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Abstract

The lack of high-quality test collections chal-
lenges Information Retrieval (IR) in special-
ized domains. This work addresses this is-
sue by comparing supervised classifiers against
zero-shot Large Language Models (LLMs) for
automated relevance annotation in the oil and
gas industry, using human expert judgments as
a benchmark. A supervised classifier, trained
on limited expert data, outperforms LLMs,
achieving an F1-score that surpasses even a
second human annotator. The study also em-
pirically confirms that LLMs are susceptible
to unfairly prefer technologically similar re-
trieval systems. While LLMs lack precision
in this context, a well-engineered classifier of-
fers an accurate and practical path to scaling
evaluation datasets within a human-in-the-loop
framework that empowers, not replaces, hu-
man expertise.

1 Introduction

The fast digital transformation across industries
has led to an exponential increase in data creation,
presenting both opportunities and challenges for In-
formation Retrieval (IR) systems. The ability to
efficiently access relevant information from vast,
intricate datasets has become critical, particularly
in specialized fields like the oil and gas industry
(Cinelli et al., 2021). However, developing and
evaluating effective IR solutions is heavily depen-
dent on high-quality annotated datasets, yet there
is a notable scarcity of such resources especially
for niche industrial domains.

The creation of evaluation datasets has long re-
lied on the pooling methodology, institutionalized
by the Text REtrieval Conference (TREC) as the
gold standard (Sparck-Jones and Rijshergen, 1975;

Sanderson, 2010). While effective in general-
purpose domains, this paradigm faces significant
challenges in specialized industrial contexts. The
TREC model’s reliance on a vast set of annotators
is infeasible in fields like oil and gas, where subject
matter experts are scarce. Furthermore, the quality
of the pooled document set itself is often compro-
mised, as retrieval systems typically underperform
when faced with complex and domain-specific ter-
minologies. These problems lead to an inefficient
annotation process where experts must sift through
a high volume of irrelevant documents to find some
positive results.

While the academic community debates the ad-
vantages and risks of using Large Language Mod-
els (LLMs) as evaluators (Soboroff, 2025; Clarke
and Dietz, 2024), the high cost of manual annota-
tion demands pragmatic automated solutions. This
work conducts a direct empirical comparison be-
tween supervised classifiers and zero-shot LLMs
to determine a more viable and scalable annota-
tion solution in a practical industrial context. It
does not propose to replace human experts, but to
empower them by reducing the annotation burden
by pre-selecting documents most likely to be rele-
vant, ensuring the resulting system is continuously
refined and validated against the ground truth of
human utility.

Therefore, it finds that the classifier, while sus-
ceptible to inheriting annotator bias, achieves a
high F1-score (0.860) and substantial agreement
with experts (Cohen’s κ = 0.669). In contrast,
LLMs exhibit a poor precision-recall trade-off:
high recall is compromised by low precision, lead-
ing to a lower F1-score (0.671) and only moderate
agreement (κ = 0.332). This analysis thus provides
a data-driven path for practitioners to scale evalua-
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tion in specialized domains.

2 Related Work

To overcome the prohibitive cost and scalability is-
sues of relying on human experts for annotation,
a growing body of research has explored using
LLMs as a substitute for human annotators, with
several studies already applying them to generate
labels for IR datasets. For instance, recent works
using LLMs as judges report moderate human-
LLM agreement, with Cohen’s Kappa score typi-
cally ranging from 0.20 to 0.64 (Bueno et al., 2024;
Faggioli et al., 2023; Thomas et al., 2024). Despite
this moderate agreement, proponents argue that
LLMs offer a scalable and consistent alternative
to human annotation (Bencke et al., 2024; Zheng
et al., 2023). The prominence of this topic is un-
derscored by dedicated academic focus, including
the establishment of the LLM4EVAL workshop at
the ACM Special Interest Group on Information
Retrieval (SIGIR)1.

Despite this potential, the use of LLMs as a
definitive source of relevance judgments has drawn
significant skepticism. A central critique is that
evaluating a system with an LLM is methodolog-
ically indistinct from using an LLM for the re-
trieval task itself (Soboroff, 2025; Clarke and Di-
etz, 2024). In this paradigm, the LLMs output be-
comes the gold standard, making it methodologi-
cally impossible to measure the performance of any
system that might surpass the LLM judge. This
circular logic leads to potentially illusory perfor-
mance gains that merely reflect an alignment with
the LLMs intrinsic biases rather than an actual im-
provement in utility for human users (Clarke and
Dietz, 2024). Ultimately, critics argue that because
IR systems are designed to serve human needs,
their evaluation must remain grounded in human
judgment and understanding. Consequently, LLM-
generated labels cannot be considered a proper
gold standard, as they lack the essential connection
to real-world human utility (Faggioli et al., 2023;
Clarke and Dietz, 2024).

The current academic debate is often limited in
its perspective. This work contributes to the discus-
sion by empirically investigating supervised classi-
fiers as a practical tool to assist human experts.

1https://llm4eval.github.io/

3 Methodology

This section details the experimental design for
evaluating automated relevance annotation meth-
ods. The proposed methodology is grounded in
the practical challenges of creating evaluation re-
sources in a specialized industrial domain.

The corpus consists of Daily Drilling Reports
(DDRs), which are semi-structured technical doc-
uments commonly used in the oil and gas indus-
try. They contain daily logs that detail noticeable
events, operations performed, equipment status, ge-
ological findings, and any problems encountered
during the drilling of a well. The unstructured
nature and richness in domain-specific terminol-
ogy make the retrieval of information a challenging
task, especially when written by and from highly
specialized professionals. The queries are infor-
mational and problem-oriented, reflecting a profes-
sional need to find geomechanical events or past
problems from historical data.

This test collection was built using the standard
pooling method, where document candidates are
sourced from the top results of multiple IR sys-
tems. This approach, however, presents a known
challenge in niche domains, such as oil and gas:
if the underlying retrieval systems perform poorly,
the resulting pool may be sparse in relevant docu-
ments. This can make the subsequent human an-
notation effort highly inefficient, as experts spend
significant time judging non-relevant items.

The dataset initially featured multi-level rele-
vance judgments on a four-point scale (0=irrele-
vant, 1=marginal, 2=relevant, 3=highly relevant).
A preliminary analysis revealed a severe class im-
balance, with certain relevance levels being ex-
tremely rare or completely absent for many queries.
Training a robust multi-class classifier on such im-
balanced data is impractical and unlikely to yield
reliable models.

To establish a well-defined and manageable
problem, the relevance labels were binarized. All
documents with a score of 1, 2, or 3 were consol-
idated into a single Relevant class, while docu-
ments with a score of 0 remained Not Relevant.
This transformation creates a straightforward bi-
nary classification task — the core of our investi-
gation — where we compare the ability of tradi-
tional machine learning classifiers against genera-
tive LLMs to replicate the gold standard of human
expert judgments.
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3.1 Machine Learning Classifiers
A suite of traditional machine learning classifiers is
first evaluated by using semantic representations of
query-document pairs. In this bi-encoder architec-
ture, the query and document are independently en-
coded into dense vectors, which are then combined
using an interaction method before being fed into
the classifier. The experimental design systemati-
cally evaluates the impact of four components: the
embedding model, the query-document interaction
(feature engineering), the classification algorithm,
and the training strategy. The specific component
tested for each factor is outlined in Table 1.

The feature vectors for the classifiers were gen-
erated using a bi-encoder architecture. All clas-
sifier models were implemented using the scikit-
learn library and included crucial pre-processing
steps: data standardization was applied to the fea-
ture vectors, and class weight balancing was used
to handle the inherent data imbalance. To assess
model robustness and generalization, three distinct
validation schemes were employed:

• Cross-Query (CQ): This strategy uses a
5-fold stratified cross-validation framework.
The folds were stratified by class label across
the entire dataset to ensure that documents
from all queries were present in both the train-
ing and validation sets of each split, testing
the model’s ability to learn a general rele-
vance function.

• Per-Query (PQ): For this approach, a sep-
arate, independent classifier was trained for
each query. A dedicated 5-fold cross-
validation was performed for each model us-
ing only the documents associated with that
specific query.

• Unseen Queries (UQ): To test generalization
to new topics, this strategy used leave-one-out
cross-validation at the query level. In each
fold, the validation set consisted of all docu-
ments for a query (or group of queries) that
the model had not seen during training.

3.2 LLMs as Annotators
The ability of LLMs to perform relevance annota-
tion is evaluated in a zero-shot setting, a paradigm
with significant potential for reducing manual ef-
fort. The evaluation analyzes the trade-off between

performance and efficiency by testing two mod-
els: GPT-4o, a state-of-the-art model known for
its language understanding capabilities, and GPT-
4o-mini, a smaller, faster, and more cost-effective
model suited for practical deployment.

For each model, two prompting strategies were
compared to gauge the impact of domain con-
text. The first is a Generic Prompt (Baseline),
which uses the standardized reference from the
LLM4EVAL workshop. The second is a Domain-
Knowledge Prompt (Specialist), which was en-
riched with structured information from a domain-
specific ontology. Details for both prompts is pro-
vided in Appendix A for reproducibility. All LLM
inferences were executed via the official API with
the temperature parameter set to 0 to minimize ran-
domness and promote reproducible outputs.

3.3 Evaluation Metrics
Model performance is evaluated against the human-
adjudicated gold standard using standard classifi-
cation metrics, including F1-Score, Precision and
Recall. Furthermore, to specifically measure the
consistency between an LLM’s predictions and hu-
man judgments, the Cohen’s Kappa (κ) coefficient
is also reported.

To establish the gold standard and inter-
annotator agreement, both Human Annotators
(HA1, HA2) independently annotated an overlap-
ping subset of 5066 query-document pairs. Dis-
agreements were not adjudicated; the agreement
was calculated from this set. Following this, one
expert (HA1) was designated as the primary anno-
tator to provide a consistent ground truth for cross-
fold training and evaluation, while the second ex-
pert’s judgments (HA2) were reserved to validate
the model’s ability to generalize to an unseen hu-
man perspective.

3.4 Retrieval Systems for Evaluation
To assess the downstream impact of different rel-
evance judgments, we evaluated five distinct re-
trieval systems representing a range of classic and
modern neural approaches. The systems used
were:

• BM25: A standard lexical, keyword-based re-
trieval model based on the probabilistic rele-
vance framework.

• BGE: The BAAI General Embedding model
bge-multilingual-gemma2, a state-of-the-art
dense retriever from the Beijing Academy of
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Component Option Description
Embedding Model bge-multilingual-gemma2 (BGE) (Chen

et al., 2024)
State-of-the-art, large-scale general-purpose multilin-
gual model.

PetroBERT (P-BERT) (Rodrigues et al.,
2022)

Smaller, computationally efficient model domain-
adapted for oil and gas.

Interaction Method Document Only (DocOnly) Query-agnostic baseline using only the document em-
bedding.

Concatenation (Concat) Concatenates query and document embeddings: [q;
d].

Absolute Difference (Diff) Element-wise absolute difference: |q - d|.
Hadamard Product (Hada) Element-wise multiplication, capturing feature inter-

actions: q ⊙ d.
Cosine Similarity (CosSim) The single cosine similarity score used as the sole fea-

ture.

Classifier Model Logistic Regression (LR) Linear model.
SVM with RBF Kernel (SVM-RBF) Non-linear kernel-based model.
Random Forest (RF) Ensemble of decision trees.
Gradient Boosting (GB) Sequential ensemble model.
Neural Network (NN) Multi-Layer Perceptron for non-linear patterns.

Training Strategy Cross-Query (CQ) A single model trained on data from all queries. Tests
general relevance.

Per-Query (PQ) A separate model trained for each query. Tests spe-
cialized relevance.

Unseen Queries (UQ) Model trained on a subset of queries and validated on
held-out. Tests generalization.

Table 1: Experimental design for the supervised baseline classifiers, structured around four components: embedding
model, query-document interaction, classifier, and training strategy. For interaction methods, ‘q‘ denotes the query
embedding vector and ‘d‘ denotes the document embedding vector

Artificial Intelligence (Xiao et al., 2023; Chen
et al., 2024).

• mContriever: A dense retriever pre-trained
using contrastive learning on unsupervised
data, designed for strong zero-shot perfor-
mance (Izacard et al., 2021).

• ColBERT: A late-interaction model that per-
forms scalable and fine-grained text matching
by interacting with the query and document
embeddings at the token level (Santhanam
et al., 2022).

• text-embedding-3-large: A proprietary,
high-dimensional embedding model from
OpenAI.

4 Results
This section details the results of the empirical eval-
uation.

4.1 Classification Performance
Over 120 distinct model configurations were evalu-
ated by varying the classifier algorithm, feature en-
gineering, embedding model and training strategy.
Table 2 summarizes the performance of the highest-
performing classification models by each metric

and zero-shot LLMs. The models are trained on
data from a primary human annotator and evalu-
ated against a held-out second expert, whose per-
formance is also shown.

While both the BGE and PetroBERT embedding
models were evaluated across all configurations,
models using BGE consistently and significantly
outperformed those using PetroBERT. Therefore,
for clarity and brevity, Table 2 presents only the
highest-performing configurations, which were all
based on the BGE model.

The analysis of the results demonstrates a clear
outcome: the supervised classifier, trained with ex-
pert data, not only significantly outperforms the
zero-shot LLMs but also exceeds the performance
of a second human annotator. The (NN + CQ +
BGE + Hada) classifier, henceforth referred to as
the Best Classifier (BC), achieved an F1-score of
0.860. This result is notably superior to that of
the second human expert (0.793), and vastly sur-
passes the best LLM configuration, GPT-4o with
a specialist prompt (0.671). The robustness of
the supervised classifier is further evidenced in the
most stringent evaluation scenario. Even when
tested on queries not seen during training, the clas-
sifier (SVM-RBF + UQ + BGE + Diff) achieved
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Method Precision Recall F1-Score
Human Annotator 2 0.867 0.730 0.793

GB + CQ + BGE + Hada 0.865 ± 0.028 0.696 ± 0.010 0.771 ± 0.007
NN + CQ + BGE + Hada 0.860 ± 0.017 0.860 ± 0.020 0.860 ± 0.018
SVM-RBF + CQ + BGE + Diff 0.850 ± 0.019 0.861 ± 0.012 0.856 ± 0.013
SVM-RBF + CQ + BGE + Hada 0.849 ± 0.018 0.865 ± 0.015 0.857 ± 0.014
NN + PQ + BGE + Diff 0.718 ± 0.212 0.890 ± 0.084 0.772 ± 0.161
NN + PQ + BGE + Hada 0.731 ± 0.214 0.877 ± 0.113 0.775 ± 0.174
NN + PQ + BGE + DocOnly 0.730 ± 0.209 0.876 ± 0.103 0.776 ± 0.169

GPT-4o (Baseline) 0.413 0.915 0.569
GPT-4o (Specialist) 0.522 0.940 0.671
GPT-4o-mini (Baseline) 0.494 0.877 0.632
GPT-4o-mini (Specialist) 0.407 0.983 0.575

Table 2: Performance comparison of all models. The best score in each metric is in bold. Top three F1-scores in
the ML group are highlighted. Model names are abbreviated as [Classifier] + [Training Strategy] + [Embedding] +
[Feature Combination]. Values are mean ± standard deviation when available.

an F1-score of 0.674, still outperforming the best
LLM. This finding is particularly significant, as
it suggests that the classifier effectively learned to
generalize the human annotator’s decision patterns
rather than simply memorizing topic-specific cues.

In contrast, the LLMs presented an imbalanced
performance profile. Although they achieved ex-
tremely high recall, with GPT-4o-mini correctly
identifying 98.3% of relevant documents, their low
precision severely compromised their F1-scores.
This trend confirms that while LLMs may be use-
ful for sourcing a broad set of candidate documents,
their inability to accurately distinguish relevance
makes them unreliable for final annotation. The
classifiers have proven exceptionally capable of
learning from the expert annotations, effectively in-
ternalizing and replicating the primary annotator’s
nuanced judgment, however, it is crucial to empha-
size that this robust performance is fundamentally
driven by the training data and annotator bias.

4.2 Inter-Annotator Agreement
To evaluate agreement between annotators, pair-
wise Cohen’s Kappa scores were computed be-
tween all human and automated annotators. The
results, shown in Figure 1 reveal several critical in-
sights into the nature of the annotation task.

The agreement between the two human experts
(HA1 and HA2) was substantial (κ = 0.695). This
level of agreement validates the feasibility of the
relevance task and establishes a strong upper-
bound benchmark for any automated system aim-
ing to replicate human judgment. As expected,
the best classifier showed a very high agreement
with its training source, HA1 (κ = 0.785), demon-
strating successful pattern learning. More impor-

HA1 HA2 BC GPT-4o
(Baseline)

GPT-4o
(Specialist)

GPT-4o-mini
(Baseline)

GPT-4o-mini
(Specialist)

HA1

HA2

BC

GPT-4o
(Baseline)

GPT-4o
(Specialist)

GPT-4o-mini
(Baseline)

GPT-4o-mini
(Specialist)

0.695 0.785 0.167 0.332 0.401 0.157

0.695 0.669 0.142 0.329 0.373 0.136

0.785 0.669 0.170 0.327 0.398 0.159

0.167 0.142 0.170 0.407 0.330 0.364

0.332 0.329 0.327 0.407 0.538 0.415

0.401 0.373 0.398 0.330 0.538 0.453

0.157 0.136 0.159 0.364 0.415 0.453

Figure 1: Heatmap of Pairwise Cohen’s Kappa (κ)
Agreement.

tantly, its agreement with the unseen expert, HA2
(κ = 0.669), was also substantial, indicating that
the classifier captured generalizable relevance sig-
nals beyond simple overfitting to one annotator’s
idiosyncrasies.

Otherwise, the agreement between humans and
the zero-shot LLMs was universally lower. All
LLM configurations scored between slight and fair
agreement with both HA1 and HA2, with values
ranging from 0.136 to 0.401. These values are in
the same ballpark as the Cohen’s Kappa of 0.31
from the Quati dataset, 0.26 reported by Faggioli
et al. (2023), and the 0.20-0.64 range observed by
Thomas et al. (2024). However, when comparing
the gap between human-human and LLM-human
agreement, this study reveals a much starker diver-
gence.

Despite their linguistic prowess, the LLMs in-
trinsic understanding of relevance in this special-
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ized domain differs significantly from that of hu-
man experts. This divergence likely stems from the
LLMs’ training on general web data, which predis-
poses them to a broader, keyword-centric interpre-
tation of relevance, contrasting with the experts’
utility-focused approach. Furthermore, the agree-
ment among the different LLM configurations was
also only moderate (e.g., κ = 0.415 between GPT-
4o Specialist and GPT-4o-mini Specialist), indicat-
ing a lack of consistent consensus even within the
same family of models. This low level of agree-
ment with the human gold standard, coupled with
their poor precision scores, suggests that while
LLMs can be used for broad candidate discovery
(high recall), they are not sufficiently reliable as a
direct alternative for human annotators in this high-
stakes domain.

4.3 Effect on Downstream IR System
Evaluation

To address how different relevance judgments im-
pact the evaluation of IR systems, the rankings
of the five retrieval models detailed in Section
3.4 were analyzed using various sets of relevance
labels. As detailed in Table 3 (Appendix B),
two distinct scenarios emerged. First, the rank-
ing produced using judgments from human annota-
tors and our best-performing neural classifier were
highly consistent. For both Recall@10 and Preci-
sion@10, the relative order of the retrieval systems
remained stable: BM25 performed best, followed
by BGE, mContriever, ColBERT, and finally text-
embedding-3-large.

In contrast, when using judgments generated by
any of the GPT configurations, the system rankings
changed significantly. While BM25 remained the
top retriever, the text-embedding-3-large model,
which was the worst-performing model accord-
ing to human judgments, consistently rose to the
second or third position. This reveals a criti-
cal finding of potential algorithmic collusion: the
GPT-based annotators appear to favor the output
of a retriever based on a technologically simi-
lar embedding model (OpenAI’s text-embedding-
3-large). The semantic characteristics that the
text-embedding-3-large model deems relevant are
likely the same characteristics the GPT models use
to assess relevance, leading to an inflated evalu-
ation. This confirms the concerns raised in the
literature and provides a practical demonstration
that using LLMs as evaluators can distort system
rankings, especially when there is a technological

overlap between the evaluator and the system being
evaluated.

4.4 Cost-Performance Analysis
To contextualize the practical implications of each
approach, the costs of using the LLMs were pro-
jected to annotate our full dataset of 108,292 doc-
uments across 47 queries. This projection is based
on a direct, one-request-per-document schema, us-
ing an average of approximately 570 tokens per
document and a 900-token prompt overhead. In
contrast, the inference cost for our trained super-
vised classifiers is negligible, as these lightweight
models can be run on existing commodity hard-
ware without incurring per-document API fees.

Based on the pricing models at the time of
this work, a single annotation pass over the en-
tire dataset would cost approximately $23.8k for
GPT-4o and $1.4k for GPT-4o-mini, presenting a
trade-off for practitioners. While the supervised
classifiers demonstrated superior performance in
the evaluation, the cost of using LLMs must be
weighed against the alternative: the expense and
time required to source and manage human domain
experts for a task of this scale. The cost of GPT-
4o, while substantial, may be competitive with
or even lower than employing specialists. There-
fore, the optimal approach depends on the specific
project constraints. For scenarios where a suffi-
cient labeled dataset already exists to train a high-
performing specialized model, the supervised clas-
sifier is a more efficient and accurate solution.

4.5 Impact of Automated Annotation at Scale
To assess the real-world utility and behavior of
the classifier, it was used to annotate all the entire
dataset. Then, the top 1,000 ranking was retrieved
for each query using BM25. As shown in Fig-
ure 2, the classifier behaved as expected, ranking
more relevant documents higher, with the number
of positive labels decreasing as the rank position
increases. However, the absolute volume of docu-
ments labeled relevant was unexpectedly high.

Further analysis, visualized in the heatmap in
Figure 5 (Appendix C), revealed that this high vol-
ume was driven by a few queries (e.g., 0, 33, 34, 35,
36) that returned a disproportionately high number
of positive labels across the entire ranking. To di-
agnose it, a targeted qualitative analysis was con-
ducted by creating a stratified sample of 111 doc-
uments from five queries: three with a high num-
ber of positives (0, 35 and 36) and two (12 and 41)
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Figure 2: Distribution of Relevant Documents by BM25
Grouped Rank

with the expected pattern as a control group. This
sample was stratified into three groups to isolate
specific performance characteristics: Stratum A,
consisting of high-ranking documents (1–50) that
the classifier marked as relevant; Stratum B, con-
taining low-ranking documents (500–1000) also
marked as relevant; and Stratum C, comprising
high-ranking documents (1–100) that the classifier
marked as irrelevant.

A human expert manually re-judged this sample,
yielding a important insight: the classifier’s over-
all accuracy was a respectable 80.18%. However,
its performance varied significantly by stratum. It
was 100% accurate on the top-ranked documents
(Stratum A and C) but dropped to 69% on the low-
ranked documents it had labeled as relevant (Stra-
tum B). This indicates that while the classifier is
generally reliable, its precision decreases on docu-
ments that are less obviously relevant. For queries
with high number of positives, which were often
broad or described routine procedures, the classi-
fier struggled to distinguish between documents
merely mentioning keywords and those that were
genuinely useful, leading to an over-prediction of
relevance. This analysis confirms that the classifier
is a promising tool but requires careful application,
as it can be overly lenient on ambiguous queries
and less reliable on documents with weaker rele-
vance signals.

5 Conclusion

This work address the challenge of creating evalu-
ation test collection within the specialized domain
of oil and gas exploration. A comprehensive com-
parison of automated relevance annotation meth-
ods was conducted, evaluating machine learning
classifiers against zero-shot Large Language Mod-
els and benchmarking both against human expert

judgment.
The findings of this study provide clear in-

sights for industrial practitioners, demonstrating
that a carefully engineered supervised classifier,
built upon a powerful general-purpose embedding
model and trained on a modest amount of expert-
labeled data can be a more effective and practical
solution for this task. Outperforming all the LLM-
based configurations. Crucially, this approach is
also the most cost-effective, with negligible infer-
ence costs compared to the prohibitively expensive
API calls required for LLM-based annotation at
scale.

Furthermore, this study empirically confirmed
several concerns raised in the academic literature
regarding the use of LLMs as evaluators. It was
found that LLMs have low agreement with human
experts in this domain and are suscetible to unfairly
favor retrieval systems built on similar underlying
technology, thereby distorting evaluation results.

Limitations

While this study provides a pragmatic evaluation
of automated annotation methods in a specialized
industrial context, its findings are subject to some
limitations that offer avenues for future research.

First, the scope of this work is intentionally fo-
cused on a single, highly specialized domain: oil
and gas exploration, using a corpus of daily drilling
reports. The superior performance of the super-
vised classifier is contingent on the availability
of expert-labeled data from this specific domain.
Consequently, the conclusions regarding the clas-
sifier’s effectiveness may not be directly general-
izable to other industrial sectors, different types of
technical documents, or other languages, where the
nature of relevance and the complexity of the ter-
minology might differ significantly.

Second, the supervised classifier’s performance
is fundamentally tied to the data on which it was
trained. It was optimized to replicate the judg-
ments of a single primary annotator. While it
demonstrated high agreement with a second ex-
pert, the model has effectively learned one spe-
cific, albeit expert, perspective on relevance. This
’annotator-cloning’ approach may not capture a
broader consensus and risks perpetuating individ-
ual biases at scale. The qualitative analysis re-
vealed that the classifier struggles with ambiguity
in broad queries, leading to an over-prediction of
relevance.
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Third, the investigation into Large Language
Models was constrained to a zero-shot evaluation
of two specific OpenAI models. Other potentially
effective methods were not explored, such as few-
shot learning, chain-of-thought prompting, or fine-
tuning the LLMs on domain-specific data, which
could have improved their performance and agree-
ment with human experts. Similarly, the landscape
of LLMs is vast, and the results may not be repre-
sentative of other proprietary or open-source mod-
els.

Finally, while the analysis provides compelling
evidence of algorithmic collusion where LLM-
based evaluators favor technologically similar
models, this finding is based on a limited set
of five retrieval systems. To establish this as
a more general phenomenon, further research is
needed across a wider and more diverse range of re-
triever architectures. Furthermore, the cost analy-
sis, while illustrative, is based on a non-optimized,
per-document API call structure; more sophisti-
cated batching strategies could alter the economic
trade-offs presented.
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A LLM Prompt Templates
For reproducibility, the full text of the prompts
used for the zero-shot LLM evaluation is provided
below. The system instructions and the user input
format are combined to form the complete prompt
sent to the LLM. The original prompts are in por-
tuguese, being translated to english for this paper.

It is important to note that the query_metadata
and document_metadata placeholders in the spe-
cialist prompt are populated by a Rule-Based
Named Entity Recognition (NER) system. This
system processes the raw text of the query and doc-
ument to extract and classify domain-specific en-
tities according to the ontology described in the
prompt, providing structured data that the LLM is
instructed to use in its reasoning process.

A.1 Generic Prompt (Baseline)
This prompt, shown in Figure 3, provides a
slightly modified version from the reference of
the LLM4EVAL workshop, following the standard
structure for a relevance annotation task.

A.2 Domain-Knowledge Prompt (Specialist)
The prompt shown in Figure 4 was enriched with
domain-specific context, an ontology of named en-
tities, and detailed reasoning instructions to guide
the model as a subject-matter expert.

Due to confidentiality agreements, the full ver-
sion of the specialist prompt cannot be disclosed.
The version presented is a representative summary
that illustrates the key domain-specific instructions
given to the model.

B Downstream Evaluation of IR System
Table 3 illustrates the direct impact of using differ-
ent sets of relevance judgments (qrels) on the evalu-
ation of five distinct Information Retrieval (IR) sys-
tems.

C Impact of Automated Annotation at
Scale

Figure 5 provides a granular, per-query detail for
the analysis in Section 4.5. The heatmap shows
the percentage of documents labeled as ”Relevant”

by the classifier, broken down by BM25 rank and
by query. This visualization was critical for diag-
nosing the classifier’s behavior and identifying out-
liers. Key observations from the heatmap include:

• Expected Behavior: For many queries, such
as 1, 10, 12, 14, 22, and 40, the classifier
behaves as expected. It identifies a high
percentage of relevant documents in the top
ranks, with the relevance percentage steadily
decreasing as the rank gets lower. This pat-
tern indicates that for well-defined queries,
the classifier successfully prioritizes relevant
content

• Saturated Queries: A distinct set of queries
(33, 34, 35, 36, and to a lesser extent 42) are
saturated with positive labels. For these, the
classifier marks nearly 100% of documents
as relevant across almost all ranking blocks.
This finding prompted the qualitative analy-
sis described in the main text, which revealed
that these queries were often broad or de-
scribed routine procedures, causing the clas-
sifier’s precision to decrease.

• Low-Relevance Queries: Some queries, like
10 and 31, return very few relevant documents
overall, with relevance percentages close to
zero across all ranks. This suggests these top-
ics are either extremely rare in the corpus or
the queries themselves are difficult for any
system to retrieve relevant documents for.
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You are a search quality rater evaluating the relevance of passages. Given a query and a passage, you must provide
a score on an integer scale of 0 to 3 with the following meanings:

• 3 = Highly Relevant: Documents directly correlated with the query that answer it completely;

• 2 = Relevant: Documents correlated with the query, but that do not answer it completely;

• 1 = Marginally Relevant: Documents not correlated with the query, but that contain associated informa-
tion;

• 0 = Not Relevant: Documents that show no correlation with the query.

Your response MUST be only the score number (0, 1, 2, or 3).
Query: {query}
Document: {document}
Relevance:

Figure 3: The baseline prompt for relevance annotation, providing general instructions and a 4-point scale.

Recall Precision
Model Qrel Source @1 @5 @10 @50 @1 @5 @10 @50

BM25

HA1 0.032 0.122 0.226 0.374 0.830 0.732 0.689 0.235
HA2 0.045 0.193 0.331 0.464 0.809 0.783 0.726 0.226
BC 0.032 0.138 0.248 0.397 0.787 0.736 0.694 0.233
GPT-4o (Baseline) 0.011 0.056 0.113 0.201 0.915 0.919 0.915 0.315
GPT-4o (Specialist) 0.017 0.083 0.161 0.271 1.000 0.987 0.957 0.320
GPT-4o-mini (Baseline) 0.017 0.085 0.161 0.275 0.957 0.974 0.928 0.312
GPT-4o-mini (Specialist) 0.012 0.059 0.118 0.206 1.000 1.000 1.000 0.342

BGE

HA1 0.030 0.098 0.165 0.368 0.851 0.651 0.543 0.255
HA2 0.033 0.126 0.201 0.418 0.787 0.634 0.521 0.237
BC 0.034 0.111 0.184 0.397 0.809 0.664 0.551 0.256
GPT-4o (Baseline) 0.012 0.050 0.087 0.229 0.915 0.770 0.664 0.353
GPT-4o (Specialist) 0.016 0.065 0.113 0.279 0.936 0.783 0.672 0.342
GPT-4o-mini (Baseline) 0.016 0.066 0.114 0.285 0.936 0.766 0.649 0.335
GPT-4o-mini (Specialist) 0.011 0.047 0.084 0.227 0.936 0.800 0.696 0.376

TE3

HA1 0.019 0.064 0.105 0.227 0.574 0.485 0.426 0.182
HA2 0.023 0.085 0.134 0.268 0.574 0.460 0.396 0.165
BC 0.017 0.061 0.102 0.221 0.511 0.460 0.409 0.175
GPT-4o (Baseline) 0.012 0.055 0.098 0.204 0.936 0.889 0.796 0.322
GPT-4o (Specialist) 0.014 0.068 0.118 0.231 0.851 0.813 0.715 0.289
GPT-4o-mini (Baseline) 0.015 0.070 0.118 0.238 0.894 0.838 0.721 0.294
GPT-4o-mini (Specialist) 0.011 0.053 0.100 0.204 0.936 0.915 0.843 0.346

ColBERT

HA1 0.023 0.091 0.133 0.307 0.660 0.540 0.415 0.206
HA2 0.037 0.122 0.174 0.366 0.723 0.557 0.415 0.194
BC 0.028 0.097 0.143 0.327 0.702 0.536 0.413 0.201
GPT-4o (Baseline) 0.010 0.044 0.065 0.179 0.809 0.660 0.500 0.264
GPT-4o (Specialist) 0.014 0.058 0.088 0.220 0.830 0.672 0.502 0.259
GPT-4o-mini (Baseline) 0.014 0.059 0.089 0.219 0.787 0.655 0.498 0.251
GPT-4o-mini (Specialist) 0.010 0.041 0.063 0.171 0.851 0.689 0.521 0.282

mContriever

HA1 0.018 0.078 0.157 0.279 0.638 0.570 0.566 0.214
HA2 0.022 0.095 0.181 0.317 0.574 0.515 0.496 0.191
BC 0.018 0.087 0.158 0.291 0.596 0.587 0.543 0.211
GPT-4o (Baseline) 0.010 0.052 0.101 0.220 0.830 0.834 0.828 0.351
GPT-4o (Specialist) 0.014 0.069 0.127 0.252 0.809 0.821 0.785 0.317
GPT-4o-mini (Baseline) 0.014 0.066 0.120 0.242 0.830 0.800 0.757 0.310
GPT-4o-mini (Specialist) 0.010 0.052 0.101 0.212 0.936 0.898 0.879 0.366

Table 3: Impact of different relevance judgment sets, focusing on Recall and Precision across five retrieval models.
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You are a highly experienced Well Engineer with deep knowledge of all processes, equipment, components, and
procedures involved in the drilling, workover, and abandonment of oil and gas wells. Your specialty includes
drilling and completion operations. Your task is to evaluate the relevance of a Document in relation to a Query.
You must provide a score on an ordinal scale from 0 to 3.
Domain Context (Oil Wells):
The documents (Daily Drilling Reports - DDRs) are technical reports... The classes of these entities are:

• Action: Verbs describing operations (e.g., Drill, Pump, Install).

• Procedure: Nouns for processes (e.g., Pressure Test, Pipe Trip).

• Component: Equipment, tools (e.g., BOP, Drill Bit, Casing, BHA).

• Material: Fluids, compounds (e.g., Drilling Fluid, Cement, Sea Water).

• Location: Where actions occur (e.g., Bottom of the Well, Rig, Moon Pool).

• Organization: Companies, teams (e.g., Petrobras, Halliburton).

• Property: Numerical values, qualities (e.g., Pressure (psi), Diameter (in)).

• State: Conditions (e.g., Valve Open, Test Approved).

• Incident: Unplanned events (e.g., Kick, Loss Circulation, Stuck Pipe).

Detailed Evaluation Instructions:

1. Analyze the Query: Identify the main topic, intent, and key entities.

2. Analyze the Document: Understand the scenario, activities, and elements described.

3. Analyze Metadata (Fundamental): Compare the classes and concepts from the query’s metadata with
those of the document. A strong overlap of relevant classes and related concepts indicates higher relevance.

4. Weigh the Relevance: Combine your textual analysis with the metadata analysis to determine the score.

5. Response Format: Your response MUST be ONLY the score number (0, 1, 2, or 3).

Example of Reasoning with Metadata:

• Query: ”BOP pressure test procedure”

• Query Metadata: [Class: Procedure>PressureTest], [Class: Component>BlowoutPreventer]

• Document: ”Initiating pressure test on the annular BOP. Applied pressure: 5000 psi. Result: OK.”

• Document Metadata: [Action>Initiate, Procedure>PressureTest, Component>BlowoutPreventer, Prop-
erty>Measure>Pressure(psi), State>Ok]

• Analysis: High overlap. The document describes exactly the specified procedure on the specified compo-
nent. Score: 3.

Query: {query}
Query Metadata: {query_metadata}
Document: {document}
Document Metadata: {document_metadata}
Relevance:

Figure 4: The specialist prompt, which instructs the model to act as an oil well engineer and use domain-specific
metadata for annotation.
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86 73 73 78 72 80 71 78 76 82
25 0 3 4 3 1 1 4 4 7
41 8 5 5 5 6 2 2 3 1
52 29 21 8 8 12 3 12 9 11
13 1 0 0 0 1 1 1 2 2
30 28 16 7 4 5 5 5 3 3
33 25 29 37 34 30 32 35 35 25
46 27 36 43 28 6 6 4 6 1
29 15 51 61 39 24 19 16 11 8
69 49 48 40 30 23 34 38 17 23
19 2 3 0 1 0 1 2 0 2
77 67 60 59 49 61 66 50 27 30
33 4 3 7 13 6 1 5 0 4
54 55 35 17 14 3 6 7 5 4
58 48 36 22 19 13 12 13 15 12
91 91 93 96 94 98 0 0 0 0
71 59 58 50 35 34 30 39 39 35
85 50 53 40 41 33 38 41 19 17
52 32 38 39 55 13 9 14 3 9
51 31 20 13 23 68 37 33 15 24
73 55 20 20 19 19 12 18 15 9
57 59 82 85 76 77 86 77 88 73
78 70 57 51 35 24 11 6 4 8
35 21 10 4 4 1 0 1 1 0
23 29 26 17 4 0 8 1 2 1
75 44 41 33 9 16 14 14 9 11
81 78 22 2 4 2 7 6 7 2
47 1 2 0 1 0 0 0 1 0
16 8 8 3 2 2 2 1 2 2
84 52 30 34 38 47 33 28 19 23
49 24 19 32 27 21 30 22 21 16
11 1 0 0 0 3 0 0 1 1
70 62 62 28 32 25 39 30 40 22

100 99 99 96 93 97 93 95 93 95
100 100 100 100 100 100 100 100 99 98
97 100 99 96 99 100 100 98 100 97

100 99 98 100 100 100 100 100 100 100
30 62 77 59 70 54 51 45 35 49
9 12 17 22 28 28 13 12 7 5

49 54 37 46 37 27 23 17 12 10
52 18 23 15 17 18 15 19 12 15
81 40 1 0 2 1 5 1 0 2
96 98 100 95 93 71 51 87 76 62
97 91 66 67 48 68 38 11 29 25
94 95 92 74 72 74 59 56 33 41
44 81 87 87 84 93 83 88 0 0
83 65 67 32 30 28 38 29 29 21

Figure 5: Per Query Relevance Distribution Heatmap. This shows the percentage of relevant documents found in
each ranking block for each query. It clearly identifies queries that are saturated with positive labels, skewing the
overall distribution.
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