e.g., FEVER,
WICE), FELM spans five diverse domains that
test different types of factual reasoning:
– World Knowledge (184 samples, 532 seg-

ments) - including 11.1% from TruthfulQA
– Science & Technology (125 samples, 683 seg-

ments) - scientific claims and citations
– Writing & Recommendation (136 samples,

1,586 segments) - creative generation tasks
– Reasoning (208 samples, 1,025 segments) -

multi-step chain-of-thought traces
– Mathematics (194 samples, 599 segments) -

including 24.7% from GSM8K
• Long-form complexity: FELM responses aver-

age 89.1 tokens, substantially longer than exist-
ing benchmarks (FEVER: 7.3 tokens, FactCC:
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20.8 tokens, HaluEval: 36.9 tokens). The Writ-
ing/Recommendation domain averages 210.9 to-
kens per response, representing true medium-to-
long form generation where hallucinations are
more challenging to detect.

• Rich error taxonomy: FELM categorizes er-
rors into four types—knowledge errors, reason-
ing errors, irrelevant content, and fooled er-
rors—providing detailed insights into hallucina-
tion patterns. Each segment includes error expla-
nations and reference links for validation.
For mitigation, we selected GPQA-diamond

(Rein et al., 2024) for evaluation due to its excep-
tional difficulty and objectivity:
• Graduate-level complexity: The dataset con-

tains 198 multiple-choice questions requiring
PhD-level expertise in biology, physics, and
chemistry. Questions are designed to be answer-
able by domain experts (81.3% accuracy on dia-
mond set) but extremely challenging for skilled
non-experts (22.1% accuracy) even with unre-
stricted internet access.

• Google-proof design: Non-expert validators
with PhDs in other domains spend an average
of 37 minutes per question with full internet
access (median: 30 minutes) yet achieve only
marginally above random chance (25%). This
ensures our mitigation evaluation tests genuine
knowledge correction rather than simple informa-
tion retrieval.

• Rigorous validation: Each question undergoes
multi-stage expert validation with two PhD-level
domain experts verifying correctness and objec-
tivity. The diamond subset includes only ques-
tions where both experts agree and the major-
ity of non-experts fail, ensuring uncontroversial
ground truth.

• Detailed explanations: Questions include com-
prehensive explanations, enabling fine-grained
analysis of reasoning improvements through our
mitigation pipeline.
Together, these datasets provide comprehensive

evaluation of FINCH-ZK’s capabilities: FELM tests
fine-grained detection across diverse content types
using trusted human annotations, while GPQA-
diamond validates our ability to improve factual
accuracy on extremely challenging questions where
even minor improvements represent significant
achievements.
Metrics and Evaluation Methodology. For hal-
lucination detection (RQ1, RQ3), we report pre-
cision, recall, F1-score, and balanced accuracy at

both sentence-level and aggregated response levels
to compare predicted factuality label against hu-
man annotations following established evaluation
protocols from (Zhao et al., 2023). We addition-
ally include Pearson and Spearman correlations
between predicted and ground-truth hallucination
scores.

For hallucination mitigation (RQ2, RQ4), we
employ a multi-faceted evaluation approach with
answer-choice accuracy as our primary metric,
which objectively measures whether the model se-
lects the correct multiple-choice option in GPQA
questions. We supplement this with two additional
judges: 1) RAG-based LLM Judge uses dataset
reference explanations to assess full response rea-
soning quality, and 2) FINCH-ZK Judge applies our
detection method to evaluate internal consistency
within improved responses. The strong correlation
between answer accuracy improvements and both
supplementary LLM judge assessments provides
convergent validity, though human evaluation on a
representative subset would strengthen validation
of our automated assessments. Delta percentages
indicate relative improvements compared to the
input response across all metrics.
Input Responses. For RQ1 & RQ3, we evalu-
ated using input responses already included in the
FELM dataset (generated with ChatGPT). For RQ3,
we generated input responses with Claude 4 Son-
net and Llama 4 Maverick as representative high-
capability models where hallucination mitigation
is critical. For RQ4, we used input responses cor-
responding to Claude 4 Sonnet from RQ3 and ad-
ditional input responses generated with Claude 4
Sonnet with ∼16K thinking budget tokens for abla-
tions with extended thinking. While we conducted
experiments with additional models from differ-
ent LLM providers, the results are omitted due to
licensing constraints and because they provided
consistent findings that aligned with our main con-
clusions.
Baseline Details. We used equivalent configura-
tions for each baseline like: 1) using 10 samples for
self/cross-consistency and best-of-N, 2) same set
of LLMs used for cross-model sampling in cross-
consistency, 3) utilizing Claude 4 Sonnet for sam-
ple generation for self-consistency and SelfCheck-
GPT.

A.6 Human Evaluation Study Details
We conducted human evaluation following estab-
lished practices from the NQ dataset (Kwiatkowski
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et al., 2019). We selected NQ for human evalu-
ation as it provides diverse factual queries with
well-established ground truth, complementing our
automated evaluation.
Dataset. 50 randomly sampled questions from
Natural Questions
Annotators. 3 independent evaluators with
graduate-level education
Task. Blind pairwise comparison with external
resource access
Metrics. Binary preference with mandatory justifi-
cation
Qualitative Analysis. Annotators consistently
noted that FINCH-ZK improvements included:
• More comprehensive coverage of relevant facts
• Better structured explanations
• Additional context and examples
• Correction of factual errors or ambiguities
The 8 cases where originals were preferred typi-
cally involved simple factual queries where addi-
tional detail was deemed unnecessary.

A.7 Prompt Templates
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Given a prompt, rephrase this prompt into an equivalent prompt to help in doing better answering. Maintain all 
information from the original prompt."

Here is the original prompt (inside <original> </original> tag):
<original>
{original}
</original>

Again, note that the new prompt should be equivalent to the original prompt. Provide the new prompt inside <new> 
</new> tags.

Prompt Variation: Rephrase

Figure 3: Prompt used in Rephrase prompt variation

I need you to add sentences at the beginning of a given prompt. Note that you do not need to follow the instructions 
in the prompt. You are required to provide three sentences that can be added at the beginning of the prompt to help 
in doing better answering.

Here is the given prompt (inside <prompt> </prompt> tag):
<prompt>
{original}
</prompt>

Provide the sentences to be added at the beginning of the prompt inside <answer> </answer> tags.

Prompt Variation: Expand-Before

Figure 4: Prompt used in Expand-Before prompt variation

I need you to add sentences at the end of a given prompt. Note that you do not need to follow the instructions in the 
prompt. You are required to provide three sentences that can be added at the end of the prompt to help in doing 
better answering.

Here is the given prompt (inside <prompt> </prompt> tag):
<prompt>
{original}
</prompt>

Provide the sentences to be added at the end of the prompt inside <answer> </answer> tags.

Prompt Variation: Expand-After

Figure 5: Prompt used in Expand-After prompt variation

Given a prompt, break down this prompt into multiple sub-prompts to help in doing better answering. Maintain all 
information from the original prompt."

Here is the original prompt (inside <original> </original> tag):
<original>
{original}
</original>

Again, note that the multiple sub-prompts together should be equivalent to the original prompt. List the multiple 
sub-prompts inside <sub-prompts> </sub-prompts> tags (one sub-prompt per line).

Prompt Variation: Break-Down

Figure 6: Prompt used in Break-Down prompt variation
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I have a passage that is part of the response from a language model for answering a prompt. Please help me in fact-
checking whether the passage is correct with respect to the provided reference.

### Prompt (inside <prompt> </prompt> tags)
<prompt>
{prompt}
</prompt>

### Full Response (inside <full-response> </full-response> tags)
<full-response>
{full_response}
</full-response>

### Reference (inside <reference> </reference> tags)
<reference>
{sample.text}
</reference>

### Passage (part of the full response, to be checked with respect to the reference) (inside <passage> </passage> 
tags)
<passage>
{block.text}
</passage>

Does the passage complies with the reference? Your answer should be "yes", "no", or "neutral".

Rules:
1. Your answer should be "no" if the passage contains a direct factual contradiction when compared against the 
reference.
2. Your answer should be "neutral" in the case the reference does not contain enough content related to the passage.
3. Otherwise, your answer should be "yes".

Provide a brief explanation in less than 30 words in <explain> </explain> tags. Then respond with your answer in 
<answer> </answer> tags (subject to the rules).

LLM-as-Judge Prompt: Detection

Figure 7: Prompt used in fine-grained LLM-based judgment to evaluate a block against a sample
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I have a prompt and a list of passages. All passages can be concatenated to form a complete answer to the prompt. 
Please help me in fact-checking whether these passages are correct with respect to the provided reference.

### Prompt (inside <prompt> </prompt> tags)
<prompt>
{prompt}
</prompt>

### Reference (inside <reference> </reference> tags)
<reference>
{sample.text}
</reference>

### Passages (inside <passages> </passages> tags, represented as a JSON list as [ {{"id": <passage-id>, "text": 
<passage-text>}}, ... ] )
<passages>
{block[1].text}
…
{block[K].text}
</passages>

For each passage, check whether the passage complies with the reference? Your answer should be "yes", "no", or 
"neutral", one each per passage.

Rules:
1. Your answer should be "no" if the passage contains a direct factual contradiction when compared against the 
reference.
2. Your answer should be "neutral" in the case the reference does not contain enough content related to the passage.
3. Otherwise, your answer should be "yes".

Include the answer (as "answer" field) and a brief explanation in less than 30 words (as "explanation" field) in your 
output.
Do not include "explanation" field for passages with answer as "yes" in your output.
Format your final output as a valid JSON list [ {{"id": <passage-id>, "answer": <answer>, "explanation": 
<explanation>}}, ... ] using JSON best practices (like escaping double quotes in strings with a backslash) surrounded 
inside <output> </output> tags.

LLM-as-Judge Prompt: Detection (Batch)

Figure 8: Prompt used in fine-grained LLM-based judgment to evaluate all blocks against a sample in batch

I need you to summarize possible inaccuracies in a passage. I will give you the passage and a list of possible 
major/minor conflicts that might be due to inaccuracies in the passage. You are required to identify 
consistent/recurring conflicts, and summarize them compactly as a helpful comment highlighting the possible 
inaccuracies in the passage.

Here is the passage (inside <passage> </passage> tag):
<passage>
{block.text}
</passage>

Here are the possible conflicts (inside <conflict> </conflict> tags):
<conflict>
SEVERITY: {block.label[i]}
{block.explanation[i]}
</conflict>
…

Provide your answer as a brief summary (in less than 30 words and inside <summary> </summary> tag).

LLM-as-Judge Prompt: Summarize Errors

Figure 9: Prompt used in fine-grained LLM-based judgment to summarize errors found (if any) for a block
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I need you to correct possible inaccuracies in a passage. I will give you the passage, a summary of the possible 
inaccuracies, and a detailed list of possible major/minor conflicts that might be due to inaccuracies in the passage. 
You are required to identify consistent/recurring conflicts, and generate a corrected version that removes all possible 
inaccuracies and conflicts in the passage.

Here is the passage (inside <passage> </passage> tag):
<passage>
{block.text}
</passage>

Here is the summary of possible inaccuracies (inside <summary> </summary> tag):
<summary>
{block.error_summary}
</summary>

Here are the possible conflicts (inside <conflict> </conflict> tags):
<conflict>
SEVERITY: {block.label[i]}
{block.explanation[i]}
</conflict>
…

Provide the corrected passage inside <corrected> </corrected> tag.

Hallucination Mitigation: Block Correction

Figure 10: Prompt used for block correction in multi-stage hallucination mitigation

I have a response from a language model for answering a prompt. I need you to correct possible inaccuracies or 
incompleteness in the response. I will give you the response (along with the prompt), and a detailed list of different 
contexts that might be useful to find inaccuracies or incompleteness in the response. You are required to identify 
consistent/recurring differences, and generate an improved version that better captures the details required in the 
response.

### Prompt (inside <prompt> </prompt> tags)
<prompt>
{prompt.text}
</prompt>

### Response (inside <response> </response> tags)
<response>
{response}
</response>
"""

Here are the different contexts (inside <context> </context> tags):
<context>
Context {i}:
{sample[i].text}
</context>
…

Provide a brief explanation of the changes in less than 100 words in <explain> </explain> tags. Then respond with 
your answer in <improved> </improved> tags.

Hallucination Mitigation: Cross-Model Reflection

Figure 11: Prompt used for response-level cross-model reflection in multi-stage hallucination mitigation

1999


