Mind the Query: A Benchmark Dataset towards Text2Cypher Task

Vashu Chauhan' Shobhit Raj!

Shashank Mujumdar?

Avirup Saha?

Anannay Jain3

'TIIT Delhi, India

2IBM Research, India

1IT Bombay, India

Vashu Chauhan, Shobhit Raj, Shashank Mujumdar, Avirup Saha, Anannay Jain

Abstract

We present a high-quality, multi-domain
dataset for the Text2Cypher task which is
enabling the translation of natural language
(NL) questions into executable Cypher queries
over graph databases. The dataset comprises
27,529 NL queries and corresponding Cyphers
spanning across 11 real-world graph datasets,
each accompanied by its corresponding graph
database for grounded query execution. To
ensure correctness, the queries are validated
through a rigorous pipeline combining auto-
mated schema, runtime and value checks, along
with manual review for logical correctness.
Queries are further categorized by complex-
ity to support fine-grained evaluation. We have
released our benchmark dataset and code! to
replicate our data synthesis pipeline on new
graph datasets, supporting extensibility and fu-
ture research for the task of Text2Cypher.

1 Introduction

Graph databases have become increasingly popular
for representing and querying complex, intercon-
nected data. Unlike traditional relational databases,
graph databases store data in nodes and relation-
ships, enabling more natural modeling of real-
world entities and their interactions. Among vari-
ous graph query languages, Cypher has emerged
as the de facto standard, particularly in the Neo4;j
(Kemper, 2015) ecosystem. Cypher’s declarative
syntax allows users to specify patterns to match in
the graph, making it a powerful tool for extracting
meaningful insights from graph-structured data.
The task of Text2Cypher, which is automati-
cally translating natural language questions into
valid Cypher queries, has gained traction due to its
potential to democratize access to graph databases.
Users without technical expertise can retrieve in-
formation from complex graph structures simply

"https://github.com/endeavorXx/Mind-the-Query

by posing questions in natural language. How-

ever, generating Cypher queries from text remains

a challenging problem. It requires the model to

understand the semantics of the input question, ac-

curately map it to the underlying schema, and gen-
erate syntactically and semantically correct queries.

A few datasets have been proposed to train and
evaluate Text2Cypher models, including the Neo4;j
Text2Cypher dataset (Ozsoy et al., 2025) and Syn-
theT2C (Zhong et al., 2024). While these efforts
mark substantial progress, they suffer from notable
limitations:

* Lack of human verification: Many queries in
the Neo4j dataset are generated by large language
models (LLMs) without subsequent manual vali-
dation. As a result, some queries may be syntac-
tically incorrect or semantically misaligned with
the input question.

* Incomplete graph context: In the Neo4;j
datasets, the corresponding graph databases are
often not provided, making it difficult to test and
evaluate the generated Cypher queries in context.

* Domain restriction: The MedT2C dataset intro-
duced in the SyntheT2C paper is confined to the
medical domain, limiting its generalizability to
other real-world applications.

To address these shortcomings, we introduce a
novel dataset for the Text2Cypher task with the
following key contributions:

1. Graph Database Availability: We provide
graph databases for all examples in our dataset
so that Cypher queries can be executed.

2. Multi-domain Coverage: Our dataset spans
a diverse range of domains, enhancing the
model’s ability to generalize across different
graph schemas and use cases.

3. Robust Validation: We employ a rigorous
query validation pipeline that includes both au-
tomated and manual checks to ensure the cor-
rectness of each Cypher query with respect to
the associated graph schema.

1890

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1890-1905
November 4-9, 2025 ©2025 Association for Computational Linguistics

mailto:vashu22606@iiitd.ac.in
mailto:shobhit22482@iiitd.ac.in
mailto:shamujum@in.ibm.in
mailto:Avirup.Saha2@ibm.com
mailto:anannay.j@gmail.com
https://github.com/endeavorXx/Mind-the-Query

4. Complexity-aware Categorization: We pro-
vide a novel classification scheme that catego-
rizes each query based on its structural and se-
mantic complexity, facilitating more nuanced
evaluation and benchmarking.

5. Human Annotated Ground Truth: As part
of the manual validation, we include detailed
reasoning for failure cases, useful for training
reasoning-based models for Text2Cypher task.
Our dataset comprises of 27,529 NL-Cypher

query pairs with 955 detailed human annotations
for challenging failure cases. It is designed to fos-
ter future research towards building NL interfaces
for graph databases by offering a high-quality, ex-
tensible, and well-annotated resource.

2 Methodology
2.1 Graph Database and Cypher

Graph databases are created by modeling informa-
tion as a network of interconnected entities, rather
than relying on rigid tables or documents. The data
is stored in the form of nodes, relationships, and
properties, that enables a flexible, schema-aware
structure that captures the intrinsic connections in
the data. Most graph databases (Neo4j (Kemper,
2015), JanusGraph (JanusGraph Project, 2023),
ArangoDB (ArangoDB GmbH, 2023) etc.) use
a property graph model where each node repre-
sents an entity and can have zero or more labels to
indicate its type. Relationships describe a connec-
tion between a source and target node and always
include a single type. Both nodes and relationships
can have properties which are key-value pairs that
further describe them.

The Cypher query language is a declarative,
SQL-inspired language tailored to the property
graph model. It uses a pattern matching syn-
tax to intuitively express complex graph traver-
sals, filtering, aggregation and other operations.
Round brackets are used to represent (:Nodes),
and -[:ARROWS]— to represent a relationship be-
tween the (:Nodes). Cypher utilizes the customized
syntax to perform create, read, update, or delete
(CRUD) operations on the graph database.

2.2 Synthetic Dataset Generation

The task of Text2Cypher conversion involves trans-
lating a natural language question into a corre-
sponding Cypher query (C). In this work we pro-
pose an end-to-end framework to create a versatile
synthetic dataset comprising a natural language

(NL) query and a corresponding cypher query (NL-
Cypher pair) to facilitate fine-tuning, evaluation,
and exploration of knowledge graphs (KG) with
natural language user queries. The overall frame-
work is shown in Figure 1. The overall pipeline ex-
ecutes in three stages - (i) Large-Language Model
(LLM) based NL-Cypher pairs generation, (ii) Au-
tomatic Validation to remove duplicates and check
for schema, syntax and value errors and (iii) Hu-
man in the loop logical verification. In particu-
lar, the proposed framework incorporates various
steps to ensure that the generated synthetic dataset
adheres to correct syntax based on Cypher gram-
mar, generates semantically correct NL queries and

Cyphers, and has adequate node and relationship

coverage over the schema. To ensure both diversity

and varying levels of complexity in the generated
cyphers, we define query categories for generation
as follows

e Simple Retrieval (SR): Queries that return
nodes or relationships based on straightforward
conditions such as labels, properties, or direct
connections. They are mainly used for basic ex-
ploration and quick data checks.

¢ Complex Retrieval (CR): Queries that explore
richer patterns involving multiple node types, re-
lationship chains, and conditional filters. These
capture more nuanced insights, such as multi-hop
connections or optional matches.

* Simple Aggregation (SA): Queries that compute
basic statistics over data, including counts, aver-
ages, or min/max values of node or relationship
properties. They provide quick summaries of key
characteristics.

* Complex Aggregation (CA): Queries that use
multiple aggregations, often grouped by sub-
graphs, to generate higher-level summaries (e.g.,
averages per group or totals across a network).
These support deeper analytics and decision-
making.

» Evaluation Queries (EQ): Queries designed to
retrieve one specific value or identifier, such as a
movie title, product name, or employee ID. They
allow precise verification and benchmarking of
query or model outputs.

Examples for different query categories are
shown in Appendix E. We consider 11 open
source real-world KGs, each presenting unique
modeling challenges and domain characteristics
(Neo4j, 2025) - (i) Healthcare Analytics (HCA),
(i1) Open Street Map (OSM), (iii) Entity Resolu-
tion (ER), (iv) Women World Cup 2019 (WWCO),

1891

LLM Generation

&

N

[~

DB Info
Extraction

_)'E-Duplicaﬁor
C: MATCH..

NL Cypher Pairs

/

@
'4*) LLm

Few Shots/

K Cross-Few Shots

Automatic Validation \
Q: From .. l
C: MATCH

NL Cypher Pairs

/ Manual Verification N\

& S

Store

Schema
Validator

Value

Validator

EHuman—in-
the loop

Runtime
Validator

D N

Neodj DB

Figure 1: The LLM-based NL-Cypher generation pipeline begins by extracting the KG schema and sampling
node and relationship values. These, along with category-specific few-shots and instruction-based prompts, guide
generation. The output undergoes de-duplication, automatic validation, and final manual verification.

(v) Legis Graph (LG), (vi) Contact Tracing (CT),
(vii) Bloom, (viii) Graph Data Science (GDSC),
(ix) Pole, (x) Star Wars (SW), and (xi) US Election
Twitter Trolls (USTT). Details of the datasets are
mentioned in Table 6 in Appendix.

2.3 Setting up the Knowledge Graphs

We begin by extracting the schema and sam-
ple node and relationship values from the KG
in Neo4j graph database. An example schema
from LG dataset is shown in Figure 5 in the
Appendix. We systematically analyze each G
schema by identifying node/relationship types and
their properties, addressing NULL values, and en-
suring accurate data type handling (e.g., date,
number, string etc.). Datasets with complex
types, such as Point and Duration (e.g., in CT),
require specialized handling using sub-properties
(e.g., addresslocation.x) and operations like
point.distance() for geospatial reasoning. Cer-
tain filters were designed with awareness of schema
distributions. For example, the CT dataset con-
tains a single region (‘“Antwerp”), a single coun-
try (“Belgium”) and a single continent (“Eu-
rope”) while the USTT involves filtering based
on metadata such as retweet counts and times-
tamps. Temporal and spatial attributes are veri-
fied to maintain consistency. For example, the
CT dataset spans 07/04/2020—-07/05/2020, the
USTT dataset spans 2014-2017, and WWC events
occur quadrennially starting from 1991.

Table 1: Query type distribution of our benchmark
dataset for the Text2Cypher task.

CA CR EQ SA SR Total
5695 5196 6718 3719 6201 27529

No. of Queries

2.4 Fewshots and Cross-Fewshots Curation

To guide the LLM, we incorporate query category-
specific information such as descriptions and pro-
vide 10 manually curated fewshots per category.
Fewshot examples are iteratively improved through
manual error analysis. Common issues like invalid
nested aggregations (e.g., AVG(SUM(...))) are ad-
dressed by restructuring queries with subqueries
and correct aggregation logic. Queries are designed
to comprehensively cover node and relationship
types. We selectively use OPTIONAL MATCH for
partial graph structures and ensure all queries are
syntactically valid and performance-efficient. We
also introduced patterns in the fewshots to include
multi-hop traversals across 3—4 node types and in-
clude subqueries employing WITH, COLLECT, and
CASE clauses.

We manually curated fewshots for each cate-
gory specifically for HCA, WWC, CT and USTT
datasets. The same fewshots are used as cross-
fewshots for different categories for the remain-
ing datasets. For example, the category-specific
fewshots created for USTT were used as few shot
examples for LG during the generation process.

2.5 Prompt Refinement

Prompting was driven by a carefully engineered,
instruction-based template incorporating schema
awareness, datatype constraints, naming conven-
tions (e.g., camelCase), and query formatting rules
(e.g., ISO date formats, avoidance of nested ag-
gregations etc.). The prompt evolved iteratively
through empirical analysis of model output to re-
solve edge cases such as handling NULL values, us-
ing OPTIONAL MATCH for partial subgraphs, and en-
forcing literal spelling of node/relationship names
and properties. This refinement process aimed to
minimize ambiguity and improve the NL-Cypher
alignment. We experimented with four prompting

1892

[Gemini] Question - For each team that participated in the 'Canada 2015' tournament, find the player who scored the most
goals in any single match during that tournament. Return the team name, player name, and the number of goals scored.

[Gemini] Cypher - MATCH (team:Team)-|[:PARTICIPATED_IN]->(tournament:Tournament {name: 'Canada 2015'}), (team)<-

[:REPRESENTS] - (player:Person)-[scored:SCORED_GOAL]->(match:Match)-[:IN_TOURNAMENT] ->(tournament) WITH team, player,
match, COUNT(scored) AS goals WHERE goals > @ WITH team, player, MAX(goals) AS maxGoals ORDER BY maxGoals DESC LIMIT 1
RETURN team.name AS teamName, player.name AS playerName, maxGoals

[KG] Runtime Result - True

[Human Annotation] Logically Correct - False

[Human Annotation] Reason - Not able to extract the player who scored most Goals for each team, it only returns the
player with the maximum goals across all teams. The query is logically incorrect as it does not group by team before

finding the maximum goals scored.

Figure 2: Manual verification of sample NL-Cypher pair with detailed human annotation for WWC.

setups to study the LLM behavior:

* Zero-Shot: The model receives only the task de-
scription and graph schema which tests schema-
grounded generalization without demonstration.

 Zero-Shot + Instruction: Builds on zero-shot by
incorporating the handcrafted instruction prompt.

This evaluates the model’s ability to internalize

verbal task constraints (e.g., syntax, datatype han-

dling) without demonstrations.

* Few-Shot: Provides 10 category-specific NL-
Cypher pairs without additional instructions.
This tests if demonstration alone improves syn-
tactic correctness and category-specific genera-
tion diversity (see Figure 6 in Appendix).

* Few-Shot + Instruction: Combines detailed
instructions with in-context examples, offering
both pattern guidance and schema-aware reason-
ing. This is the most expressive setting, promot-
ing alignment in both structure and semantics
(see Figure 7 in Appendix).

We employ the Gemini Flash 2.0 model (Anil
et al., 2023) for query generation, using a progres-
sively refined prompting strategy. As detailed in
Table 9 in Appendix, structured instructions and
example-driven few-shot prompts significantly im-
prove query correctness and coverage, particularly
for complex query types. Our evaluation of various
prompt strategies during dataset construction re-
vealed that instruction-guided prompts, when com-
bined with representative NL-Cypher examples and
schema-grounded values from the G, substan-
tially enhance the model’s ability to generate exe-
cutable, semantically aligned queries, supporting
reliable evaluation and benchmarking.

2.6 Automatic Validation and Human
Verification

To ensure a high-quality output, the synthetic
dataset generated via our LLM-based pipeline is

Table 2: Number of NL-Cypher pairs that passed auto-
matic and manual validation, grouped by dataset.

Dataset Category Passed Automatic Passed Manual (%)
CR 319 311/319 (97.5%)
BLOOM CA 333 333/333 (100.0%)
HCA CR 304 299/304 (98.4%)
CA 524 524/524 (100.0%)
CR 592 583/592 (98.5%)
wwe CA 572 567/572 (99.1%)
cT CR 566 537/566 (94.9%)
CA 559 501/559 (89.6%)
ER CR 550 538/550 (97.8%)
CA 510 503/510 (98.6%)
Total 4,829 4,696 (97.2%)

first de-duplicated, followed by automatic valida-
tion from 3 validators, and is finally reviewed by
a human to yield the final dataset. Validators we
used are: (i) Schema Validator: Verifies that node
labels, relationship types, and property keys used
in C conform to the graph schema. Regex-based
parsing is used to extract structural elements and
validate with graph schema. (ii) Runtime Valida-
tor: Executes each query C on the KG to check
for syntactic correctness. Queries that run without
runtime exceptions and return non-empty results
are marked valid. (iii) Value Validator: Ensures
that literal values in C (e.g., strings, numbers, dates)
are drawn from valid node/relationship instances in
KG and also checks for incorrect types. Detailed
numbers of automatic validation across datasets are
presented in Table 7 in the Appendix.

Manual Validation of Logical Correctness:
While queries returning non-empty results typically
pass all three automatic validators, logical correct-
ness cannot be guaranteed, especially for CR and
CA categories. To address this, we conducted man-
ual evaluation of 6,653 deduplicated NL-Cypher
pairs across the WWC, HCA, BLOOM, CT, and

1893

AGGREGATION HALLUCINATION

[Gemini] Question — For the ‘Sweden 1995’ tournament, what is the average
number of goals scored by each team in their matches, and what is the total
number of matches played by all teams?

[Gemini] Cypher — MATCH (t:Team)-[r:PLAYED_IN]->(m:Match)-[:IN_TOURNAMENT]-
>(tour:Tournament {name: 'Sweden 1995'}) WHERE r.score IS NOT NULL WITH
tour, t, COUNT(m) AS matchesPlayed, SUM(r.score) AS totalGoalsPerTeam WITH
tour, t, matchesPlayed, totalGoalsPerTeam RETURN tour.name AS
tournamentName, t.name AS teamName, matchesPlayed, totalGoalsPerTeam
toFloat(totalGoalsPerTeam)/matchesPlayed AS avgGoalsPerMatch,
SUM(matchesPlayed) OVER (PARTITION BY tour.name) AS totalMatchesPlayed

[KG] Runtime Result — False
[Human Annotation] Logically Correct - False

[Human Annotation] Reason — The query uses a SQL-style window
function SUM(...) OVER (...), which is not supported in Neo4j Cypher.

VOID RESULT

[Gemini] Question — Retrieve the names of all players who played in matches
on ‘2007-89-22' and also represent the team ‘France’.

[Gemini] Cypher — MATCH (p:Person)-[:PLAYED_IN]->(m:Match {date: date('2007-
09-22')}), (p)-[:REPRESENTS]->(t:Team {name: 'France'}) RETURN p.name AS
playerName

[KG] Runtime Result — False

[Human Annotation] Logically Correct — True

[Human Annotation] Reason — There were no matches featuring France on that
date, so the query returns no rows, but its logic is sound.

STRUCTURE HALLUCINATION

[Gemini] Question - For the ‘Canada 2615’ tournament, find all matches and
list the names of the players who played in those matches along with the
type of participation (e.g., ‘Started’, ‘Substitute’) and their score in
that match.

[Gemini] Cypher — MATCH (t:Tournament {name: 'Canada 2015'})<-

[: IN_TOURNAMENT]-(m:Match)<-[r:PLAYED_IN]-(p:Person) RETURN m.id AS
matchId, p.name AS playerName, r.type AS participationType, r.score AS
playerScore

[KG] Runtime Result - True
[Human Annotation] Logically Correct — False

[Human Annotation] Reason — In this schema, "PLAYED_IN" connects Team to
Match, not Person to Match, making the query schema-invalid.

AGGREGATION HALLUCINATION

[Gemini] Question — For each squad, calculate the total number of distinct
persons who are both coaches and players in that squad. Return the squad ID and
the count of such persons.

[Gemini] Cypher — MATCH (p:Person)-[:IN_SQUAD]->(s:Squad) WITH s, COLLECT(p) AS
players MATCH (c:Person)-[:COACH_FOR]->(s) WITH s, players, COLLECT(c) AS
coaches RETURN s.id AS squadId, SIZE(INTERSECTION(players, coaches)) AS
bothCount

[KG] Runtime Result - False

[Human Annotation] Logically Correct — False

[Human Annotation] Reason — The function INTERSECTION(...) is not a valid Cypher
operation and was hallucinated.

Figure 3: Structured/Aggregation hallucination patterns and void results with manually verified annotations

ER datasets for the CR and CA categories. Each
query was independently reviewed by two annota-
tors following a defined protocol (see Appendix B),
and disagreements were resolved through arbitra-
tion by a third annotator. Validators aided in iden-
tifying faults, after which logical correctness was
assessed based on the alignment between query C
and the intent of the NL query, regardless of result
count. A sample recorded as part of the manual
validation is shown in Figure 2. We compared the
number of NL-Cypher pairs that passed automatic
validation with their logical correctness (see Ta-
ble 2). Of the 4,829 automatically validated queries,
4,696 (97.2%) were logically correct, demonstrat-
ing the effectiveness of our validation pipeline in
filtering erroneous NL-Cypher pairs.

A few common error patterns were observed
among the incorrect cases. Some queries retrieved
results but were logically incorrect, while others
retrieved no results despite being logically valid,
indicating that the intent was correctly captured but
matching data was absent in the database. Two no-
table LLM failure cases were observed - (i) Struc-
tural Hallucination: for e.g., confusing relation-
ships such as PLAYED_IN vs. PLAYED_FOR, lead-
ing to incorrect graph traversals and (ii) Aggrega-
tor Hallucination: for e.g., insertion of SQL-like
operations such as INTERSECTION or SUM that are
not valid in Cypher. These detailed annotations
are provided as part of our benchmark dataset to
support reasoning-based evaluation for the task of
Text2Cypher (see Figure 3).

3 Experiments and results

3.1 Dataset

As shown in Table 1 our benchmark dataset com-
prises 27,529 NL-Cypher query pairs spanning di-
verse knowledge graph domains and query cate-
gories. The detailed distribution of the dataset
across query categories of each dataset is included
in Table 8 in Appendix. The dataset is partitioned
into train, validation and test sets with 18,470
(67.09%), 2,000 (7.26%), and 7,059 (24.59%) en-
tries respectively. To ensure robust evaluation and
prevent data leakage, we maintain strict domain
separation between training and test sets. The
test set consisted of manually verified NL-Cypher
queries from WWC, HCA and Bloom datasets
while the remaining 8 datasets constituted the train
and validation sets.

3.2 Experiment Setting

We evaluated 10 state-of-the-art large language
models across three experimental paradigms: zero-
shot, few-shot, and fine-tuned approaches. The
selected models are - (i) Granite-3.3-8B-Instruct,
(i1) Granite-34B-Code-Instruct, (iii) Llama-4-
Maverick-17B-128E-Instruct, (iv) Llama-3.3-70B-
Instruct, (v) Llama-3.1-8B-Instruct, (vi) Mixtral-
8x22B, (vii) DeepSeek-Coder-33B-Instruct, (viii)
DeepSeek-V3, (ix) Phi-4, (x) Qwen2.5-72B-
Instruct

Zero-Shot Configuration: In the zero-shot setting,
models receive only task instructions and the target

1894

Table 3: Zero-shot and Few-shot performance comparison of baseline models on different query types on test set.

Percentage Execution Accuracy is reported.

Zero-shot

Few-shot

Model CA CR EQ SA SR Total

Model CA CR EQ SA SR Total

Granite-3.3-8B-Instruct 7.83 23.46 30.20 34.56 34.76 26.21
Granite-34B-Code 17.63 35.44 59.23 49.50 66.06 46.23
Llama-3.1-8B-Instruct 10.65 33.54 39.66 32.05 36.46 30.99
Llama-3-3-70B-Instruct 29.20 54.35 81.95 67.70 85.83 64.69
24.05 66.46 91.71 82.39 86.40 70.97
14.03 50.76 81.02 66.44 73.99 58.14
2292 47.04 75776 54.92 68.45 54.83
49.93 69.04 89.02 79.97 92.76 76.75
26.23 50.63 81.07 67.53 80.60 62.01
27.22 5599 8581 71.20 86.84 66.32

Llama-4-Maverick
Mixtral-8x22B
DeepSeek-Coder-33B
DeepSeek-V3

Phi-4

Qwen2.5-72B

Granite-3.3-8B-Instruct 9.45 27.81 52.51 44.32 57.18 38.83
Granite-34B-Code 18.76 37.52 5532 47.58 63.98 45.24
Llama-3.1-8B-Instruct 13.89 36.57 69.57 44.32 60.20 46.05
Llama-3-3-70B-Instruct 31.52 53.22 8534 70.20 89.11 66.76
37.09 71.94 92.17 81.14 86.71 74.57
17.49 4521 82.01 64.61 80.10 58.85
20.80 28.69 4579 58.43 62.97 43.11
45.77 69.67 87.91 79.72 93.39 75.94
29.27 51.83 81.43 68.20 84.45 63.84
20.31 5530 85.57 71.95 88.92 6537

Llama-4-Maverick
Mixtral-8x22B
DeepSeek-Coder-33B
DeepSeek-V3

Phi-4

Qwen2.5-72B

knowledge graph schema without any example NL-
Cypher pairs.

Few-Shot Configuration: For few-shot learning,
we implement a retrieval-augmented approach us-
ing ChromaDB to create vector embeddings of
training queries. Given a test query, we retrieve the
top-5 most semantically similar NL-Cypher pairs
from the training set using cosine similarity.
Fine-Tuning Configuration: @ We fine-tune
Llama-3.1-8B-Instruct using Low-Rank Adapta-
tion (LoRA) on our training dataset. The model
is fine-tuned for 2 training epochs, with a maxi-
mum token length of 5200 tokens while employ-
ing LoRA with rank-8 optimization on a single
NVIDIA A100 80GB GPU.

Evaluation Metric: We employ Execution Accu-
racy, a binary metric indicating whether the gen-
erated C produces identical results to the ground
truth C’ when executed against the Neodj KG.

3.3 Results

Zero-Shot Performance: Table 3 presents zero-
shot performance across all evaluated models.
DeepSeek-V3 and Llama-4-Maverick emerge as
the top performers with the highest execution ac-
curacies across most query categories. The perfor-
mance degradation between SA and CA categories
averages ~37% across all models, highlighting the
inherent difficulty of complex cypher generation in
zero-shot setting.

Table 4: Percentage Execution Accuracy for fine-tuned
model across query categories on test set.

CA CR EQ SA SR Total
Llama-3.1-8B 33.63 61.09 87.27 80.63 8545 70.15

Few-Shot Learning Effects: The introduction of
few-shot examples yields performance improve-
ments (~2.5% on average) across most models
and query categories (Table 3). High-performing
models show minimal improvement, with slight
degradation in specialized code models. This sug-
gests that schema mismatch in few-shot examples
can mislead code-specialized models, causing them
to overgeneralize patterns from different database
schemas.

Fine-Tuning Results: As seen in Table 4, fine-
tuning Llama-3.1-8B-Instruct on our dataset yields
dramatic performance improvements across all
query categories on the test set, approaching perfor-
mance of the significantly larger models, suggest-
ing that task-specific fine-tuning can bridge the gap
between model scales for the Text2Cypher task.

Our results reveal substantial room for improve-
ment in complex query generation. Even the best-
performing models achieve subpar accuracy num-
bers as seen from Tables 3 and 4. This indicates
that: (i) complex cypher generation remains chal-
lenging even for state-of-the-art models, (ii) our
dataset captures genuine difficulty in text-to-cypher
translation, (iii) significant research opportunities
exist for improving complex query understanding
and generation.

Prompt Refinement Analysis: We adopted an
iterative prompt engineering strategy to build a
high-quality training set for translating NL queries
into Cypher. Each iteration refined instructions
and introduced constraints to address specific short-
comings observed in earlier versions. To assess
the effect of incorporating cross-fewshots and de-
tailed instructions in NL-Cypher generation, we
generated 50 unique queries per category across all

1895

datasets and evaluated their automatic validation
results. We evaluated four prompt variants:

1. Zero-shot: Prompt vO with only schema and

category details.

2. Zero-shot + Instruct: Prompt v2.5 with addi-

tional corrective guidance but no exemplars.

3. Few-shot: Prompt vO augmented with exem-

plar NL-Cypher pairs.

4. Few-shot + Instruct: Prompt v2.5 enhanced

with exemplars.

As shown in Table 5, for complex query cate-
gories, neither fewshots nor instructions alone sub-
stantially affect performance, but their combination
yielded the highest performance. In particular, the
Few-shot + Instruct variant consistently achieved
the best results on complex query categories. In
contrast, for simple query categories, the perfor-
mance delta among the different variants is negligi-
ble. A summary of prompt evolution and its empir-
ical effects is provided in Table 9 in Appendix.

4 Effort Estimate

The team consisted of 5 researchers across two
geographic locations, fluent in English with exper-
tise in graph databases, Cypher query language and
LLMs. Manual validation involved carefully check-
ing the NL questions for ambiguity, validating the
cypher with G schema and analysing the fetched
results from the G w.r.t. to the NL query. Col-
lectively, the team dedicated approximately 1400
person-hours to the creation and refinement of the
dataset.

5 Related Work

Text2Cypher Datasets: Initial Text2Cypher
datasets primarily relied on synthetic or LLM-
generated pairs, often with limited validation. The
Neodj Text2Cypher dataset (Ozsoy et al., 2025)
includes approximately 44K examples, but most
lack manual verification and do not provide the
associated graph databases, making it difficult to
assess query executability. Zhong et al. (Zhong
et al., 2024) released MedT2C, a domain-specific
dataset for healthcare created using prompt-based
and template-driven generation. While useful in
the medical domain, it lacks generalizability. Syn-
thCypher (Tiwari et al., 2024) presents a fully syn-
thetic pipeline with automated LLM-supervised
validation, generating 29.8K examples across do-
mains. However, its verification remains LLM-
supervised and may still miss semantically subtle

Table 5: ZS, FS and I refer to Zeroshot, Fewshot and In-
struction respectively. Percentage of queries that passed
automatic validation are reported.

Query Category A FS ZS+1 FS+1
SR 91.6% 89.8% 84.9% 88.9%
SA 92.7% 94.7% 94.4% 93.8%
CR 585% 57.8% 58.5% 64.4%
CA 41.6% 49.1% 482% 60.5%
EQ 88.0% 87.6% 86.9% 88.2%

errors. AutoCypher (Tiwari et al., 2025) further
improves synthetic generation via a novel LLM-as-
Database-Filter approach to better align Cypher
queries with the underlying schema, though seman-
tically nuanced errors may persist.

Text-to-Query Generation Methods: Unlike
Text2SQL, the Text2Cypher task requires handling
of graph-specific patterns such as multi-hop paths
and optional matches. CoBGT (Tran et al., 2024)
addresses this with a modular framework for ex-
tracting key-value pairs, predicting relations and
properties, and generating Cypher queries using
a Transformer-based decoder. Ozsoy et al. (Oz-
soy, 2025a) proposed hard-example selection meth-
ods to reduce dataset size while maintaining per-
formance, and further explored schema filtering
strategies (Ozsoy, 2025b) to improve model effi-
ciency. Hornsteiner et al. (Hornsteiner et al., 2024)
developed an interactive chat interface for real-time
Text2Cypher translation across multiple databases.
Munir et al. (Munir and Aldini, 2024) benchmarked
LLMs on Cypher generation tasks and highlighted
the need for standardized evaluation frameworks.

6 Conclusion

We present a new benchmark dataset for the
Text2Cypher task, featuring comprehensive auto-
matic and manual validation across diverse do-
mains and query types. Alongside the dataset, we
provide a validation framework and benchmark
results for several state-of-the-art LLMs and a fine-
tuned model. Our analysis shows that LLMs often
struggle with complex graph reasoning, particu-
larly as query and schema complexity increases.
Notably, a smaller model fine-tuned on our dataset
matches the performance of much larger models on
unseen data, highlighting the value of our bench-
mark. To support broader adoption and generaliza-
tion, we have released our dataset and the complete
codebase for our NL-Cypher generation pipeline.

1896

Limitations and Future Work

Manual validation of all NL-Cypher pairs in the
dataset is a time-intensive process and is currently
ongoing. To date, we have focused our annotation
efforts on the Complex Retrieval and Complex
Aggregation categories, which are the most chal-
lenging due to their intricate query structures and
reasoning requirements. We plan to extend man-
ual validation to the remaining categories and re-
lease updated annotations in future iterations of our
benchmark dataset.

While our automatic validation framework
achieves high performance, it is limited in its abil-
ity to identify logically correct queries that return
no results. This is a known challenge, as it is dif-
ficult to determine whether an empty result is due
to a true absence of data or an error in query logic.
In future work, we aim to address this by decom-
posing complex queries into smaller sub-queries,
analyzing their individual outputs, and examining
how aggregations and different clauses (e.g., SUM,
UNION, WITH) affect the final result. Such an ap-
proach could help identify alignment with user
intent at intermediate steps and improve overall
generation numbers.

We intentionally excluded closed-source mod-
els (e.g., GPT, Claude) to prevent potential test-
set leakage and to ensure reproducibility. Sending
unreleased queries to proprietary APIs risks con-
taminating future use of the benchmark. Looking
forward, we plan to evaluate closed models under
controlled settings and release updates accordingly.

References

Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac,
Jiahui Yu, Radu Soricut, Johan Schalkwyk, An-
drew M Dai, Anja Hauth, Katie Millican, and 1 oth-
ers. 2023. Gemini: a family of highly capable multi-
modal models. arXiv preprint arXiv:2312.11805.

ArangoDB GmbH. 2023. ArangoDB: A na-
tive multi-model nosql database. https://www.
arangodb.com/.

Markus Hornsteiner, Michael Kreussel, Christoph
Steindl, Fabian Ebner, Philip Empl, and Stefan
Schonig. 2024. Real-time text-to-cypher query gener-
ation with large language models for graph databases.
Future Internet.

JanusGraph Project. 2023.
open-source, distributed graph database.
//janusgraph.org/.

JanusGraph: An
https:

Chris Kemper. 2015. Beginning Neo4j. Springer.

Siraj Munir and Alessandro Aldini. 2024. Towards
evaluating large language models for graph query
generation. arXiv preprint arXiv:2411.08449.

Neo4j. 2025. Neo4;j graph examples. https://github.
com/neo4j-graph-examples.

Makbule G. Ozsoy. 2025a. Text2cypher: Data prun-
ing using hard example selection. arXiv preprint
arXiv:2505.05122.

Makbule G. Ozsoy, Leila Messallem, Jon Besga, and
Gianandrea Minneci. 2025. Text2cypher: Bridging
natural language and graph databases. Proceedings
of the Generative Al and Knowledge Graph Work-
shop (GenAIK).

Makbule Gulcin Ozsoy. 2025b. Enhancing
text2cypher with schema filtering. arXiv preprint
arXiv:2505.05118.

Aman Tiwari, Shiva Krishna Reddy Malay, Vikas Yadav,
Masoud Hashemi, and Sathwik Tejaswi Madhusud-
han. 2025. Auto-cypher: Improving 1lms on cypher
generation via llm-supervised generation-verification
framework. In Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 2: Short Papers).

Aman Tiwari, Shiva Krishna Reddy Malay, Vikas
Yadav, Masoud Hashemi, and Sathwik Tejaswi
Madhusudhan. 2024. Synthcypher: A fully syn-
thetic data generation framework for text-to-cypher
querying in knowledge graphs. arXiv preprint
arXiv:2412.12612.

Quoc-Bao-Huy Tran, Aagha Abdul Waheed, and Sun-
Tae Chung. 2024. Robust text-to-cypher using com-
bination of bert, graphsage, and transformer (cobgt)
model. Applied Sciences.

Zhenchen Zhong, Linging Zhong, Zhaoze Sun, Qingyun
Jin, Zengchang Qin, and Xiaofan Zhang. 2024. Syn-
thet2c: Generating synthetic data for fine-tuning large
language models on the text2cypher task. arXiv
preprint arXiv:2406.10710.

A Detailed Category Descriptions

Simple Retrieval Simple retrieval questions fo-
cus on basic data extraction, retrieving nodes or
relationships based on straightforward criteria such
as labels, properties, or direct relationships. Exam-
ples include fetching all nodes labeled as “x” or
retrieving all relationships of a specific type like

y.” Simple retrieval is essential for initial data in-
spections and basic reporting tasks.

1897

https://www.arangodb.com/
https://www.arangodb.com/
https://janusgraph.org/
https://janusgraph.org/
https://github.com/neo4j-graph-examples
https://github.com/neo4j-graph-examples

Table 6: Knowledge Graph Statistics: Node labels, Relationship labels, properties, and value counts for each KG.

KG Name # Node Labels # Relationship Labels # Properties # Node Values # Relationship Values Description

HCA 8 11 21 11,381 61,453 Models patients, treatments, diagnoses, and adverse drug
events for healthcare analytics.

OSM 10 8 318 69,165 76,040 Represents Central Park data from OpenStreetMap us-
ing nodes for points of interest and relationships for
geographic connectivity.

USTT 6 7 22 281,136 493,160 Captures Russian troll activity on Twitter during the
2016 U.S. election, modeling users, content, and interac-
tions.

CT 7 4 14 5,615 15,130 Simulates contact tracing using graph structures for peo-
ple, locations, and time-based interactions.

POLE 11 17 32 61,521 105,840 Crime analysis dataset following the POLE (Person-
Object-Location-Event) model used in law enforcement.

ER 4 3 14 1,237 1,819 Demonstrates graph-based entity resolution with simi-
larity algorithms to identify and link duplicate records.

LG 8 9 39 11,825 523,004 Models the U.S. legislative system including legislators,
bills, committees, and voting behavior.

BLOOM 18 15 42 30,960 29,731 A general-purpose visual demo graph used to showcase
Neo4j Bloom’s graph storytelling and search capabili-
ties.

GDSC 12 20 30 2,642 16,747 Sample graph to demonstrate graph data science work-
flows like centrality, similarity, and community detec-
tion.

SW 6 4 52 260 611 Knowledge graph of the Star Wars universe linking char-
acters, planets, films, and related entities.

WWC 5 9 12 2,486 14,799 Represents the 2019 FIFA Women’s World Cup, model-

ing players, teams, matches, goals, and events.

Complex Retrieval Complex retrieval questions
leverage Cypher’s rich pattern-matching capabili-
ties to navigate multiple node types and relation-
ship patterns. They involve sophisticated filter-
ing conditions and logical operations to extract
nuanced insights from interconnected data points
(e.g., multi-hop traversals with optional matches).

Simple Aggregation Simple aggregation ques-
tions calculate basic statistical metrics over node or
relationship properties, such as counting nodes, av-
eraging numeric values, or finding maximum and
minimum values. These queries summarize key
data characteristics and support rapid analytical
conclusions.

Complex Aggregation Complex aggregation
questions combine multiple aggregation func-
tions—often grouped over subgraphs—to produce
higher-order metrics (e.g., average number of re-
ports per manager or total sales volume across a
network). This category supports strategic decision-
making and advanced reporting by summarizing
interconnected data.

Evaluation Query Evaluation queries target the
precise retrieval of specific data points, such as sin-
gle property values or identifiers (e.g., movie titles,
product names, or employee IDs). These queries
use clear and detailed instructions to extract exactly
one item or attribute, facilitating direct verification

and benchmarking of model performance.

B Annotation Protocol

Each generated NL-Cypher pair in the de-
duplicated dataset is evaluated and annotated ac-
cording to the following protocol:

* result [0/1]:

Indicates whether the Cypher query returned a
non-empty output when executed on Neo4j (1 =
returned results, 0 = empty or error occurred).

e logical [0/1]:

Marks whether the generated Cypher query is
logically correct (1 = correct, 0 = incorrect).

* reason/observation:

A free-form string explaining why a query was

logically incorrect or why it failed to retrieve

results. This field is left empty only when result

= 1and logical = 1.

The determination of correctness is based on
four validation steps:

1. Runtime Validation (Automatic): Execute the
query in Neo4;j to check for syntax/runtime er-
rors and non-empty output.

2. Schema Validation (Semi-Automatic): Verify
that node labels, relationship types, and prop-
erties used in the query match with those in
the schema. Researchers were allowed to use
schema validator.

3. Value Validation (Manual): Ensure that lit-

1898

Table 7: Consolidated validator performance report. Number of NL-Cypher queries that passed to the next stage for

each validator are reported.

KG Deduplication Schema Validator Runtime Validator Value Validator All Passed

BLOOM (2000) 1665/2000 (83.2%) 1659/1665 (99.6%) 1554/1659 (93.7%) 1547/1554 (99.5%) 1547/1665 (92.9%)
CT (3785) 2825/3785 (74.6%) 2819/2825 (99.8%) 2454/2819 (87.1%) 2437/2454 (99.3%) 2437/2825 (86.3%)
ER (3980) 3197/3980 (80.3%) 3190/3197 (99.8%) 2875/3190 (90.1%) 2846/2875 (99.0%) 2846/3197 (89.0%)
GDSC (3970) 2762/3970 (69.6%) 275912762 (99.9%) 2281/2759 (82.7%) 2236/2281 (98.0%) 2236/2762 (81.0%)
HCA (3985) 3330/3985 (83.6%) 3318/3330 (99.6%) 2584/3318 (77.9%) 2566/2584 (99.3%) 2566/3330 (77.1%)
LG (3990) 3333/3990 (83.5%) 3318/3333 (99.5%) 2915/3318 (87.9%) 2878/2915 (98.7%) 2878/3333 (86.3%)
OSM (3984) 2944/3984 (73.9%) 275912944 (93.7%) 2288/2759 (82.9%) 2217/2288 (96.9%) 2217/2944 (75.3%)
POLE (3990) 3435/3990 (86.1%) 3424/3435 (99.7%) 2767/3424 (80.8%) 275912767 (99.7%) 2759/3435 (80.3%)
SW (3995) 2742/3995 (68.6%) 2733/2742 (99.7%) 2482/2733 (90.8%) 2479/2482 (99.9%) 2479/2742 (90.4%)
USTT (3970) 3431/3970 (86.4%) 3344/3431 (97.5%) 2671/3344 (79.9%) 2618/2671 (98.0%) 2618/3431 (76.3%)
WWC (3995) 3375/3995 (84.5%) 3371/3375 (99.9%) 3107/3371 (92.2%) 2946/3107 (94.8%) 2946/3375 (87.3%)

Total (41,644) 33,039/41,644 (79.3%) 32,694/33,039 (98.9%)

27,978/32,694 (85.6%)

27,529/27,978 (98.4%) 27,529/33,039 (83.3%)

eral values in the Cypher query exactly match

the provided node and relationship values. Re-

searchers were allowed to use value validator.
4. Logical Validation (Manual):

* Analyze the user’s NL question for ambigui-
ties.

* Compare the Cypher results to realistic values
in the KG.

* Decompose complex queries into subqueries
and inspect intermediate results.

* Queries that fail any manual step
are annotated with a descriptive
reason/observation, and are separated
from manually validated dataset.

C Generated NL-Cypher Pairs

The final dataset is generated using Gemini-2.0-
flash. We used a few-shot + Instruct prompt for
curating our final dataset. The prompt strictly in-
structs Gemini to curate five questions and return
the results in the JSON format (see Figure 4). Then
the JSON format is extracted using a regex based
JSON parser.

D Prompt Analysis for Query Categories

For generating simple queries, even a single prompt
mentioning about the category for about 4-5 lines
was sufficient but to curate correct complex queries
we did 10-20 prompt refinements. Then, we final-
ized our prompt which helped us generate correct
complex cypher queries (see Figure 7) involving
more than one MATCH clauses, some may contain
even three with different types of aggregation oper-
ations and using multiple wildcard patterns.

E Validated NL-Cypher Query Examples

This appendix contains a comprehensive collection
of validated Natural Language to Cypher query
examples across different complexity levels. All
examples have been validated for schema compli-
ance, value consistency, runtime correctness, and
meaningful result generation.

Natural Language Question: “Find all ’Sick’
persons who visited a *Restaurant’ and return their
names, IDs, and the start and end times of their
visits.”

Cypher Query:

MATCH (p:Person {healthstatus: 'Sick'})
-[v:VISITS]->(pl:Place {type: '
Restaurant'})

RETURN p.name AS PersonName,
PersonlID,

v.starttime AS VisitStartTime, v.
endtime AS VisitEndTime;

p.id AS

Natural Language Question: “Retrieve the
names of all "Healthy’ persons who visited places
in ’Belgium’ and also return the names of those
places.”

Cypher Query:

MATCH (p:Person {healthstatus:
})-Lv:VISITS]->(pl:Place)
-[:PART_OF]1->(r:Region)-[:PART_OF
J->(c:Country {name: 'Belgium'})
RETURN p.name AS PersonName, pl.name AS
PlaceName;

'"Healthy'

1899

Table 8: Category-wise All-Passed queries by dataset. Number of NL-Cypher queries that passed all the automated
validators for each query category are reported.

KG

SR

SA

CR

CA

EQ

Total

BLOOM

392/393 (99.7%)

124/124 (100.0%)

319/384 (83.1%)

333/377 (88.3%)

379/387 (97.9%)

1547/1665 (92.9%)

CT

473/491 (96.3%)

274/290 (94.5%)

566/696 (81.3%)

559/763 (73.3%)

565/585 (96.6%)

2437/2825 (86.3%)

ER

7451749 (99.5%)

294/294 (100.0%)

550/784 (70.2%)

510/616 (82.8%)

7477754 (99.1%)

2846/3197 (89.0%)

GDSC

390/396 (98.5%)

328/340 (96.5%)

495/789 (62.7%)

615/716 (85.9%)

408/521 (78.3%)

2236/2762 (81.0%)

HCA

513/517 (99.2%)

483/494 (97.8%)

304/800 (38.0%)

524/730 (71.8%)

7427789 (94.0%)

2566/3330 (77.1%)

LG

7571764 (99.1%)

358/368 (97.3%)

590/786 (75.1%)

385/619 (62.2%)

788/796 (99.0%)

2878/3333 (86.3%)

OSM

453/544 (83.3%)

307/314 (97.8%)

409/759 (53.9%)

486/695 (69.9%)

562/632 (88.9%)

2217/2944 (75.3%)

POLE

7351746 (98.5%)

355/356 (99.7%)

398/798 (49.9%)

486/737 (65.9%)

785/798 (98.4%)

2759/3435 (80.3%)

SwW

430/431 (99.8%)

297/305 (97.4%)

591/759 (77.9%)

571/648 (88.1%)

590/599 (98.5%)

2479/2742 (90.4%)

USTT

649/745 (87.1%)

358/379 (94.5%)

382/797 (47.9%)

654/750 (87.2%)

5751760 (75.7%)

2618/3431 (76.3%)

WWC

664/692 (96.0%)

541/586 (92.3%)

592/776 (76.3%)

5721727 (78.7%)

577/594 (97.1%)

2946/3375 (87.3%)

Generated NL-Cypher pairs

(NL: "Find all legislators who represent a state and are members of a party, and return their first and last names along with the name of the party they
belong to and the state they represent."”,
Cypher: "MATCH (l:Legislator)-[:REPRESENTS]->(s:State), (1)-[:IS_MEMBER_OF]->(p:Party) RETURN L.firstName, |.lastName, p.name, s.code")

(NL: "Retrieve the bill IDs and official titles of all bills that deal with a specific subject and were proposed during a specific congress, and also list the
number of legislators who sponsored each of those bills.",

Cypher: "MATCH (b:Bill)-[:DEALS_WITH]->(s:Subject), (b)-[:PROPOSED_DURING]->(c:Congress) WITH b, s, ¢ MATCH (b)-[:SPONSORED_BY]->
(I:Legislator) RETURN b.billID, b.officialTitle, COUNT(I) AS SponsorCount")

(NL: "For each state, find the legislators who represent that state and are members of the 'Democrat' party. Return the state code and a list of the last
names of the legislators.",
Cypher: "MATCH (l:Legislator)-[:REPRESENTS]->(s:State), (1)-[:IS_MEMBER_OF]->(p:Party) WHERE p.name = 'Democrat' WITH s, | ORDER BY s.code
RETURN s.code, collect(l.lastName) AS LegislatorLastNames")

(NL: "Find all bills that were voted on by legislators who are members of the 'Republican' party and who represent the state 'IL'. Return the bill ID and
the vote of each legislator on that bill.",
Cypher: "MATCH (l:Legislator)-[:IS_MEMBER_OF]->(p:Party), (I)-[:REPRESENTS]->(s:State), (I)-[v:VOTED_ON]->(b:Bill) WHERE p.name =
'Republican’ AND s.code = 'IL' RETURN b.billID, v.vote")

(NL: "What are the names of the committees that legislators with the first name 'John' and last name 'Shimkus' serve on, and what is the rank of John
Shimkus on each committee?",
Cypher: "MATCH (l:Legislator)-[s:SERVES_ON]->(c:Committee) WHERE |.firstName = 'John' AND l.lastName = 'Shimkus' RETURN c.name, s.rank")

Figure 4: Generated five NL-Cypher pairs from Gemini-2.0-Flash in a single API call.

Natural Language Question: “Find all ’Sick’

persons who visited a *School’ after their confirmed
time, and return their names, confirmed times, and

the names of the schools they visited.”
Cypher Query:

Cypher Query:

MATCH (p:Person {healthstatus:

-[v:VISITS]->(pl:Place {type:
School'})

WHERE p.confirmedtime < v.starttime

RETURN p.name AS PersonName, p.

confirmedtime AS ConfirmedTime,
pl.name AS SchoolName;

"Sick'})

MATCH (c:Case {age:
1->(o:0utcome {outcome:

D

drugName;

753}) -[: RESULTED_IN

'Disability’

MATCH (c)-[:IS_CONCOMITANTI->(d:Drug)
RETURN c.primaryid AS caseld,

d.name AS

Natural Language Question: “Retrieve cases
where the outcome was ’Disability” and the
patient’s age is 75. Find the drugs that are listed as

concomitant for these cases.”

Natural Language Question: “Find all cases
where the patient’s age is greater than 50 and the
case resulted in ’Disability’. Also, find the drugs
that are primary suspects in these cases.”

Cypher Query:

)

drugName;

RETURN c.primaryid AS caseld,

MATCH (c:Case)-[:RESULTED_INJ->(o:
Outcome {outcome:
WHERE c.age > 50

MATCH (c)-[:IS_PRIMARY_SUSPECT]->(d:Drug

'Disability'})

d.name AS

1900

Natural Language Question: “For each age
group, how many cases are there where the patient
received therapy?”

Cypher Query:

MATCH (c:Case)-[:FALLS_UNDER]->(a:
AgeGroup), (c)-[:RECEIVED]->(t:
Therapy)

RETURN a.ageGroup AS ageGroup,
AS caseCount;

COUNT (c)

Natural Language Question: “What are the top
3 drugs that are most frequently primary suspects
in cases with the outcome *Hospitalization - Initial
or Prolonged’, and how many cases are associated
with each drug?”

Cypher Query:

MATCH (c:Case)-[:IS_PRIMARY_SUSPECT]->(d
:Drug),
(c)-[:RESULTED_IN]->(o:0Qutcome
{outcome: 'Hospitalization -
Initial or Prolonged'})
WITH d.name AS drugName, COUNT(c) AS
caseCount
ORDER BY caseCount DESC
LIMIT 3

RETURN drugName, caseCount;

Natural Language Question: “For cases where
’LYRICA’ is the primary suspect drug, what is
the average age, and how many cases are there,
grouped by the route of administration?”

Cypher Query:

MATCH (c:Case)-[r:IS_PRIMARY_SUSPECT]->(
d:Drug {name: 'LYRICA'})

RETURN r.route AS route, AVG(c.age) AS
averageAge, COUNT(c) AS caseCount;

Natural Language Question: “For each report
source, find the number of cases where the outcome
was ’Other Serious (Important Medical Event)’ and
the average age of the patients.”

Cypher Query:

MATCH (c:Case)-[:REPORTED_BY]1->(r:
ReportSource),
(c)-[:RESULTED_IN]->(o:0Qutcome
{outcome: 'Other Serious (
Important Medical Event)'})
RETURN r.name AS reportSource, COUNT(c)
AS totalCases, AVG(c.age) AS
averageAge;

F Prompt Refinement Version Details

Version v0 - Key Features:

* Basic version outlining core task and expected
JSON output structure.

* Emphasized logical correctness, diversity, and
data-backed queries through instructions.

* Included caution to avoid ambiguous or unan-
swerable questions.

Limitations:

* Inconsistent naming conventions for node types
and properties.

* Inclusion of values not present in provided data
samples.

* Failure to reflect schema types (e.g., asking aver-
age over string-type fields).

Version v1.1 - Key Improvement:

* Introduced letter-by-letter matching requirement
for node and relationship values.

Observed Benefits:

* Reduced hallucination of node names or proper-
ties.

» Improved syntactic and semantic consistency be-
tween NL and Cypher.

Version v1.2 - Key Additions:

* Added in-context Cypher examples for few-shot
learning.

» Enforced letter-by-letter matching for:

— Node names,
— Relationship names,
— Node and relationship properties.

Effect:

* Boosted fidelity to schema structure and values.

* Significantly reduced syntactic errors.

* Encouraged adherence to exact data type han-
dling.

Version v1.3 - Addition:

» Explicit instruction to generate concrete NL
questions targeting specific pieces of informa-
tion.

Impact:

* Reduced vague or underspecified questions.

* Better alignment of questions with Cypher pat-
terns.

Version v2.1 - Changes:

* Corrected schema-level errors in the Neo4;j
Database D,,, (e.g., spelling correction from
primarySubstanbce to primarySubstance for
the healthcare CG).

Outcome:

* Prevented schema mismatch errors during execu-
tion.

1901

Table 9: Summary of Iterative Prompt Refinements for NL-Cypher pairs Generation

Version Key Additions / Changes / Improvements Result / Impact / Effect

v0 Defined core task and JSON output structure, logical Initial prompts were ambiguous; produced inconsis-
correctness, diversity, and avoidance of ambiguity. tent naming and schema mismatches.

vl.1 (1) Enforced strict letter-by-letter matching for node Reduced hallucinations; (2) improved semantic and
and relationship values. syntactic alignment. Many queries passed automated

validation.

v1.2 (1) Added in-context Cypher examples; (2) enforced Boosted schema fidelity; significantly reduced syn-
exact matching for node, relationship names, and tactic errors.
properties.

vl.3 Mandated concrete NL questions targeting specific ~ Eliminated underspecified queries; enhanced align-
information. ment with Cypher patterns.

v2.1 Corrected schema typos in the KG (e.g., Prevented runtime mismatches; maintained Cypher
primarySubstanbce — primarySubstance compatibility.
in HCA [6]).

v2.2 Required each retrieval query to target a different Overgeneralization led to lower relevance and preci-
node/relationship. sion.

v2.3 Formalized date-query rules: use Improved temporal query correctness; removed mis-
date("YYYY-MM-DD") and dot notation for use of year() function.
components.

v2.4 Prohibited nested aggregations (e.g., Ensured executable queries; enhanced aggregation
AVG(COUNT())). logic.

v2.5 Generalized date-handling guidance for schema- Increased prompt reusability; retained precision

agnostic prompts with example patterns.

across datasets.

* Maintained syntactic compatibility with Cypher
runtime.

Version v2.2 -

New Constraint:

» Required each retrieval query to target a different
node or relationship.

Result:

* Reduced relevance and precision.

* Drop in valid query generation due to overgener-
alization and artificial diversity.

Version v2.3 - Additions:

* Added rules for generating date-based queries:
1. Use date("YYYY-MM-DD") format for equal-

ity checks.
2. Use dot notation for components like
dob.year, dob.month.

Impact:

e Improved handling of temporal attributes in
queries.

¢ Eliminated misuse of functions like year (dob).

Version v2.4 -

Critical Update:

* Prohibited use of nested aggregations (e.g.,
AVG(COUNT ())).

Effect:

* Ensured Cypher queries were executable.

* Improved logical correctness of aggregation-
related tasks.

Version v2.5 -

Improvement:

* Generalized formatting guidance for date-based
comparisons and attribute extraction.

Result:

* Enabled schema-agnostic application to different
graph datasets.

* Made prompt more reusable while retaining cor-
rectness.

1902

Node & properties are the following:

Legislator { fecIDs: STRING, govtrackID: STRING, party: STRING, state: STRING, republicanCount: STRING, currentParty: STRING, lisID:
STRING, cspanlD: STRING, wikipedialD: STRING, religion: STRING, firstName: STRING, opensecretsID: STRING, votesmartID: STRING, icpsrID:
STRING, lastName: STRING, democratCount: STRING, otherCount: STRING, thomasID: STRING, birthday: STRING, gender: STRING, bioguideID:
STRING, type: STRING, district: STRING }

State { code: STRING }

Party { name: STRING }

Body { type: STRING }

Bill { billID: STRING, active: STRING, officialTitle: STRING, enacted: STRING, vetoed: STRING }

Subject { title: STRING }

Committee { url: STRING, jurisdiction: STRING, type: STRING, thomasID: STRING, name: STRING }

Congress { number: STRING }

Relationship properties are the following:

SPONSORED_BY { cosponsor: BOOLEAN }

VOTED_ON { vote: STRING }

SERVES_ON { rank: INTEGER }

The relationships are the following:

(:Legislator)-[:REPRESENTS]->(:State)

(:Legislator)-[:IS_MEMBER_OF]->(:Party)

(:Legislator)-[:ELECTED_TO]->(:Body)

(:Legislator)-[:SERVES_ON]->(:Committee)

(:Legislator)-[:VOTED_ON]->(:Bill)

(:Bill)-[:DEALS_WITH]->(:Subject)

(:Bill)-[:PROPOSED_DURING]->(:Congress)

(:Bill)-[:SPONSORED_BY]->(:Legislator)

(:Bill)-[:REFERRED_TO]->(:Committee)

Figure 5: The Legis Graph schema, detailing nodes, their properties, and relationships, was appended to all prompt
types during experimentation.

1903

Your task is to generate {num_questions} questions that are directly related to a specific graph schema in Neo4j. Each question should target distinct aspects
of the schema, such as relationships between nodes, properties of nodes, or characteristics of node types.

Imagine you are a user at a company that needs to present all the types of questions that the graph can answer.

You have to be very diligent at your job.

The goal of these questions is to create a dataset for training AI models to convert natural language queries into Cypher queries effectively.

Task -

- Generate {num_questions} Questions and corresponding cypher statement from the following graph schema : {schema}.\n

- These questions should target a specific query type category {category} which has following description {query_type}.Here are some examples for the the
mentioned query type {in_context}.

- It is vital that the database contains information that can answer the question. Don't use any not provided node and relationship values. \n provided node
values : {node_values} \n provided relationship values : {rels_values}.

- while making cypher and natural language questions, Be careful while inducing node values and relationship values. They should match letter by letter.
since, they will be directly used in the query.

- for every question you have to provide a reason why that question belongs to that specific query type. Therefore you have to give {num_questions}
questions and their reasoning why it belong to that particular category of query type.

Also, do not ask questions that there is no way to answer based on the schema or provided example values.

Find good natural language questions that will test the capabilities of graph answering.

put all the questions in a list, each question with reasoning and it's cypher with reasoning must be enclosed in a dictionary !!

[

8

"NL Question": # your_question,

"Reason for NL": # Provide reason why it is correct logically,

"Cypher": # Cypher statement corresponding to that question,

"Reason for cypher": # Provide reason why your cypher is correct logically for the natural language question

h

K

"NL Question": # your_question,

"Reason for NL": # Provide reason why it is correct logically,

"Cypher": # Cypher statement corresponding to that question,

"Reason for cypher": # Provide reason why your cypher is correct logically for the natural language question

I

SO on...

Just write the json file !!

Figure 6: Prompt combining few-shots examples (as in_context) and sampled node and relationship values (as
node_values and rels_values) for NL-Cypher generation.

1904

Your task is to generate {num_questions} questions that are directly related to a specific graph schema in Neo4j. Each question should target distinct aspects
of the schema, such as relationships between nodes, properties of nodes, or characteristics of node types.

Imagine you are a user at a company that needs to present all the types of questions that the graph can answer.

You have to be very diligent at your job.

The goal of these questions is to create a dataset for training AI models to convert natural language queries into Cypher queries effectively.

Task -

- Generate {num_questions} Questions and corresponding cypher statement from the following graph schema : {schema}.\n

- Generate logical natural language questions based on the schema, avoid ambiguous question which can be interpreted in multiple ways or does not have a
straightforward answer. For example, avoid asking, "What is related to this?" without specifying the node type or relationship.

- The questions should be diverse and vary in increasing complexity.

- These questions should target a specific query type category {category} which has following description {query_type}. Here are some examples for the the
mentioned query type {in_context}.

- It is vital that the database contains information that can answer the question. Don't use any not provided node and relationship values. \n provided node
values : {node_values} \n provided relationship values : {rels_values}.

- while making cypher and natural language questions, Be careful while inducing node values and relationship values. They should match letter by letter. since,
they will be directly used in the query.

- while making cypher and natural language questions, Be careful while using Node and relationship names. They should match letter by letter.

- while making cypher and natural language questions, Be careful while using Node and relationship properties. They should match letter by letter.

- Always keep in mind the data type of attributes for the nodes and relationship. For example for simple aggregation or complex aggregation type queries, It
makes no sense to ask for average of Descriptions which has "STRING" datatype.

- for every question you have to provide a reason why that question belongs to that specific query type. Therefore you have to give {num_questions}
questions and their reasoning why it belong to that particular category of query type.

- Note that while constructing cyphers, you can not use aggregator inside an aggregator, for example AVG(COUNT()), it's not valid.

- While making queries involving dates, Mae sure to follow these formats and principles provided in the example -

(i) When comparing dates, convert the date property using a generic date string format (e.g., date(dob) = date("YYYY-MM-DD")).

(i) To extract date components, use the dot notation (e.g., player.dob.year, player.dob.month, player.dob.day) instead of using functions like year(player.dob).
(iii) Some properties can be NULL - check for not null in queries.

Also, do not ask questions that there is no way to answer based on the schema or provided example values.

Find good natural language questions that will test the capabilities of graph answering.

put all the questions in a list, each question with reasoning and it's cypher with reasoning must be enclosed in a dictionary !!

K

"NL Question": # your_question,

"Reason for NL": # Provide reason why it is correct logically,

"Cypher": # Cypher statement corresponding to that question,

"Reason for cypher": # Provide reason why your cypher is correct logically for the natural language question
h

K

"NL Question": # your_question,

"Reason for NL": # Provide reason why it is correct logically,

"Cypher": # Cypher statement corresponding to that question,

"Reason for cypher": # Provide reason why your cypher is correct logically for the natural language question
I

SO on...

]

Just write the json file !!

Figure 7: Final prompt used for curating our benchmark dataset combining few-shot examples (as in_context),
sampled node and relationship values from the Neo4j database (as node_values and rels_values), and key
instructions (highlighted in red).

1905

