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Abstract

Classifying contact center interactions into a
large number of categories is critical for down-
stream analytics, but challenging due to high
label cardinality, and cost constraints. While
Large Language Models (LLMs) offer flexi-
bility for such tasks, existing methods degrade
with increasing label space, showing significant
inconsistencies and sensitivity to label ordering.
We propose a scalable, cost-effective two-step
retrieval-augmented classification framework,
enhanced with a multi-view representation of
labels. Our method significantly improves ac-
curacy and consistency over baseline LLM ap-
proaches. Experiments across 4 private and 5
open datasets yield performance improvements
of upto 14.6% while reducing inference cost by
60-91% compared to baseline approaches.

1 Introduction

Contact centers record and store transcripts of inter-
actions between agents and customers for multiple
use cases, including agent quality assurance and
business insights. With hundreds of thousands of
interactions happening on a daily basis, large con-
tact centers businesses often have the need to clas-
sify or label these interactions for targeted analysis
and downstream workflows. For large businesses,
these classes often run into the hundreds. Ability
to classify interactions accurately even for minority
categories is critical for downstream applications
since the frequency of a category is often not a
measure of the business value of it. Given the large
volume of interactions, it is also imperative for such
classification to be cost effective as well.
Established approaches for high-cardinality clas-
sification primarily focus on novel model archi-
tectures (Kowsari et al., 2017; Botzer et al., 2023;
Lei et al., 2022), which demonstrate effectiveness
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within specific domains or fixed label sets. How-
ever, this paradigm presents significant scalability
challenges for contact center Al platforms used
by enterprise and Business Process Outsourcing
companies serving multiple business verticals that
requires domain-specific label taxonomies, neces-
sitating separate model development and mainte-
nance, a resource-intensive approach that becomes
prohibitively expensive at scale.

The dynamic nature of businesses further com-
pounds these challenges. As organizations evolve,
their requirements change, leading to frequent
model retraining or complete redevelopment to
accommodate new label categories or taxonomic
restructuring. Additionally, curating high-quality
labeled datasets for training domain-specific mod-
els remains a persistent bottleneck, particularly for
specialized business domains where expert anno-
tation is costly and time-consuming. These limita-
tions highlight the critical need for flexible, gener-
alizable approaches that can adapt to diverse label
spaces without extensive retraining, while maintain-
ing competitive performance across varied domains
and evolving business requirements.

Recent advances in LLMs with large context
sizes have made it possible to consider them as
an alternative solution approach. Multiple strate-
gies (Yu et al. (2023a), Yu et al. (2023b), (Rubin
et al., 2022)) have been proposed for this including
few shot learning and retrieval-based approaches.
However, empirical studies conducted by us reveal
limitations of these approaches with increasing car-
dinality. Specifically, with higher number of labels,
responses generated by LLMs are found to be ex-
tremely sensitive to the order in which the labels
are provided in the prompt (Liu et al. (2023), Zhang
et al. (2023c¢), Lu et al. (2022)).

In this paper, we first establish the limitations of
existing LLM-based approaches. We then propose
a novel two-step retrieval-augmented classification
technique with a multi-view representation of the
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labels. Through empirical results we show that
the proposed approach significantly improves con-
sistency and overall accuracy of results compared
to existing LLM-based methodologies, in a cost
effective manner.

Our key contributions in this work are:

* Sections 1, 2, and 3 introduce the high-
cardinality classification problem in contact
centers and outline challenges with existing
methods.

* Section 4 highlights the limitations of vanilla
LLM-based classification under high label car-
dinality.

 Section 5 presents our scalable, cost-effective
two-stage retrieval-augmented approach with
multi-view label representations.

» Section 6 empirically validates our method
via experiments and ablations on proprietary
and public datasets.

2 Problem Formulation

Given a dataset D = {(x;,y;)}_ of input texts
x; and labels y; € YV ={y1,...,yr}, and |Y| =
L > 1 (high-cardinality label space), find a func-
tion f : X — ), minimizing output variance and
classification error.

3 Data Sources and Composition

Empirical analysis and experimentation in this
work are carried out with proprietary Contact Cen-
ter datasets, as well as selected open datasets.
These datasets, listed in Table 1, span diverse do-
mains, and has high label cardinality in the range
from 77 to 800.

3.1 Contact Center Datasets

We use transcripts of agent-customer interactions in
contact centers, in English, across four distinct do-
mains: Insurance, E-Commerce, Travel, and Debt
Collection'. This includes transcripts from both
chat and voice interactions representing a wide va-
riety of topics regularly handled by contact centers
in these domains.

!These datasets cannot be released as they are proprietary.

Dataset #Labels #Val Set #Avg Tokens
E-Commerce 120 10,000 1,200
Insurance 800 10,000 1,320
Travel 160 10,000 600
Debt Collection 200 10,000 2,000
DBPedia 219 60,794 153
CLINC150 150 4,500 15
Banking77 77 3,000 13
Web of Science 134 9,000 300
Amazon Reviews 510 10,000 63

Table 1: Dataset Statistics for Internal Contact Center
and Open Source Datasets

3.2 Open Datasets

To demonstrate the broader applicability of this
work, we use the following 5 open datasets as is or
adapted for our use case and experimental setup.

Standard Open Datasets: We use the follow-
ing 2 single-label flat hierarchy datasets without
modifications: CLINC150 (Larson et al., 2019) and
Banking77 (Casanueva et al., 2020).

Adapted Open Datasets: To expand our anal-
ysis across more diverse data, we also adapt the
following open datasets to suit our experimental
setup and the primary use-case of single-label clas-
sification in contact centers: Leaf labels from the
hierarchical datasets Amazon Reviews (Kashnit-
sky, 2020) and Web of Science (Kowsari et al.,
2017) and DBPedia (Lehmann et al., 2015). We
do not use the parent hierarchy information in any
of the above datasets in the ingestion or inference
pipeline.

4 Inconsistency in LLM Predictions for
High-Cardinality Tasks

A key driver for this work is the observed lack of
consistency in the predictions from large language
models under varying label cardinality conditions.
Our findings, shown in Figure 1, reveal a significant
degradation in model reliability as the number of
candidate labels increases, as detailed below.

4.1 Impact of High Label Cardinality

We define Inconsistency as the variance in the out-
puts generated by an LLM when the same prompt
or question is presented multiple times. In the clas-
sification task, to quantify inconsistency for a data
point, we identify the modal class, the class pre-
dicted most frequently across trials, and count the
number of times the LLM output deviates from this
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Figure 1: Inconsistency in LLM Predictions in High-Cardinality Classification. Grouped bar chart showing average
inconsistency in model predictions under shuffled and unshuffled label conditions for Nova-Lite, GPT-40-mini, and

Llama 4 Maverick 17B

modal class.

M

Inconsistency (%) = % ; 1[Yi # Ymodal] X 100

where M is the number of prediction trials, y; is
the LLM output for the i-th trial, ¥moda is modal
class, and 1] is the indicator function, equal to 1
if the condition is true and O otherwise.

For each dataset, we compute inconsistency
across 100 LLM prediction trials on 5000 input
samples and then take the average. The results
across all datasets show significantly high inconsis-
tency, with values of upto 15.8%, indicating sub-
stantial variance in LLM predictions.

4.2 Influence of Label Ordering

We assess the impact of label ordering on predic-
tion stability by shuffling candidate label sequences
across multiple trials. Our analysis shows that mod-
els are highly sensitive to label order, with incon-
sistency values reaching up to 68% for near iden-
tical inputs. This sensitivity correlates with label
cardinality, indicating that large language models
struggle with consistent attention and reasoning
over long label lists. Variance patterns point to
positional bias and attention degradation as major
factors affecting performance in high-cardinality
settings. To isolate the effect of label ordering, we
held prompt templates constant across runs. These
results highlight the importance of our retrieval-
based approach in reducing label space complexity
and minimizing order-dependent variability.

5 Proposed Methodology

We propose a retrieval-augmented classification
framework that addresses the challenges of high-
cardinality label spaces by decomposing the classi-
fication task into two stages:

Stage 1: Candidate Label Retrieval: The re-
trieval component serves as a filtering mechanism
that reduces the classification search space from the
full label vocabulary |£| to a manageable subset
of K candidates, where K < |£|. We also intro-
duce multi-view label representations to improve
retrieval accuracy.

Stage 2: Final Classification: The classifica-
tion component takes the K retrieved candidate
labels and makes the final prediction using an LLM
through zero-shot learning. This stage operates on
a significantly reduced label space, enabling more
focused decision-making, faster inference times
and lower prompt processing cost.

In this section, we detail the different compo-
nents of the proposed methodology, as shown in
Figure 2, from ingestion to inference.

5.1 Input pre-processing

For input texts exceeding 256 tokens, we apply
task-aware summarization using an in-house fine-
tuned FlanT5 7B model (Chung et al., 2022) to
compress content to approximately 256 tokens
while preserving classification-relevant informa-
tion. Refer to Appendix F an example. This pre-
processing step is motivated by empirical evidence
demonstrating that embedding model performance
degrades substantially with longer input sequences,
consistent with findings in dense retrieval literature
(Karpukhin et al., 2020; Reimers and Gurevych,
2019).

5.2 Retrieval Setup

5.2.1 Sampling from Training Set

For each sample x; with corresponding summary
s3, we compute sentence-level embeddings and de-
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Figure 2: Two-stage retrieval-augmented classification pipeline. Ingestion pipeline creates multi-view label
representations from summarized texts and extracts retrieval parameters (TopK, w1, w2, w3) post tuning. Inference
pipeline retrieves top-K candidate labels via vector similarity and performs final classification using LLM

rive the document representation as:

1

el = —
|Si]

Zj = 1‘S"|Embed(si7]~)

where S; represents the set of sentences in summary
si, and Embed(-) denotes the embedding function.
We then select N representative samples for each
label [, using Maximal Marginal Relevance (MMR)
(Carbonell and Goldstein (1998)) to capture the
semantic diversity within each label class.

5.2.2 Multi-View Representation of Labels

Our label representation captures three complemen-
tary aspects, or views, of a given label: label name
(Name View, (NV)), representative examples se-
lected as described in Section 5.2.1 (Examples
View, (EV)), and an LLM-generated description
based on the label name and examples (Descrip-
tion View, (DV)) (Pattnaik et al. (2024))(Refer Ap-
pendix F for examples). Specifically, we create 3
distinct vector representations for each label [:

NV : v{" — Embed(Name(1)) (1)
DV: vl(d) = Embed(Description(l))  (2)
EV: V) ={e;:ie R} 3)

These representations (views) are indexed on
Pinecone (Systems (2021)) to enable efficient
similarity-based retrieval during inference.

The composite similarity score for a query ¢ and
label [ is computed as:

score(q, [) = wy cos(q, Vl(n)) + w9 cos(q, vl(d))
+ w3 max cos(q,€;), 4)
eievl(e)

where q = Embed(q) and 27| w; = 1.

5.3 Retrieval Parameters & Accuracy

Retrieval accuracy is defined as follows:

1
Acc QK = —

v > 1[y € TopK(x)]

(z,y)EV

where V is the validation set, and TopK(z) returns
the K highest-scoring labels for input z.

We determine the ideal view weights w =
[w1, we, w3], and number of retrieved candidates
K by maximizing retrieval accuracy on a held-out
validation set.

This is done via grid search over weight com-
binations w subject to the constraint that retrieval
error rate € = 1 — Accet@K < 0.05. We constrain
the retrieval parameter to 20 < K < 50 based on
empirical evidence that large language model clas-
sification performance deteriorates when presented
with excessive label candidates. The computational
cost of this grid search optimization remains mini-
mal, as it involves only vector similarity computa-
tions without requiring expensive LLM inference
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calls. Refer to Appendix C for the optimal parame-
ters across datasets.

5.4 Inference Pipeline

Inference pipeline is shown in Figure 2, and pro-
ceeds as follows: Given a document d, we first
pre-process the input, if needed, as detailed in Sec-
tion 5.1, and then compute the composite similarity
scores using the learned weights w from Section
5.3 to retrieve the top-K candidate labels. These
labels and then sent to an LL.M for final classifica-
tion.

Our approach reduces the computational com-
plexity from O(|L]) to O(K) where K < |L],
while maintaining high classification accuracy
through candidate selection based on multi-view
label representations.

6 Evaluation

6.1 Performance Gains

Table 2 compares our retrieval-augmented method
with baselines across three state-of-the-art models:
Nova-Lite (Services, 2024), GPT-40-mini (OpenAl,
2024a), and Llama 4 Maverick 17B (Al, 2024). Our
two-stage pipeline with multi-view label represen-
tations consistently outperforms baselines, achiev-
ing up to 14.6% accuracy gains across models. Per-
formance on Adapted Open Datasets (Section 3.2)
is relatively lower due to the exclusion of parent
hierarchy information when classifying leaf nodes.

Results show strong gains across dataset cate-
gories. Internal contact center datasets see improve-
ments over 9% in three of four domains. Open
benchmarks also improve consistently, with gains
from 4.6% to 14.6%, underscoring our method’s
robustness across domains and tasks.

To ensure fair comparison, we use identical in-
put settings across all models, incorporating la-
bel names and descriptions into the prompt. Ta-
ble 5 highlights performance gains from using la-
bel descriptions. We use Claude Sonnet 3.5 (An-
thropic, 2024) for automated description generation
and OpenAl’s text-embedding-3-small (OpenAl,
2024b) for dense vector representations, ensuring
a consistent evaluation framework.

6.2 Ablation Studies
6.2.1

We evaluate the impact of three label views—name,
description, and examples—via weight optimiza-

Multi-View Label Representation

tion. Optimal weights vary by dataset, reflecting
label space and domain characteristics.

Internal contact center datasets predominantly
benefit from rich contextual representations, fa-
voring balanced weighting between descriptions
and examples (Pattern 1: 0.2, 0.4, 0.4), while
knowledge-based datasets (DBPedia, Web of Sci-
ence) and product reviews demonstrate superior
performance with example-centric configurations
(Pattern 2: 0.25, 0.25, 0.5). The universal require-
ment for non-zero weights across all three compo-
nents validates the complementary contributions
of label names, descriptions, and representative
examples in high-cardinality classification scenar-
ios. Table 3 in Appendix presents the retrieval
accuracy achieved across different weight config-
urations, confirming the necessity of multi-view
label representations.

6.2.2 TopK Retrieval Analysis

The relatively modest Top-K values (all < 50)
demonstrate that our retrieval mechanism effec-
tively reduces the label search space while pre-
serving classification performance. This vali-
dates our approach’s capability to manage high-
cardinality scenarios without exhaustive label eval-
uation, achieving computational efficiency gains
while maintaining accuracy. Table 4 in Appendix il-
lustrates the relationship between TopK values with
retrieval and overall error rates, revealing optimal
performance at tuned configurations that balance
retrieval coverage with classification complexity.

6.3 Error Propagation Analysis

We analyze how retrieval-stage errors affect overall
classification in our two-stage pipeline. Two error
types are defined:

Retrieval Errors (Stage 1): Occur when the
correct label is absent from the topK candidates.
These are irrecoverable, as Stage 2 cannot predict
unseen labels. Retrieval error is defined as:

€ret — 1-— ACCret@K

1
:1—m > Ty € TopK(z)]  (5)
(z,y)eT
Across datasets, €, ranges from 0.13%

(CLINC150) to 10.66% (Travel), averaging 3.23%.

Classification Errors (Stage 2): Happen when
the correct label is retrieved but misclassified. Con-
ditional error is:

{(z,y) €T : y € TopK(x) A ) # y}|
{(z,y) € T : y € TopK(z)}|

Eclslret =
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Method LLM E-Com Insur Travel Debt DBPedia CLINC Bank77 WOS Amazon

Inc Acc Inc Acc Inc Acc Inc Acc Inc Acc Inc Acc Inc Acc Inc Acc Inc Acc
ALC Nova 8.2 703 132 628 45 646 34 784 0 857 0.2 860 1.8 64.8 14.5 552 12.8 61.6
ALC GPT 9.6 72.1 15.1 63.6 109 66.0 58 77.6 3.8 819 0.7 860 6.2 69.0 9.2 604 158 65.1
ALC Llama 49 694 87 602 18 704 29 752 0 795 0 825 14 694 64 565 57 623
RAC Nova 22 843 25 711 18 746 18 8.1 0 923 0 945 12 80.8 2.6 60.8 06 654
RAC GPT 25 838 46 732 63 724 26 882 1 928 03 954 19 84.0 44 665 8.6 69.7
RAC Llama 1.6 81.1 1.7 708 1.0 773 14 853 0 942 0 968 0.8 78.1 3.1 701 03 0682

Table 2: Performance Comparison of All Label Classification (ALC) vs. Retrieval Augmented Classification (RAC)
methods across three LLMs: Nova-Lite, GPT-40-mini, and Llama 4 Maverick 17B. Metrics shown are Inconsistency
(Inc) and Accuracy (Acc), with best values highlighted in bold.

Values range from 3.05% (CLINC150) to 28.1%
(Web of Science), with an average of 15.37%.

Error Distribution: Total error combines both
components:

€total = €Eret + (1 - 6ret) * €clslret

On average, retrieval accounts for 15.3% of total
errors; classification accounts for 84.7%. Contri-
bution varies—e.g., retrieval dominates in Travel
(47.01%) but is minor in Banking77, CLINC150
and DBPedia (Refer Appendix B).

6.4 Efficiency and Cost Analysis

The two-stage design offers significant computa-
tional gains. Since retrieval is faster than language
model inference, our pipeline achieves a 3.2 to
8.7x speedup across datasets, with larger gains for
high-cardinality label spaces.

Retrieval completes in 15-45 ms per query,
while classification takes 200-1200 ms depending
on topK and input length. This shows that retrieval
adds minimal overhead while substantially reduc-
ing cost, upto 91%, with average being 72.36%, as
shown in Table 8. Refer Section D for details on
cost calculation and savings.

7 Related Work

Our work spans retrieval-augmented classification,
high-cardinality label spaces, multi-view learning,
and LLM consistency. Traditional classifiers strug-
gle with large label sets, often mitigated through
rebalancing (Bach et al., 2019; Chawla et al., 2002),
augmentation (Wei and Zou, 2019), label hierar-
chy (Kowsari et al., 2017; Yang et al., 2016), label
clustering (Tagami, 2017), or retrieval filtering.
RAG-based methods (Lewis et al., 2021) im-
prove few-shot classification by retrieving exam-

ples (Chen et al., 2024; Zhan et al., 2025), with ex-
tensions to label retrieval (Zhu and Zamani, 2024).

Multi-view learning leverages complementary
label signals (Xu and Tao, 2013; Sun, 2013; An-
drew et al., 2013; Pattnaik et al., 2024; Li et al.,
2019). Recent work (Wang et al., 2025; Zhang
et al., 2023b) shows label descriptions aid classifi-
cation. We extend this by retrieving labels using
names, descriptions, and examples instead of direct
classification.

LLMs perform well in zero-shot settings Yin
et al. (2019), but degrade with large label
spaces Zhang et al. (2023a) are sensitive to prompt
formatting and label order Zhao et al. (2021); Lu
et al. (2022), especially under high cardinality. By
reducing the effective label space as a first step, we
address these challenges with LLMs.

While recent approaches in extreme classifica-
tion target massive label spaces with hundreds of
thousands of classes (D’Oosterlinck et al., 2024;
Zhu and Zamani, 2024), our work focuses on multi-
class setting with fewer than 1,000 labels, where
the goal is to predict a single intent per instance,
consistent with our internal use case of call intent
classification.

Finally, in contact center scenarios with domain-
specific language and large intent sets, we show
that retrieval-augmented methods help LLMs scale
effectively.

8 Conclusion

We propose a scalable, cost-effective framework
for high-cardinality classification using retrieval-
augmented prompting and multi-view label repre-
sentations. Unlike domain-specific architectures
requiring custom development, our approach is
dataset- and domain-agnostic, offering a unified
solution across diverse scenarios. It improves ac-
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curacy by up to 14.6% and reduces prediction vari-
ance by over 9.4% compared to full-label prompt-
ing. Evaluated on four proprietary contact center
datasets and five open benchmarks, our method
consistently outperforms baselines while reduc-
ing inference costs by up to 91%. These results
highlight the effectiveness of retrieval filtering and
multi-view label modeling in enabling robust, gen-
eralizable LLM-based classification—eliminating
the need for domain-specific model development
and frequent retraining.

9 Ethical Considerations

Data Privacy: Our proprietary contact center
datasets contain sensitive customer-agent interac-
tions. All data used in this work were de-identified
and anonymized to protect individual privacy. No
personally identifiable information (PII) was acces-
sible during model training or evaluation.

Bias and Fairness: Language models and em-
beddings used in this framework may carry biases
present in pre-training data. While our retrieval-
augmented approach improves consistency, it does
not explicitly de-bias predictions. Future work
could explore fairness-aware retrieval or prompt
calibration techniques to mitigate such risks.

Deployment Impact: Automated classification
in customer support has potential implications for
workforce displacement or reduced human over-
sight. Our framework is intended to augment, not
replace, human agents by improving triage and an-
alytics in large-scale systems.

Generalization Limits: The use of multi-view
label representations is domain-informed and tuned
on specific datasets. Care should be taken when
applying the method to domains with different lin-
guistic characteristics or sensitive decision bound-
aries (e.g., healthcare, legal), where interpretability
and accountability are critical.

Use of Open Datasets: All open datasets used
are publicly released for research use under permis-
sive licenses. We adhere to their terms and cite all
sources appropriately.

Limitations

While our framework shows promising results, it
has the following limitations:

Dependence on Retrieval Quality: The effec-
tiveness of the pipeline depends on accurate label
retrieval. Retrieval failures (upto 10.66% in high-

cardinality settings) are unrecoverable by the clas-
sification stage.

View Weight Sensitivity: Multi-view weights
(name, description, examples) vary by dataset. Gen-
eralizing these weights across domains without tun-
ing may lead to performance drops.

Prompt Sensitivity: LLM outputs retain some
sensitivity to prompt ordering and structure, es-
pecially with larger K, despite improvements in
consistency.

Monolingual Focus: The current work is lim-
ited to English datasets. Applying the method to
multilingual or mixed-language scenarios remains
unexplored.

Lack of Joint Optimization: Retrieval and clas-
sification are optimized separately. An end-to-end
trainable alternative could offer better performance
but may reduce flexibility.

Off-the-shelf Embedding Models: Our frame-
work relies on pre-trained, general-purpose em-
bedding models for similarity computation, which
may not capture domain-specific semantic relation-
ships optimally. While this design choice ensures
broad applicability and reduces computational over-
head, it potentially limits performance compared to
task-specific learned representations. A learnable
re-ranker (e.g., shallow MLP or cross-encoder fine-
tuned on validation data) could better capture label-
text relationships and reduce classification-stage
errors, particularly for domains with specialized
terminology or nuanced semantic distinctions.
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A Ablation Studies
A.1 Weight Configuration Analysis

w1 w2 w3z Acc. (%)

1.0 00 0.0 84.2
0.0 1.0 0.0 924
00 0.0 1.0 93.8
05 025 025 94.2
025 05 025 94.6
025 025 05 95.4
033 033 034 94.6
02 04 0.4 95.0

Table 3: Retrieval Accuracy with various weight values
on Amazon Reviews Dataset

To validate the necessity of multi-view label rep-
resentations and determine optimal weight configu-
rations, we conduct a comprehensive ablation study
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on the Amazon Reviews dataset. We systemati-
cally evaluate different combinations of weights
wi (label names), wo (label descriptions), and w3
(representative examples) where wi +ws +ws = 1.

Table 3 presents the retrieval accuracy achieved
across various weight configurations, ranging from
single-component approaches to balanced multi-
view combinations.

A.1.1 Key Findings

Single-Component Limitations: Approaches re-
lying solely on individual components show signifi-
cant performance gaps. Label names alone achieve
only 84.2% accuracy, highlighting the inadequacy
of simple lexical matching for complex classifica-
tion tasks. While label descriptions (92.4%) and
representative examples (93.8%) perform better
individually, they still underperform compared to
multi-view approaches.

Multi-View Superiority: All multi-view combi-
nations outperform single-component approaches,
with the best configuration (0.25, 0.25, 0.5) achiev-
ing 95.4% accuracy—a 11.2% improvement over
label names alone and 1.6% over the best single-
component method.

Component Contribution Analysis: Represen-
tative examples demonstrate the highest individual
contribution (93.8%), followed by label descrip-
tions (92.4%) and label names (84.2%). This hier-
archy reflects the semantic richness of each com-
ponent, with concrete examples providing stronger
discriminative signals than abstract descriptions or
concise names.

Optimal Weight Distribution: The best-
performing configuration emphasizes representa-
tive examples (w3 = 0.5) while maintaining bal-
anced contributions from names and descriptions
(w1 = wg = 0.25). This suggests that while exam-
ples provide the strongest signal, complementary
information from names and descriptions remains
valuable for comprehensive label representation.

Robustness of Multi-View Approach: The con-
sistent performance improvements across different
multi-view configurations (94.2%-95.4%) demon-
strate the robustness of our approach, with even
suboptimal weight combinations significantly out-
performing single-component methods.

These findings validate our multi-view design
philosophy and provide empirical evidence for the
complementary nature of different label represen-
tation modalities in high-cardinality classification
tasks.

A.2 Top-K Retrieval Ablation Study

We conduct a systematic ablation study to analyze
the impact of Top-K values on both retrieval and
overall classification performance. Table 4 presents
error rates across three representative datasets with
varying Top-K configurations.

Amazon DBPedia Travel
TopK
Ret. Overall Ret. Overall Ret. Overall
10 8.68 422 0.58 9.2 3327 47.23
50 3.53 402 0.04 104 10.66 254
100 2.00 488 0.02 12.2 220 48.71
Tuned 4.6 34.6 0.16 7.7 10.66 254

Table 4: TopK impact on error rates. Ret. = Retrieval
Error (%), Overall = Overall Error (%).

A.2.1 Key Findings

Retrieval-Classification Trade-off: All datasets
exhibit a consistent pattern where increasing Top-K
values improve retrieval accuracy (lower retrieval
error) but may degrade classification performance
due to increased decision complexity. For Ama-
zon, retrieval error decreases from 8.68% (K=10)
to 2.00% (K=100), while overall error fluctuates
between 40.2% and 48.8%.

Dataset-Specific Optimal Points: Each dataset
demonstrates distinct optimal Top-K ranges. DB-
Pedia, with its well-structured categorical hierar-
chy, achieves excellent retrieval performance even
at low K values (0.58% at K=10), while Travel
dataset requires higher K values to achieve reason-
able retrieval accuracy (33.27% at K=10 vs. 2.20%
at K=100).

Diminishing Returns Pattern: The relation-
ship between Top-K and retrieval error follows a
logarithmic decay pattern across all datasets. The
most significant improvements occur in the lower
K ranges (10—50), with marginal gains at higher
values (50— 100), suggesting an optimal efficiency
zone around K=20-50.

Domain Complexity Correlation: Knowledge-
based datasets (DBPedia) demonstrate superior re-
trieval performance across all K values, with re-
trieval errors consistently below 0.6%. In contrast,
conversational datasets (Travel) show higher re-
trieval errors, reflecting the semantic complexity
and ambiguity inherent in natural language interac-
tions.

Tuned Configuration Superiority: The
hyperparameter-tuned configurations consistently
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outperform fixed K values, achieving optimal bal-
ance between retrieval coverage and classification
accuracy. Amazon’s tuned configuration (K=28)
achieves 4.6% retrieval error and 34.6% overall
error, outperforming all fixed K alternatives.

Classification Bottleneck: Despite excellent
retrieval performance, classification errors remain
the dominant contributor to overall error rates. This
pattern suggests that future improvements should
focus on enhancing the classification stage rather
than further optimizing retrieval parameters.

These findings validate our adaptive TopK ap-
proach and demonstrate the importance of dataset-
specific hyperparameter tuning for optimal perfor-
mance in diverse domains.

A.3 TImpact of Label Descriptions on
Classification Performance

To quantify the contribution of label descriptions
to classification accuracy, we conduct a system-
atic comparison between name-only prompts (IN)
and name-plus-description prompts (N+D) across
both baseline All Label Classification (ALC) and
our proposed Retrieval Augmented Classification
(RAC) approaches.

Table 5 presents comprehensive results across all
datasets and language models, revealing consistent
patterns in how descriptive information enhances
classification performance.

A.3.1 Key Findings

Universal Description Benefit: Label descriptions
consistently improve classification performance
across 89% of all experimental configurations (24
out of 27 cases), with average improvements of
6.2% for ALC and 8.4% for RAC approaches. This
demonstrates the universal value of contextual in-
formation in disambiguating label semantics.

Domain-Specific Impact Patterns: The mag-
nitude of description benefits varies significantly
across domains. Contact center datasets show the
most substantial improvements, with E-Commerce
achieving up to 14.9% gains (Nova RAC: 70.9% —
84.3%) and Debt Collection showing consistent 6-
8% improvements across all models. This reflects
the semantic ambiguity inherent in conversational
data where label names alone provide insufficient
discriminative information.

Retrieval Augmentation Amplifies Descrip-
tion Value: RAC consistently demonstrates higher
description benefits compared to ALC. For in-
stance, CLINC150 shows 8.5% average improve-

ment under RAC versus 4.3% under ALC, suggest-
ing that focused label sets enable more effective
utilization of descriptive information by reducing
cognitive load and attention dilution.

Model-Specific Sensitivity: Different LLMs ex-
hibit varying sensitivity to descriptive information.
GPT-40-mini shows the most consistent improve-
ments across datasets (average 7.8%), while Llama
Maverick demonstrates higher variability, with ex-
ceptional gains in some domains (CLINC150: 7.9%
improvement) but minimal benefits in others (Ama-
zon Reviews: 0.5% improvement).

Structured vs. Conversational Data: Well-
structured datasets (DBPedia, Web of Science)
show modest description benefits (2-4% average),
while conversational datasets (contact center do-
mains) demonstrate substantial gains (6-15% aver-
age). This pattern indicates that descriptions are
particularly valuable when label names are ambigu-
ous or when domain-specific terminology requires
clarification.

Diminishing Returns in Simple Domains:
Some datasets show minimal or negative impact
from descriptions (e.g., Web of Science with Nova),
suggesting that overly detailed descriptions may in-
troduce noise in domains where label names are
already sufficiently discriminative.

These findings validate our multi-view approach
and demonstrate that label descriptions serve as
crucial contextual anchors, particularly in high-
cardinality scenarios where semantic disambigua-
tion is essential for accurate classification.

B Error Breakdown Between Retrieval
and Classification

Table 6 shows the error breakdown between re-
trieval and classification across all datasets.

C Optimal Retrieval Parameters

Table 7 shows the the observed optimal retrieval
parameters for each dataset based on grid search.

D Cost Calculation

The total prompt tokens for each interaction are
calculated as:

Total Tokens = Input Text Tokens
+(Label Count x Avg Label Tokens)  (6)

where Average Label Tokens encompasses both
label names and descriptions. For ALC, Label
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E-Com

App LLM

Insur

Travel

Debt

DBP

Clinc

Bank

WOS

Amzn

N

N+D

N N+D

N N+D

N

N+D

N N+D N

N+D

N

N+D

N

N+D

N

N+D

Nova
GPT
Llama

ALC

62.6
65.1
64.9

70.3
72.1
69.4

57.5
59.1
55.8

62.8
63.6
60.2

66.9
58.0
69.3

64.6
66.0
70.4

70.1
68.4
68.2

78.4
77.6
75.2

85.3
81.1
89.2

85.7
81.9
79.5

83.0
753
80.9

86.0
86.0
82.5

64.8
60.0
58.7

64.8
69.0
69.4

61.2
62.4
62.9

552
60.4
56.5

60.9
63.1
66.1

61.6
65.1
62.3

Nova
GPT
Llama

RAC

70.9
68.9
68.1

84.3
83.8
81.1

63.9
66.2
64.3

71.1
732
70.8

66.0
63.0
71.0

74.6
724
713

80.5
82.2
79.9

86.1
88.2
85.3

83.9
86.1
92.3

92.3
92.8
94.2

86.0
88.2
88.9

94.5
95.4
96.8

64.8
68.8
70.6

80.8
84.0
78.1

61.9
66.4
63.4

60.8
66.5
70.1

62.9
68.5
67.7

65.4
69.7
68.2

Table 5: Performance Comparison: All Label vs. Retrieval Augmented Classification

Acronyms: ALC = All Label Classification, RAC = Retrieval Augmented Classification; Nova = Nova-Lite, GPT = GPT-40-mini, Llama = Llama Maverick; N =

Name only, N+D = Name + Description

Dataset Retrieval (%) Classification (%)
E-Commerce 4.3 11.9
Insurance 49 23.02
Travel 10.66 13.45

Debt Collection 1.6 10.37
DBPedia 0.16 5.68
CLINC150 0.13 3.05
Banking77 0.2 15.83

Web of Science 2.5 28.1
Amazon Reviews 4.6 26.93

Table 6: Error breakdown between retrieval and classifi-
cation across datasets

Dataset TopK w1 w2 w3
E-Commerce 32 0.2 0.4 0.4
Insurance 44 0.33 0.33 0.34
Travel 50 0.2 0.4 0.4
Debt Collection 25 0.2 0.4 0.4
DBPedia 20 0.25 0.25 0.5
CLINC150 20 0.2 0.4 0.4
Banking77 20 0.2 0.4 0.4
Web of Science 20 0.25 0.25 0.5
Amazon Reviews 28 0.25 0.25 0.5

Table 7: Optimal Retrieval Parameters for Each Dataset

Count equals the full label set size (#L), while for
RAC, it equals the TopK retrieved candidates.

We take the average tokens per interaction for
eahc dataset from Table 1 and derive average num-
ber of tokens for label representation(combining
name and description). All cost calculations use
Llama 4 Maverick 17B pricing from AWS Bedrock
(Amazon Web Services, Inc. (2023)) at $0.0024
per 1,000 input tokens.

Table 8 demonstrates substantial cost savings
achieved through our retrieval-augmented ap-
proach. The most dramatic savings occur in high-
cardinality scenarios, with Insurance dataset show-
ing 91.5% cost reduction ($9,900 — $845 per mil-
lion interactions) due to its large label space (800
labels reduced to 44 candidates).

Dataset #L. K ALC RAC ALC RAC Save
Tokens Tokens Cost Cost %
E-Commerce 120 32 7200 2800 $1700 $672 61.1
Insurance 800 44 41300 3500  $9900 $845 91.5
Travel 160 50 8600 3100  $2100 $744 639
Debt Collection 200 25 12000 3300  $2900 $780 729

Table 8: Cost Analysis for 1M Interactions: All Label
Classification (ALC) vs. Retrieval Augmented Classifi-
cation (RAC). #L = Label Count, K = TopK threshold.
Tokens = Average prompt tokens per interaction. Save%
= RAC cost reduction over ALC.

Token Efficiency: RAC consistently reduces
prompt sizes by 61-92% across all datasets. For in-
stance, E-Commerce prompts decrease from 7,200
to 2,800 tokens per interaction, representing a
61.1% reduction. This efficiency stems from our
ability to focus on relevant label subsets rather than
exhaustive label enumeration.

Scalability Benefits: Cost savings scale propor-
tionally with label cardinality. Datasets with larger
label spaces (Insurance: 800 labels, Debt Collec-
tion: 200 labels) achieve higher savings percent-
ages compared to smaller label sets (E-Commerce:
120 labels), demonstrating the approach’s particu-
lar value in high-cardinality scenarios.

Economic Viability: At enterprise scale, these
savings translate to significant operational cost re-
ductions. For a contact center processing 10 mil-
lion interactions annually on the Insurance dataset,
RAC would save approximately $90,550 in LLM
processing costs alone, while maintaining superior
classification accuracy.

The cost analysis excludes generation tokens as
our prompts explicitly constrain model outputs to
single label predictions, resulting in negligible gen-
eration costs (typically 5-15 tokens per interaction).
This design choice ensures that the primary cost
driver remains input token processing, where our
retrieval mechanism delivers maximum economic
impact.
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E Prompt Templates

This section provides the complete prompt tem-
plates used in our experiments. All prompts were
designed to ensure consistency across different lan-
guage models and datasets while maintaining clar-
ity and specificity for each task.

F Dataset Examples

Table 10 shows an example of an Agent-Customer
interaction transcript and corresponding custom
summary.

Table 11 shows examples of label descriptions
and custom summaries, demonstrating disambigua-
tion through detailed descriptions.
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Task

Prompt

Label Description

Given a label name and some training examples corresponding
to that label, please generate a 1-2 line description for the label.

Here is the label name: <label>
Here are the examples: <examples>

Give a description in 1-2 lines.

Summary Summarize the following text within 256 tokens while preserving
information most relevant for the following classification task:
<classification task>
Here is the input text : <text>

Classification ### Instructions: Given the list of labels with descriptions, clas-

sify the following text into one of the categories. Analyze the
text, the provided labels and their descriptions to classify the
input text into most appropriate labels.

Each label is in the format: (Name : Description).

Provide only the label name. Make sure to pick category from
the list of categories.

### Text:

<text>

### Labels:

<labels>

### Give Output in below format (in between "<" and ">"):

<Label name>

Table 9: Prompts used for Summary, Label Description and Classification
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Agent-Customer Transcript (>256 tokens) Custom Summary

Agent: Thank you for calling customer support, my name is Sarah, how can I help you
today?

Customer: Hi, I’'m having trouble with my account. I'm trying to download my invoice
but it’s not working.

Agent: I'm sorry to hear that. Can you tell me more about what’s happening when you try
to download the invoice?

Customer: I log into my account portal and go to the billing section. I see my invoice
from last month, but when I click the download button, nothing happens. Sometimes it
says “error.”

Agent: So you’re able to see the invoice but getting an error when downloading. Is that
correct? Customer: Yes, exactly. I need this for my expense report at work, so I really
need to get this PDF downloaded.

Agent: I can definitely help you with that. Let me verify your account information. Can
you provide your email address?

Customer: Sure, it’s john.smith@email.com.

Agent: Perfect, thank you John. I can see your account and the November 15th invoice.
What browser are you using?

Customer: Google Chrome.

Agent: Have you tried clearing your browser cache?

Customer: I tried refreshing but haven’t cleared the cache. I'm not really tech-savvy.
Agent: No worries. Let me try a different approach. Can you right-click on the download
button?

Customer: Right-click? Okay, let me try... Yes, [ see some options here.

Agent: Great! Do you see “Save link as” or “Save target as”?

Customer: I see “Save link as.”

Agent: Perfect! Try clicking on that option.

Customer: Okay... Oh! It’s asking where to save it. Should I save it to my desktop?
Agent: Yes, that’s perfect.

Customer: It’s downloading! I can see the progress bar. That’s great!

Agent: You're welcome, John. Is there anything else I can help with today?

Customer: No, that covers everything. Thanks again!

Agent: Perfect. Have a great day!

Customer contacted support
regarding inability to
download invoice PDF from
their account portal. Agent
troubleshooted the technical
issue and provided
alternative method to access
the invoice document.

Table 10: Example of an Agent-Customer Tnteraction Transcript and Corresponding Custom Summary

viewing or downloading invoices or receipts, and where
a user requests help with modification, missing or incor-
rect details, specific invoice requests, or adjustments to
how they receive their invoice/receipts.

Label Label Description Input Text/Custom Summary
Invoice/ Re- | User needs assistance with their order invoices or re- | Customer contacted support regarding inability
ceipt ceipts. This also includes technical issues preventing | to download invoice PDF from their account

portal. Agent troubleshooted the technical is-
sue and provided alternative method to access
the invoice document.

Tech Issues

Customer experiences technical problems with the app
or online platform, including crashes, slow performance,
unresponsive buttons, login failures, loading errors, and
other software malfunctions that prevent normal app
functionality.

Customer reported that photo upload feature
in app is not working, showing error message
when trying to attach documents. Agent con-
firmed known issue with image processing and
provided alternative submission method.

Table 11: Example Label Definitions and Custom Summaries Demonstrating Disambiguation Through Detailed

Descriptions
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