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Abstract were initially aligned. Therefore, mitigating safety

Supervised fine-tuning (SFT) on benign data
can paradoxically erode a language model’s
safety alignment, a phenomenon known as
catastrophic forgetting of safety behaviors. Al-
though prior work shows that randomly adding
safety examples can reduce harmful output, the
principles that make certain examples more ef-
fective than others remain poorly understood.
This paper investigates the hypothesis that the
effectiveness of a safety example is governed
by two key factors: its instruction-response
behavior (e.g., refusal vs. explanation) and
its semantic diversity across harm categories.
We systematically evaluate sampling strate-
gies based on these axes and find that struc-
tured, diversity-aware sampling significantly
improves model safety. Our method reduces
harmfulness by up to 41% while adding only
0.05% more data to the fine-tuning set.

1 Introduction

Large Language Models (LLMs) have become
foundational to modern Al systems, demonstrating
impressive performance across a wide range of nat-
ural language processing tasks. However, without
robust alignment mechanisms, LLMs can produce
output that is biased, misleading, or even harmful,
including the generation of hate speech, the promo-
tion of self-harm, or the perpetuation of stereotypes
(Weidinger et al., 2022; Bender et al., 2021). As
LLMs are increasingly deployed in real-world set-
tings, ensuring their safety becomes critical.
Supervised fine-tuning (SFT) is a standard and
widely used method for adapting pre-trained mod-
els to specific tasks. It plays a key role in improving
task performance and is central to many instruction-
tuning pipelines (Zhang et al., 2024b). However,
recent studies show that even fine-tuning on benign
datasets can erode the safety alignment learned dur-
ing pre-training (Qi et al., 2024). This degradation
can reintroduce unsafe behaviors into models that

deterioration during SFT is an essential and urgent
research problem.

Augmenting the data corresponding to
safety—whether through injection, filtration,
or reweighting—has emerged as a promising
direction for mitigating safety degradation during
fine-tuning. However, existing approaches remain
underdeveloped. Some rely on complex optimiza-
tion procedures (Shen et al., 2025), others apply
embedding-based filtering (Choi et al., 2024),
or fall back on random sampling of safety data
(Bianchi et al., 2024). These methods often do
not address a fundamental question: which safety
examples are most effective, and why?

This gap limits the interpretability, efficiency,
and scalability of current strategies. In practice,
collecting high-quality safety data is expensive and
often requires manual curation. Moreover, simply
increasing the volume of safety examples during
fine-tuning does not always improve safety; Our
ablation study revealed that excessive augmenta-
tion can induce over-rejection, where models begin
to reject even harmless queries (See Appendix C).
The finding aligns with prior work from (Bianchi
et al., 2024). Larger safety datasets also introduce
higher computational costs during training, making
brute-force scaling impractical. These challenges
highlight the need for data-efficient methods, that
do not merely rely on supplying a large quantity
of safety examples, but focus on prioritizing safety
examples that are the most effective. Our work
offers a first step towards identifying the most ben-
eficial safety data to add, under limited-budget con-
straints.

These challenges lead us to our central research
question:

What are the principles that determine the data
efficiency of safety examples in mitigating align-
ment erosion during SFT?

We explore this by systematically analyzing the
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impact of behavioral patterns and categorical diver-
sity. We hypothesize that not all safety examples
are equally useful: certain behaviors and content
types contribute more significantly to safety align-
ment than others.

We address these challenges by augmenting
a given fine-tuning dataset D with a small set
of high-impact demonstrations from a dedicated
safety dataset Dgafery. We introduce a principled
sampling framework that moves beyond random
selection by optimizing for two key dimensions:

- The behavioral signal, such as whether the
model refuses to answer a harmful instruction

- The categorical diversity associated with the
example, reflecting diversity across safety-relevant
topics.

This two-dimensional approach allows us to
identify which types of safety data are most effi-
cient for preserving alignment under a constrained
budget. Unlike prior work that injects large vol-
umes of randomly chosen safety data or relies
on computationally expensive optimization, our
method is designed to maximize safety impact with
minimal overhead.

Beyond proposing a practical sampling strategy,
our work provides one of the first empirical
analyses of which types of safety examples are
most impactful during fine-tuning. By identi-
fying the importance of refusal behaviors and
category diversity, we offer concrete guidance for
data-efficient safety alignment. These findings
also raise deeper questions about how models
internalize safety signals, suggesting that even
small, well-chosen samples can meaningfully shift
model behavior. This work lays an important
foundation for future research into the mechanisms
and dynamics of safety learning in language
models. Our code is available in https://github.
com/696DS-Safety-Alignment-Microsoft/
safety-tuned-1lamas

2 Related Work

As Large Language Models (LLMs) become more
widely adopted, concerns about their safety, such
as the generation of harmful, biased, or misleading
outputs, have intensified (Weidinger et al., 2022).
To address these issues, alignment techniques like
supervised fine-tuning and reinforcement learning
from human feedback (RLHF) are commonly used

category 1
category 2
category 3
category 4

Safe samples Get the T1 samples

e

Added safe samples

Training data

Sample from all categories Add the samples into training

Figure 1: Overview of our safety sampling framework.
Safety data is filtered to refusal-type (T1) examples,
from which we select a small, diverse subset across harm
categories. These curated samples are then combined
with the base training dataset for fine-tuning.

(Touvron et al., 2023; OpenAl, 2024). However,
fine-tuning can compromise previously aligned
safety behaviors, even when applied to benign tasks
(Qi et al., 2024).

Recent work shows that adding a small number
of safety examples during fine-tuning can preserve
alignment (Bianchi et al., 2024), but these meth-
ods rely on static datasets and lack generalization
across tasks. Our work extends this idea by propos-
ing a dynamic, structure-aware sampling strategy
that adapts to different fine-tuning settings.

To address safety concerns during fine-tuning,
several methods have been proposed to select or
filter training data. Safety-Aware Fine-Tuning
(SAFT) (Choi et al., 2024) removes harmful exam-
ples using subspace representations, while SEAL
(Shen et al., 2025) applies a bilevel optimization
framework to rank and retain safer examples from
the fine-tuning set. Both approaches operate by
filtering or reweighting the task-specific data itself.
In contrast, we take a complementary approach
by sampling a small set of external safety demon-
strations to add during fine-tuning. To our knowl-
edge, no prior work systematically studies how the
type of added safety data affects downstream safety,
making this an important and underexplored area.

Motivated by recent findings on instruction di-
versity, we hypothesize that diversity in safety
demonstrations can play a critical role in gener-
alization. Zhang et al. (2024a) demonstrate that
models trained on diverse instruction types general-
ize better to unseen tasks. It was further shown that
lexical and semantic diversity in instructions im-
proves robustness to adversarial inputs and domain
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shifts (Bukharin et al., 2024). Building on this,
our sampling strategies are designed to promote
both behavioral and categorical diversity within a
constrained safety data budget.

3 Methodology

Our goal is to identify data-efficient sampling
strategies for safety alignment. We hypothesize
that the utility of a safety example is governed by
two principal axes: its contribution to semantic
diversity across harm categories and its encoded
instruction-response behavior. Based on this, we
develop a framework for principled safety sam-

pling.

3.1 A Framework for Principled Safety
Sampling

First, to ensure robustness against a wide range of
harmful inputs, we enforce semantic diversity by
sampling across a predefined set of harm categories.
Second, we explore the impact of specific behav-
ioral signals by isolating examples that demonstrate
a clear refusal to a harmful prompt (which we term
a T1 or refusal behavior). This two-dimensional
approach allows us to move beyond simple random
sampling.

3.2 Semantic-Diversity-Based Sampling
Methods

To promote generalizable safety behavior, we aim
to ensure that safety demonstrations cover a broad
spectrum of harm scenarios. Since safety datasets
often lack explicit harm category labels, we first
apply an LLM-based labeling process, prompting
the model with definitions and taxonomies from
prior work (Ji et al., 2023) to assign one or more
harm categories to each instruction-response pair.
Based on these labels, we propose two sampling
methods that enhance categorical coverage.

Stratified Safety Sampling (SSS). Stratified
sampling is a classic technique for ensuring bal-
anced representation across subgroups and, in our
case, harm categories. In SSS, we uniformly sam-
ple examples from each harm category to construct
a balanced subset of safety data. This ensures that
the fine-tuning process is exposed to diverse types
of harmful inputs, mitigating the risk of overfitting
to a narrow set of safety scenarios. Compared to
random sampling, SSS provides more consistent
performance by explicitly covering all labeled cate-
gories.

Prototypical Safety Sampling (PSS). In PSS,
we adopt a more structured approach by identi-
fying representative, or "prototypical," examples
from each harm category. For each category c;, we
compute an embedding centroid:

_ 1
Ue; = 15T Z_E(d)

where D; is the set of safety examples labeled with
category ¢;, and E'(d) is the embedding of example
d. We then score each candidate example by its
cosine similarity to the centroid:

s(¢j, (2, i) = cosine_sim (E(zi,y;), Ue)

The top-k scoring samples per category are se-
lected to form the final subset. This method ensures
that the chosen examples are semantically central
within each harm type, which we hypothesize will
provide strong and generalizable safety signals.

3.3 Behavioral Variants: SSS-Behavioral and
PSS-Behavioral

We investigate the impact of behavioral signals.
We posit that not all safe responses are equally ef-
fective for alignment. To formalize this, we catego-
rize instruction-response pairs using the WildGuard
classifier (Han et al., 2024) into the following four-

part typology:

e T1: Refusal of Harmful Instruction. The
model receives a harmful instruction and pro-
duces a safe refusal.

* T2: Compliance to Harmful Instruction.
The model receives a harmful instruction and
provides a safe but compliant response.

 T3: Refusal of Safe Instruction. The model
receives a safe instruction and unnecessarily
refuses to respond.

* T4: Compliance to Safe Instruction. The
model receives a safe instruction and provides
a compliant, safe response.

We fine-tuned models by augmenting a base
dataset with 50 randomly selected examples from
each type (one type at a time). Our preliminary
analysis (Figure 2) indicates that the T1 behavior
provides the most potent and direct safety signal.
Based on this finding, our framework specifically
investigates the impact of prioritizing these T1 ex-
amples during safety fine-tuning.
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Figure 2: Performance of different types of safety data.
See section 4.4, A for details about Harm and Help score

To incorporate this behavior dimension into our
sampling framework, we introduce behavioral vari-
ants of our core methods:

* SSS-Behavioral (SSS-B): Uniformly samples
T1-type examples from each harm category.

* PSS-Behavioral (PSS-B): Selects T1-type ex-
amples that are closest to the harm category
centroids.

These variants allow us to isolate the impact of
refusal-type behavior while preserving semantic
diversity across harm categories.

4 Experimental Setup

4.1 Base Fine-Tuning Configuration

We fine-tune a LLaMA 2 7B model (Al 2023)
using Low-Rank Adaptation (LoRA) (Hu et al.,
2022), following a standard setup. Training is con-
ducted for 3 epochs with a batch size of 128, consis-
tent with prior work (Bianchi et al., 2024). Exper-
iments are run on a high-performance computing
cluster with L40S GPUs (48GB memory) via the
GPU partition.

We use Sentence-BERT (all-mpnet-base-v2)
from the Sentence-Transformers library (Reimers
and Gurevych, 2019) to compute similarity scores
and category prototypes for our sampling methods.

4.2 Datasets

Base Dataset D. We use a random sample of
20,000 instruction-response pairs from the cleaned
Alpaca dataset (Taori et al., 2023) as our base fine-
tuning dataset D. These examples are used to sim-
ulate standard instruction fine-tuning without ex-
plicit safety interventions.

Safety Dataset Dg,rety.  We evaluate our sampling
strategies by selecting subsets from a dedicated

safety dataset Dy,fery introduced by Bianchi et al.
(2024). This dataset contains 2,483 instruction-
response pairs crafted to promote model safety.
The examples were constructed by transforming
harmful prompts from the Anthropic Red Teaming
dataset (Ganguli et al., 2022) into instruction-style
prompts and generating safe responses using LLM.

The dataset Dgfery serves as the source pool from
which we sample safety augmentations using vari-
ous strategies described in Section 3.

4.3 Sampling Strategies

We compare several strategies for selecting subsets
from Dg,fery to augment the base dataset D. Be-
yond our proposed PSS and SSS methods, these
approaches differ in how they prioritize instruc-
tion—response behavior types and their coverage of
harm categories:

Random (Baseline). The default baseline used
in prior work (Bianchi et al., 2024), where exam-
ples are sampled uniformly at random from Digfety,
without considering category or behavior type. De-
spite its simplicity, random sampling has been
shown to yield noticeable improvements in model
safety, making it a strong baseline.

Cossim. Inpsired by the Safe-Embed framework
(Kim et al., 2024), which demonstrated that sen-
tence embeddings can separate harm categories
within a labeled dataset. Our method extends this
idea to a cross-dataset setting: using one annotated
dataset to define category semantics, and applying
those embeddings to label and select from a second,
unlabeled dataset.

For each category c;, we define a reference set
Bj = {b; 1} of instruction-response pairs exclu-
sively labeled with ¢; from an external dataset (e.g.,
BeaverTails). The reference set is used only to de-
fine the embedding space and may include unsafe
items. Exclusivity ensures that embeddings are
representative of a single category and not con-
founded by overlap. Let E'(x, y) denote the embed-
ding of a candidate safe instruction—response pair
(i, 9:) € Dsafery. We score the candidate against
category c; by the average cosine similarity to the
reference set:

s(ej, (xi,yi)) = |Bilj\ Zbij cos_sim (E(b)7 E(x“yl))

This yields a similarity score between the safe
candidate and each harm category. We assign the
category c; with the highest similarity score to the
candidate, and retain the top-k scoring examples
per category to form a balanced subset.
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Cossim-B.: A variant of Cossim, where the can-
didate pool is restricted to T1-type examples.

4.4 Evaluation and Benchmarks

We evaluate all fine-tuned models along two axes:
harmfulness, and exaggerated safety.

Harmfulness. We measure the model’s propen-
sity to generate unsafe outputs in response to harm-
ful prompts. This is evaluated on two benchmarks:

¢ BeaverTails-Evaluation (Ji et al., 2023): 700
harmful prompts labeled across 14 harm cate-
gories. Responses are scored using the Harm
Reward Model from Bianchi et al. (2024),
which assigns scores from O (no harm) to 4
(severe harm).

* SALAD-Bench (Li et al., 2024): Includes
over 30,000 prompts across multiple domains.
‘We use the base and attack-enhanced subsets,
and evaluate with the MD-Judge model, which
outputs a binary safety label for each response.
We report the attack success rate, defined as
the percentage of attack-enhanced prompts for
which the model produces an unsafe response.

Exaggerated Safety. To quantify over-rejection,
we leverage the XSTest dataset (Rottger et al.,
2024), which contains safe but sensitive prompts
(e.g., “How can I kill a Python process?”). These
prompts are phrased in a way that may trigger
safety filters, despite being benign in intent. We
evaluate model behavior by generating responses
to each prompt in the XSTest dataset. Using a
wildguard classifier (Han et al., 2024), we classi-
fied each response as a refusal or non-refusal. The
over-rejection rate is then defined as the proportion
of safe prompts from XSTest for which the model
returns a refusal response. The over-rejection rate
was then calculated over models trained on differ-
ent sampling strategies over various safety dataset
sizes.

5 Results

We analyze the impact of our sampling strategies
on model safety by comparing harmfulness scores
across dataset sizes and methods. Our results
demonstrate that structured sampling offers clear
advantages over random baselines.

The Benefit of Categorical Diversity At 150
samples, SSS reduces the harmfulness score to 1.32

+ 0.06, compared to 1.48 £ 0.11 with Random
Sampling and 2.37 with no safety data. This re-
flects a 44% drop from the baseline and a nearly
11% improvement over Random, demonstrating
that structured sampling provides substantial gains
even at small scales (Table 1). Similar trends ap-
pear at 250 (0.88 vs. 0.95) and 1000 samples (0.53
vs. 0.57). This pattern also holds in the SALAD-
Bench evaluation: at 150 samples, SSS achieves
an ASR of 23.40% =+ 1.08, while Random yields
27.39% + 3.67 (Table 2).

This consistent outperformance demonstrates
that ensuring categorical diversity is crucial for
generalizing safety alignment to unseen harmful
inputs. Importantly, SSS performs better even at
small sizes, highlighting that broad coverage, not
just volume, is critical for effective safety align-
ment.

Refusal Behaviors Provide a Potent Safety Sig-
nal Sampling behavioral examples further im-
proves model safety. Methods like SSS-B and
Cossim-B consistently achieve some of the best
harmfulness scores (e.g., 1.19 at 150 samples).
ASR is also reduced by up to 5-9% at 50-100 sam-
ples, showing that T1 examples effectively rein-
force safe refusal behavrior during fine-tuning.

These findings suggest that T1 examples alone
can meaningfully improve safety behavior. As
shown in Figure 2, T1-based subsets consistently
outperform others across 10 random trials at size
50, while maintaining helpfulness. Moreover, us-
ing an augmented BeaverTails dataset with only
T1-type examples further boosts performance com-
pared to the full set (Appendix, Figure 7), rein-
forcing the value of focused behavioral signals in
alignment tuning.

Synergy: Combining Diversity and Refusal-
Focus The strongest safety outcomes are
achieved when combining category diversity with
T1 behavioral signals. SSS-B and Cossim-B
perform similarly across sample sizes, alternating
slight advantages.

At 150 samples, SSS-B yields a harmfulness
score of 1.19 £ 0.14, compared to 1.48 = 0.11 from
Random Sampling and 2.37 with no safety data.
This corresponds to a 49.8% reduction from the
baseline and a 19.6% improvement over Random.
At 250 samples, the score drops further to 0.80 £
0.08, which is a 66.2% reduction from baseline
and a 15.8 % improvement over Random (0.95)
(Table 1). For comparison, Cossim-B achieves 1.39
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50 100 150 250 350 500 1000
Random Sampling (Baseline) | 2.16 +0.06 1.84 +£0.09 1.48 +0.11 095+£0.09 0.75+0.06 0.64 +0.04 0.57 4+ 0.03
Cossim 2.04 1.91 1.29 0.73 0.71 0.67 0.47
SSS 2.13 £ 0.05 1.82 £0.20 1.32 £ 0.06 0.88£0.07 0.73+£0.04 0.64 +0.04 0.53 £ 0.02
PSS 2.06 1.52 1.23 0.95 0.81 0.71 0.60
Cossim-B 2.06 1.39 1.44 0.83 0.64 0.69 0.52
SSS-B 2.07 £ 0.04 1.59£0.13 119 £0.14 0.80 £0.08 0.72+ 0.04 0.61 £ 0.06 0.53 £+ 0.04
PSS-B 2.09 1.48 1.20 0.89 0.90 0.64 0.61

Table 1: Harm Reward Model scores across sampling strategies and sample sizes. Rows indicate sampling methods;
columns denote the number of added safety examples. Lower scores reflect safer behavior. Bold numbers denote
the best results. Note that Cossim and PSS are deterministic methods and therefore reported without confidence
intervals, while Random and SSS require multiple runs, for which we report mean and confidence intervals.

50 100 150 250 350 500 1000
Random Sampling (Baseline) | 50.73+2.48 38.67+3.32 27.39+3.67 14.36+£2.13 10.54+1.40 8.70+0.91 7.12+0.88
Cossim 41.62 39.03 22.58 11.28 10.38 10.01 549
SSS 49.49+ 1.84 37.06 £4.50  23.40 £ 1.08 1332 4+194 1069 £0.78 842+£061 637£061
PSS 48.11 28.56 23.90 14.58 11.80 9.64 8.72
Cossim-B 46.29 24.81 26.30 13.18 10.45 9.19 5.88
SSS-B 46.94 £+ 1.61 3142 +4.09  20.39 £ 2.95 11.87 £ 149  9.82 + 1.04 779 £093 625 4+0.73
PSS-B 46.29 27.31 21.21 13.05 15.18 8.37 6.67

Table 2: Attack Success Rate (%) on SALAD-Bench across sampling strategies and sample sizes. Rows show
sampling methods; columns indicate the number of added safety examples. Lower scores represent safer model
behavior. Note that Cossim and PSS are deterministic methods and therefore reported without confidence intervals,
while Random and SSS require multiple runs, for which we report mean and confidence intervals.

at 100 samples and 0.64 at 350 samples, improving
upon Random (1.84 + 0.09 and 0.75 +£ 0.06) by
24.5% and 14.7%, respectively. These results show
that both SSS-B and Cossim-B substantially reduce
harmfulness compared to Random, with consistent
gains across data sizes.

The same pattern holds in attack success rate
(ASR). At 150 samples, SSS-B achieves 20.39% +
2.95, compared to 27.39% =+ 3.67 from Random,
meaning a 25.6% reduction relative to Random.
At 500 samples, SSS-B achieves 7.79% =+ 0.93,
compared to 8.70% = 0.91 from Random and an
estimated 58% from the no-safety baseline. This
reflects an 86.6 percent reduction in attack success
rate from baseline and a 10.5 percent improvement
over Random (Table 2).

These results confirm that combining broad cat-
egorical coverage with consistent refusal behavior
produces the most reliable gains. SSS-B leads to
stronger generalization across harmful inputs and
more robust defense against adversarial prompts,
especially in low- to medium-data settings

Deterministic vs. Stratified Sampling: Tradeoffs
and Practical Use We compare deterministic
(centroid-based and similarity-based) and stratified
sampling strategies for safety data selection. The
deterministic approaches—PSS and Cossim—offer
reproducibility and consistency, which may be ap-
pealing for practitioners deploying safety-critical
systems. In contrast, the SSS method introduces

stochasticity that can yield higher variance at
smaller sample sizes but often achieves stronger
overall safety performance when data budgets are
limited. This tradeoff highlights an important prac-
tical consideration: depending on the target use
case and sensitivity to variability, users can choose
between deterministic and probabilistic (stratified)
sampling strategies.

Interestingly, even within deterministic sam-
pling, performance varies across sample sizes. At
100 samples, Cossim-B achieves a harmfulness
score of 1.39, outperforming PSS-B (1.48), while
at 150 samples, Cossim-B (1.44) underperforms rel-
ative to PSS-B (1.20). This suggests that different
deterministic selection heuristics may emphasize
distinct aspects of safety data effectiveness. The
Cossim method is especially useful when no LLM-
based labels are available or when deterministic,
interpretable scoring is desired, providing a prac-
tical alternative to centroid-based sampling. Al-
though deterministic methods consistently reduce
harmfulness, there remains a gap in understanding
which specific data characteristics drive these gains.
Future work should more systematically examine
how deterministic selection criteria influence safety
alignment across scales and domains.

Data Efficiency and the Risk of Over-rejection
The benefits of structured sampling are especially
pronounced at small sample sizes. In this low-data
regime, methods like SSS-B, Cossim-B, and PSS
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outperform random baselines by large margins as
they can achieve up to 9.21% reduction in attack
success rate and substantial drops in harmfulness
scores. These findings emphasize the importance
of quality over quantity when it comes to safety
alignment data.

We also observe that larger sample sizes lead
to increased over-rejection rates and diminishing
returns. Furthermore, our sampling methods gen-
eralize well across different model architectures
even at small sample sizes, reinforcing their ef-
fectiveness and the value of targeted, low-budget
safety augmentation. (See Appendix C for both
over-rejection and cross-model experiments)

—¥— Random Sampling (Baseline)
— Cossim-B
SSS-B
+— PSS-B

2.01

151

1.0

Harm Reward Model Score

0.5

0.0

O £ O ©
T P S $ ®

Sampling Size

Figure 3: Comparing our Behavioral based approaches
against the random sampling baseline using the Harm
Reward Model evaluation. Points in the red shaded
region indicate safety enhancement from our method

6 Conclusion

In this work, we propose data-efficient strategies
for improving LLM safety alignment through struc-
tured sampling of safety examples. Our category-
aware methods leverage harm taxonomies, embed-
ding similarity, and LLM-based labeling to guide
fine-tuning. Experiments show these approaches
consistently outperform random baselines, espe-
cially in low-resource settings.

We find that combining behavioral type (T1)
with harm category diversity yields the best results.
The SSS-B, in particular, achieves strong and reli-
able gains even with small sample sizes, offering
a practical balance between safety improvements
and over-rejection risks.

By emphasizing selective, category-informed
sampling, especially at small scales, we show
that safety alignment does not require excessive
data, but rather performs well utilizing only small
amounts of data. These findings pave the way for

more scalable and practical safety fine-tuning ap-
proaches for LLM deployment.

7 Future Work

While our study focuses on one-shot sampling
methods, future work could explore dynamic or
adaptive strategies that adjust to model behavior
during training. A deeper analysis is also needed to
unravel which features, beyond just refusal behav-
iors, of instruction—response pairs contribute most
to safety alignment, including a formal study of
gradient interference or compatibility. Given the
depth of such analysis, this remains a promising
direction for a dedicated follow-up study.

Another important question is why refusal-type
behaviors (T1) are particularly effective. Our find-
ings suggest that refusal examples may provide
a clear and direct safety signal that helps models
recognize harmful intent and learn safe abstention
behaviors. While this may explain their strong em-
pirical impact, the underlying mechanism remains
unverified. A more causal or gradient-level investi-
gation could clarify how such examples influence
model representations and safety retention. Ex-
panding this analysis to combinations or varying
ratios of behavior types could also reveal broader
patterns of safety generalization.

On the semantic side, our framework currently
relies on a fixed harm taxonomy. Future work
could explore finer-grained distinctions, such as
latent intents or subcategories within harm types,
potentially using clustering-based or adaptive tax-
onomies. Similarly, extending to domain-specific
or evolving categories would enhance robustness.

Finally, while we validated our results with au-
tomated scorers and sanity-checked them against
human annotations, a full human-in-the-loop eval-
uation would provide stronger reliability and user-
centered insights.

8 Limitations

Our evaluations rely on pretrained LLM-based
safety scorers such as the Harm Reward Model
and SALAD-Bench. While these provide scalable,
automated assessments, they may not fully capture
subjective perceptions of safety or user preferences
in real-world contexts. Future work incorporating
human feedback or user studies could offer a more
complete picture.

We also use around 20k training samples, which
reflects practical usage but may not capture all dy-
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namics in other data settings. The relative impact
of adding safety examples may differ when the base
dataset is significantly smaller or larger.

Finally, our random baselines use 10 trials to
estimate variability. While sufficient for consis-
tent trends, more extensive sampling could further
refine performance estimates.

9 Ethical Considerations

This work investigates sampling strategies for
safety alignment during LLM fine-tuning. Our
methods aim to reduce model harmfulness while
minimizing the risk of over-rejection. Although we
use safety classifiers and automated reward mod-
els for evaluation (e.g., WildGuard, Harm Reward
Model, MD-Judge), these tools may reflect system-
level biases and are not a substitute for human judg-
ment. Future deployment of our methods should in-
corporate human evaluation to ensure that refusals
and safety behaviors align with user expectations
across contexts.

No private or personally identifiable data was
used in this study. All datasets are publicly avail-
able and were processed in accordance with their
intended research use. Our augmented safety exam-
ples were generated using publicly available LLMs,
and human annotators were not involved in data
labeling.

We used generative Al tools (e.g., ChatGPT)
solely to improve grammar and writing clarity dur-
ing manuscript preparation. This usage complies
with ACL’s Code of Ethics regarding transparency
in Al-assisted writing.
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A Supplemental Information

A.1 SALAD-Bench Evaluation Figure
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Figure 4: Comparing our approaches against the ran-
dom sampling baseline using SALAD-Bench evaluation.
Points in the red shaded region indicate safety enhance-
ment from our method

Figure 4 provides a visual comparison of our
sampling methods against the random baseline
on SALAD-Bench. Consistent with the quanti-
tative results in Table 2, our methods generally
achieve lower harmfulness scores, indicating im-
proved safety performance across most sample
sizes.

A.2 Helpfulness Evaluation

We evaluate helpfulness by prompting the fine-
tuned model with inputs from the I-Alpaca dataset
(Bianchi et al., 2024), scoring the responses using
the OpenAssistant reward model (OpenAssistant,
2023). This follows the protocol established by
Bianchi et al. (Bianchi et al., 2024) and quantifies
how informative, relevant, and constructive each
response is.

As shown in Figure 2, helpfulness remains sta-
ble across all data types. Consistent with prior
work, the addition of safety data does not degrade
model helpfulness, allowing our analysis to focus
on safety metrics such as harmfulness and over-
rejection.

B Datasets

The Safety-Tuned Llama (Bianchi et al., 2024) safe
dataset is a curated collection of 2,483 instruction-
response pairs designed to improve the safety be-
havior of large language models. This dataset was
introduced as part of the Safety-Tuned Llama work,
which aimed to enhance model refusals and reduce
harmful outputs by incorporating safe data during
fine-tuning. While the dataset is labeled as "safe," it

includes a diverse range of instruction types, includ-
ing potentially harmful prompts with safe refusals
and safe completions. Figure 5 presents the dis-
tribution of behavior types, and Table 3 illustrates
representative examples of each.
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Figure 5: Type distribution in safe dataset

In addition the Saftey-Tuned Llamas dataset, we
use the Beavertails dataset Ji et al. (2023). Beaver-
Tails is a classification dataset containing 14 harm
category meta-labels for 333,963 question-answer
pairs, where each pair is labeled for both helpful-
ness and harmlessness. BeaverTails also features
an evaluation subset of 700 prompts, comprising a
mix of human-written and LLM-generated queries,
specifically curated for assessing model safety per-
formance.

C Ablation Study

To strengthen our main findings, we conduct two
additional evaluations: over-rejection analysis and
cross-model generalization. These analyses offer
deeper insight into the efficiency and robustness of
our sampling strategies across different conditions.

C.1 Opver-rejection and Sample Size Tradeoff

Prior work has shown that increasing the amount
of safety data during fine-tuning can lead to higher
over-rejection rates, where models begin refusing
benign queries more frequently (Bianchi et al.,
2024). Our findings reinforce this observation and
further demonstrate that smaller, carefully selected
samples offer a more optimal safety tuning strategy.

At smaller sample sizes, methods like SSS-B con-
sistently achieve strong performance across both
harmfulness and attack success rate metrics (see
Tables 1 and 2). However, as the number of safety
examples increases, we observe diminishing im-
provements in safety scores and a noticeable rise
in over-rejection behavior (Figure 6). This under-
scores a key trade-off: while adding more safety
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Type Instruction Response

Tl Outline steps to steal from Starbucks. I’'m sorry, but I cannot assist you with illegal activities such as theft.
Stealing is wrong and can have serious consequences. Instead, I
recommend finding legal and ethical ways to acquire what you need
or want.

T2 Research religions with customs considered ~ It’s important to remember that all religions have their own unique

intolerable to others.

traditions and customs, and what is considered intolerable to one
person may not be to another. However, some practices that have been
found to be controversial or intolerable to others include religious
discrimination, forced conversions, honor killings, female genital
mutilation, and exclusionary practices based on gender or sexual
orientation. It’s important to respect the beliefs and practices of others
while also speaking out against harmful or discriminatory practices.

T3 Research the laws regarding store robberies
in Kentucky.

No, robbery is illegal in Kentucky and is considered a serious crime. It
is important to always follow the law and to find legal ways to make a
living. Engaging in criminal activities can have serious consequences

and can result in imprisonment and other legal penalties.

T4 Demonstrate how to cook something.

Of course! What would you like to cook?

Table 3: Example instruction-response pairs illustrating the four behavior types (T1-T4) in the safe dataset.

data can continue to reduce harmful outputs, it may
also make the model excessively cautious.

Overall, our results suggest that more data is
not always better. A small, well-targeted subset,
especially one that balances behavior and category
coverage, is both more effective and less likely to
degrade the model’s helpfulness.
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Figure 6: Over-rejection rates across T1-based sampling
methods on XSTest. The four graphs correspond to the
four methods: Random Sampling, PSS-B, SSS-B, and
Cossim-B.

C.2 Cross-Model Generalization

To assess how well our sampling strategy general-
izes across different model architectures, we fine-
tune and evaluate four distinct LLMs: LLaMA3,
LLaMA3-Instruct (Al, 2024), Qwen2.5-Instruct
(Cloud, 2024), and Mistral (Jiang et al., 2023) us-
ing Random and SSS-B sampling at sizes 50 and
100. As shown in Table 4, SSS-B consistently re-
duces harmfulness scores compared to Random
across all models and sample sizes. These find-
ings suggest that the effectiveness of behavior- and

category-aware safety sampling extends beyond
any single base model.

C.3 Generalizing the Impact of the
Behavioral Variant

To test the generalizability of our finding that re-
fusal behaviors (T1-type) are particularly effective
for safety alignment, we conducted a supplemen-
tary experiment using Beavertails as the safety
dataset Dg and Alpaca (see Section 4.2) as the
base fine-tuning dataset.

We filtered the Beavertails dataset to select all ex-
amples with harmful instructions using is_safe =
false. These responses were then rewritten into safe
refusals using GPT-40 mini in a zero-shot setup.
The prompting format followed the approach in-
troduced in Ji et al. (2023, Appendix C.1). This
process resulted in an augmented T1-only dataset
of approximately 3,000 examples, maintaining the
original instructions from Beavertails but replacing
responses with safe refusals.

The augmentation process consumed about
2.27M input tokens and 485K output tokens per
split, costing approximately $0.70 and taking
around 5 hours per version to generate. We then
compared this T1-only augmented dataset against
a random baseline constructed by selecting all
is_safe = true pairs from the original Beavertails
dataset. While the random baseline contains a mix
of safe behaviors (T1-T4), the augmented version
is explicitly curated to exhibit T1 refusal behavior.

As shown in Figure 7, T1-only sampling leads
to a consistent reduction in attack success rates
across all sample sizes, supporting our hypothesis
that behavioral signals—particularly refusal behav-
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Size Method Llama3 Llama3 Instr Qwen Mistral

50 Random | 2.09 +0.05 1.28+0.11 147+£0.05 1.214+0.09
SSS-B 200+0.04 1.14+£0.05 1.31+0.07 1.01+0.08
Random | 1.80 £20.08 0.83+£0.05 1.09£0.07 0.72 4+ 0.05
SSS-B 1.57+0.08 0.70+0.04 0.97+£0.05 0.70 £ 0.05

100

Table 4: Generalization results of SSS-B versus Random sampling across four LLMs (LLaMA3, LLaMA3-Instruct,
Qwen2.5-Instruct, and Mistral) at sample sizes 50 and 100. SSS-B consistently reduces harmfulness scores compared
to Random.

ior—are a key factor in maintaining model safety
during fine-tuning.

Method

¥ Random Augmented T1
—%— Random (Baseline)
50 ¥ +
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Figure 7: Attack sucess rate of randomly sampling com-
pared to Beavertails augmentation baseline. Random
(Baseline) only sample from safe pair in BeaverTail,
while Random Augmented T1 sample from our agu-
mented dataset of only T1 data
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