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Abstract

We present CLARITY (Clinical Assistant
for Routing, Inference and Triage), an AI-
driven platform designed to facilitate patient-
to-specialist routing, clinical consultations, and
severity assessment of patient conditions. Its
hybrid architecture combines a Finite State Ma-
chine (FSM) for structured dialogue flows with
collaborative agents that employ Large Lan-
guage Model (LLM) to analyze symptoms and
prioritize referrals to appropriate specialists.
Built on a modular microservices framework,
CLARITY ensures safe, efficient, and robust
performance, flexible and readily scalable to
meet the demands of existing workflows and
IT solutions in healthcare.

We report integration of our clinical assistant
into a large-scale national interhospital plat-
form, with more than 55,000 content-rich user
dialogues completed within the two months
of deployment, 2,500 of which were expert-
annotated for subsequent validation. The vali-
dation results show that CLARITY surpasses
human-level performance in terms of the first-
attempt routing precision, naturally requiring
up to 3 times shorter duration of the consulta-
tion than with a human.

1 Introduction
The integration of LLMs into healthcare could truly
transform the industry. These models demonstrate
potential to improve diagnostic accuracy, optimize
clinical workflows, and enhance the overall experi-
ence for patients and physicians. Dialog systems
powered by LLMs are particularly promising, as
they are capable of automating routine tasks, gen-
erating initial diagnostic hypotheses to optimize
access to care and reduce waiting times (Tu et al.,
2024; Bao et al., 2023; Chen et al., 2024; Tripathi
et al., 2024; Meng et al., 2024).

Medical dialogue systems are designed to fa-
cilitate clinical consultations, assist healthcare
providers, and connect patients with proper exper-

tise. Unlike general-purpose conversational AI,
these systems must be able to handle complex
diagnostic hypotheses reasoning, extended back-
and-forth interactions, and domain-specific medi-
cal knowledge. Although recent advances in LLMs
have significantly improved their conversational
abilities, they are still fundamentally flawed for
real-world adoption in healthcare.

Despite all the efforts, modern patient routing
approaches often involve unnecessary delays. Pa-
tients typically consult general practitioners (GPs)
as an intermediary step before being referred to
specialized experts, which increases wait times and
complicates timely access to care. Automated as-
sessment of patient conditions with a generated di-
agnostic hypotheses could significantly streamline
this process, benefiting both patients and health-
care providers (Umerenkov et al., 2025; Nazi and
Peng, 2024). This optimization also promises sub-
stantial economic advantages, potentially reducing
healthcare costs and improving the allocation of
resources.

The potential economic impact extends to the
rapidly growing telemedicine market. While
telemedicine offers expanded access to care, high
consultation costs remain a significant barrier.
Automating certain GP functions through LLM-
powered systems offers a pathway to more afford-
able and accessible telemedicine services (Downes
et al., 2015; Waller and Stotler, 2018). Similarly,
improvements in online appointment scheduling
systems, often hindered by user interface chal-
lenges and integration issues, could further enhance
patient experience and reduce administrative bur-
dens (Ala et al., 2023; Gupta and Denton, 2008).

Several specialized LLMs, including AMIE,
DISC-MedLLM, CDD, and CoD (Tu et al., 2024;
Bao et al., 2023; Chen et al., 2024), demonstrate
the potential of this technology. While systems
like AMIE show high diagnostic hypotheses accu-
racy, challenges remain regarding scalability and
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reliance on specialized datasets. Others, such as
DISC-MedLLM, prioritize empathetic patient inter-
action, while CDD focuses on structured symptom
questioning. However, the field lacks unified stan-
dards for training, evaluation, and deployment, hin-
dering model comparison and regulatory approval
(Bedi et al., 2024; Singhal et al., 2023).

Despite these advancements, critical challenges
persist. LLMs may generate inaccurate or fabri-
cated information ("hallucinations")(Huang et al.,
2024; Tonmoy et al., 2024; Pal et al., 2023), a par-
ticularly dangerous risk in medicine. Current mod-
els also struggle to reliably identify life-threatening
conditions and may exhibit inconsistencies in pa-
tient interaction, potentially affecting trust. These
issues necessitate robust solutions to ensure safe
and effective integration of LLMs into clinical prac-
tice (Zhou et al., 2024a; Yang et al., 2024; Shi et al.,
2024).

To address these challenges, this article in-
troduces CLARITY, a hybrid system integrating
the strengths of rule-based and LLM approaches.
CLARITY is designed to provide a flexible, con-
trollable, and accurate medical dialog system suit-
able for real-world applications. By leveraging
FSM, a microservices architecture, and specialized
datasets, CLARITY facilitates structured, context-
aware patient interactions, enhancing diagnostic
hypotheses reliability, enabling real-time critical
condition recognition, and providing personalized
patient guidance.

2 System Architecture
The CLARITY system is designed as a hybrid ar-
chitecture, integrating an FSM for the management
of dialogue with a microservices architecture for
the processing of requests.

The architecture consists of the following core
components:
• FSM governs the dialogue flow by managing

states and transitions based on user input and con-
text. Text generation services are responsible
for a natural language generation and complex
query processing. In our deployment, the LLM
used for generation and analysis is GigaChat1.

• Decision making services are responsible for
input text classification and decision-making.

• Microservice architecture ensures modularity
and scalability by isolating individual compo-
nents; real-time performance further depends on
minimizing inter-service latency and optimizing

1https://giga.chat/
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Figure 1: The architecture of the CLARITY system.

orchestration.
Figure 1 illustrates the architecture of the CLAR-

ITY system, showing how its core components in-
teract. The FSM serves as the backbone of dialogue
management, ensuring structured and predictable
interactions, while text generation and decision
making services provide classification and response
generation capabilities, respectively.

2.1 Chat Manager
The Chat Manager in the CLARITY system is im-
plemented as a FSM, tailored to specific require-
ments of the medical domain. Its primary goals
are to ensure structured dialogue flow, maintain
patient safety, and handle sequential information
gathering.

States. The FSM has six dialogue contexts:
• Initialization - greets the user and begins collect-

ing initial complaints;
• Information Collection - coordinates the infor-

mation - gathering module for symptoms and
medical history;

• Diagnostic Hypothesis & Routing - processes col-
lected data to generate preliminary diagnostic hy-
potheses, select medical specialty, and formulate
recommendations;

• Moderation - prevents unsafe dialogue scenarios;
• Emergency - executes predefined protocols for

urgent cases;
• Free Dialogue - handles non-standard requests

via the answer-generation module.
Transitions. Movement between states depends
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on user input, dialogue history, and contextual sig-
nals (see Appx. E.3); decisions are driven by out-
puts from dedicated decision-making services and
the FSM’s internal logic.

Output Functions. Each state defines its own
system responses, encompassing natural-language
generation by LLMs and calls to internal microser-
vices (see Appx. E.4).

For a more detailed formal description of the
FSM and its components, please refer to Appendix
E.

By combining the structured control of the FSM
with the adaptability of LLMs, the Chat Manager
achieves a balance between reliability and flexibil-
ity. First, predictability and safety are ensured
by the FSM’s ability to control the dialogue flow
and enforce strict transitions between states. Sec-
ond, the FSM’s modular design ensures scalabil-
ity, making it easy to integrate new states, transi-
tions, and services as needed. Finally, the FSM
is specifically tailored to meet medical domain
requirements. Moderation state, critical situation
handling, and strict control mechanisms ensure the
system adheres to the high safety and reliability
standards demanded in this field.

2.2 FSM Scalability
CLARITY’s FSM addresses scalability concerns
through hierarchical decomposition designed to
prevent architectural brittleness as clinical scope
expands:

Multi-level FSM Design. The current imple-
mentation employs logical decomposition where
a global FSM graph describes overall system be-
havior and manages high-level transitions between
initialization, information collection, diagnostic
hypotheses, moderation, and emergency handling
states. Simultaneously, local FSM graphs govern
the logic within individual medical scenarios and
specialty-specific workflows, creating a hierarchi-
cal structure that naturally distributes complexity
across multiple manageable components.

Modular Expansion Strategy. New medical
domains can be integrated by:
• Defining domain-specific local FSM graphs that

handle specialty workflows.
• Adding appropriate transition points in the global

FSM to route users to new domains.
• Implementing corresponding microservices that

provide domain-specific processing capabilities.
This approach ensures system complexity grows
linearly rather than exponentially with clinical area

additions.
Graph-based Storage and Analysis. The FSM

is stored as a graph structure in memory, enabling
development of semi-automated analysis tools for:
redundant cycle detection, unreachable state iden-
tification, conflicting transition condition analysis,
and other architectural consistency checks that sup-
port long-term maintainability.

2.3 Services
2.3.1 Moderator
The moderator checks whether a given request or
model response contains a prohibited topic. A sep-
arate moderation skill is needed for two reasons.
First, it is essential to limit sensitive topics, aggres-
sion, and hatred in conversations. Second, default
moderation systems often cannot handle medical
data due to compliance requirements. Moderation
is formulated as a binary classification problem:
0 (no prohibited topics) or 1 (prohibited topics
detected). The proposed algorithm uses a nested
blacklist of prohibited words specific to each topic.
Performance is evaluated using the F1-score.

2.3.2 Emergency Detector
The emergency detector checks whether a user is
in need for emergency medical care. It is a bi-
nary classification problem: 0 (no emergency) or 1
(emergency). The algorithm processes input chat
W into a text string of user and model messages
via concatenation. The function σ is computed as:

σtr(W ) = HGB
(

PCA
(
concat(tfidf(W ),

OHE(W ),LLM(W )), nc

))
> t

(1)
where t is the threshold value, HGB is a hist-

based gradient boosting, and nc = 423 is the num-
ber of components for PCA. We enhance the con-
catenation function by including a one-hot-encoder
(OHE) for critical words and a binary value in-
dicating whether the LLM model considers the
condition critical. Performance is evaluated using
F1-score and false positive rate (FPR).

2.3.3 Readiness Estimator
The readiness estimator determines the appropriate
time to transition from the information collection
phase to the referral stage. It mitigates the risk of
premature or delayed transitions, improving user
experience and system accuracy. The module is
trained on a corpus of 2,500 medical dialogues,
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using TF-IDF and contextual embeddings for fea-
ture extraction. Performance is evaluated using the
mean absolute percentage error (MAPE) and the
F1-score.

2.3.4 Question Detector
The question detector is responsible for the binary
classification of user messages with the objective
of determining whether a message constitutes a
clarifying question. This module ensures flexibility
in the system’s workflow for collecting medical
history and complaints. Performance is evaluated
using F1-score.

2.3.5 Information Collector
The information collector module gathers compre-
hensive information on patient complaints and med-
ical history. It includes a question generator based
on a language model, a dialogue search system,
and a question relevance classifier (see Appx. F).
1. The module begins by receiving the user’s mes-

sage and dialogue history.
2. It then searches the historical dialogue vector

database; if a similar case is found (cosine simi-
larity > 0.965), previously generated questions
are reused.

3. If no match is identified, the system uses a
domain-specific prompt to generate five new
candidate questions with the LLM.

4. To avoid redundancy, each candidate is com-
pared to prior dialogue questions, and those with
cosine similarity above 0.86 are discarded.

5. Remaining candidates are passed through a rele-
vance classifier trained on 2,500 labeled exam-
ples; the classifier achieves 0.84 precision on
the "relevant" class.

6. The most relevant question is selected and pre-
sented to the user. This architecture ensures both
contextual accuracy and low response latency.

2.3.6 Medical Specialty Selector
The medical specialty selector is a core module that
generates candidate diagnoses, identifies appropri-
ate medical specialists, and provides supporting
explanations. The process includes three sequen-
tial stages (Appx. G):

1. Diagnostic Hypotheses Generation: Using
the patient’s complaints and medical history, the
system queries the LLM to generate N possible di-
agnostic hypotheses. If fewer than N are returned,
the request is repeated to ensure sufficient cover-
age.

Doc: What’s bothering you?
Pt: I have a headache.
Doc: Where exactly is the pain located?
Pt: The back of my head.
Doc: Are you experiencing any other symptoms, such as
nausea or vomiting?
Pt: No.
Doc: How intense is the pain?
Pt: 5 out of 10.
Doc:
Cervicogenic headache – General practitioner. Pain in the
back of the head may be related to cervical-spine issues.
Cervical osteochondrosis – Neurologist. Neck pathology
may provoke occipital pain.
Doc: Is everything clear? Feel free to ask questions!

Figure 2: Dialogue example illustrating the Trans-
parency scenario. Full dialogue examples for Critical,
Safety, and Adaptability are provided in Appendix C,
Table 4.

2. Specialist Selection: For each diagnostic
hypotheses, a parallel LLM call determines the
most relevant medical specialist (e.g., cardiologist
for cardiovascular symptoms, gastroenterologist
for digestive issues), ensuring that each condition
is matched with an appropriate expert.

3. Explanation Generation: The system
produces a short explanation for each diagnosis-
specialist pair, including a description of the condi-
tion, reasoning behind the diagnostic hypotheses,
and rationale for the referral. These explanations
aim to improve patient understanding and trans-
parency.

The module is optimized via parallel process-
ing and selective regeneration of incomplete out-
puts, which significantly reduces latency. Its per-
formance is evaluated using pairwise precision and
recall, comparing system recommendations to ex-
pert annotations.

2.3.7 Answer Generator
This module allows for the management of arbi-
trary user queries and open dialogues within the
context of medical consultations. The module is
activated in two scenarios:

1. A deviation from the dialogue script may
occur when the user poses a question that falls
outside the scope of the current predefined dialogue
flow.

2. Once the standard dialogue script has been
completed and all necessary information has been
collected, as well as a preliminary diagnostic hy-
potheses provided, the dialogue can be considered
complete. In this instance, the open-dialogue mod-
ule permits the user to pose supplementary queries,
seek elucidation, or request general health-related
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Table 1: Services metrics

Value
Transparency Information collector (P = 84 %, frep =

0); readiness estimator (MAPE = 22 %);
medical-specialty selector (R@3 = 96 %)

Critical Emergency detector (Precision = 72 %, Re-
call = 49 %, F1 = 59 %, FPR = 2 %)

Safety Moderator (F1 = 95 %)
Adaptability Question detector (F1 = 94 %)

Table 2: Pilot statistics

Value
Transparency 55 k+ dialogues; 3× faster than human; 80 %

“friendly”; 32.4 % conversion
Critical 7.4 % dialogues flagged critical
Safety 3.4 % non-target dialogues
Adaptability 6.5 % non-standard dialogues

information.
The functionality of this module is based on the

capabilities of LLMs, which are able to generate co-
herent and contextually relevant responses within
a dialogue. In order to adapt the LLMs to the
medical domain, a specialised system prompt is
employed. This sets the context of the interaction,
constrains the knowledge domain to medical topics
and guides the model towards generating responses
that are ethically sound and informative. This mod-
ule facilitates smooth transitions between prede-
fined dialogue scripts and open-ended discussions,
ensuring the system’s flexibility and its capacity
to respond effectively to a diverse range of user
queries.

3 Experiments And Results
In this section, we present a comprehensive evalu-
ation of CLARITY’s performance across its core
components. The experiments were conducted on
unique datasets, annotated by licensed doctors and
medical experts to ensure high-quality ground truth
labels. We evaluate the system using a combina-
tion of standard metrics (e.g., precision, recall, F1-
score) and custom metrics tailored to the medi-
cal domain (e.g., pairwise precision and recall for
specialist selection). Additionally, we discuss the
results of pilot studies, which demonstrate the sys-
tem’s practical applicability in real-world scenar-
ios.

Across the safety-critical modules, the Moder-
ator achieved an F1-score of 0.95 with a false-
positive rate below 1.5 %, indicating that the sys-
tem rarely blocks benign content while effectively
filtering prohibited topics. The Emergency De-
tector demonstrated a precision of 0.72, recall of
0.49, and an F1-score of 0.59 at an operating point

that keeps the false-positive rate below 0.02. This
threshold balances the risk of missed emergencies
against the clinical burden of false alarms. To-
gether, these figures confirm the reliability of the
safety layer that gates downstream actions.

The remaining components likewise show strong
offline performance. The Readiness Estimator at-
tains an F1 of 0.78 and a mean absolute percent-
age error of 22 % when forecasting the anam-
nesis phase, allowing the dialogue manager to
time interventions accurately. The Question De-
tector reaches macro-F1 = 0.94 (recallpos = 0.87,
precisionneg = 0.99), ensuring that clarification
prompts are issued only when needed. The In-
formation Collector maintains 0.84 precision for
question relevance while responding in 5 s on av-
erage, with 20 % of prompts served from cache.
Finally, the Medical-Specialty Selector ranks its
recommendations effectively: its top suggestion is
correct in 80 % of cases, and the top two cover 95
%, cor-responding to Precision@1 = 77 % and Re-
call@3 = 96 %. These results collectively demon-
strate that each subsystem meets the accuracy and
latency requirements necessary for safe real-world
deployment.

A comprehensive breakdown of datasets, model
architectures and training protocols is available in
Appendix D, while Tables 1 and 2 collate the key
service-level metrics and pilot statistics across all
four scenarios. Figure 2 reproduces a complete
Transparency consultation, full transcripts for the
remaining cases - Critical, Safety, and Adaptability
- are available in Appendix C (Table 4).

3.1 First Pilot Study: Understanding User
Behavior And Preferences

A first pilot study was conducted at the end of the
fourth quarter of 2024 on an active dialogue plat-
form with the aim of evaluating the effectiveness
of CLARITY in real-world conditions, as well as
identifying user preferences and potential avenues
for improvement. The study encompassed a com-
prehensive assessment of socio-demographic indi-
cators and a detailed analysis of user preferences.
Moreover, the pilot incorporated an in-depth exami-
nation of user feedback on the current functionality
of the system, offering invaluable insights into the
usability and user experience.

The pilot studies were conducted on a na-
tionwide inter-hospital telehealth platform where
CLARITY was fully integrated into the standard
user onboarding and consultation workflow; users
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interacted with the system in their usual telehealth
environment (both new registrants and returning
users). Participants received clear onboarding noti-
fications about the AI assistant and could request a
hand-off to a human specialist at any time.

A total of 64% of users who completed the on-
boarding process for the services in question pro-
ceeded to initiate a dialogue. Of the 1,534 initi-
ated consultations, 62.13% resulted in recommen-
dations from a specialist and a diagnostic hypoth-
esis. The mean time taken for an appointment to
conclude, including the provision of recommen-
dations, was 2 minutes 13 seconds. This is con-
siderably less than the time typically allocated for
an in-person consultation with a general medical
practitioner.

The pilot study resulted in 785 distinct prelimi-
nary diagnostic hypotheses, with referrals made to
70 physicians across various specialties. The most
frequently recommended specialists were neurol-
ogists, otolaryngologists, and gastroenterologists,
which is indicative of the relevance of these special-
ties within the scope of the pilot study (Appendix
K). Neurological, renal, and gastrointestinal dis-
orders were the most commonly diagnosed con-
ditions. A comparison of the socio-demographic
characteristics of the participants and those of the
overall user base of the platform indicated a corre-
spondence between the two groups in terms of both
age and gender (Appendix H and Appendix I).

A total of 18.2% of users indicated that they
found the consultation to be fully useful, while
54.5% of respondents rated it as partially useful.
However, 31% of users reported that the number of
questions asked was insufficient, potentially point-
ing to limitations in audience targeting or the depth
of the dialogue process. On a positive note, 80%
of users rated the interaction as friendly, which is
a key factor in maintaining user engagement and
satisfaction (Appendix J).

3.2 Second Pilot Study: Focus On Real-World
Application

A second pilot study was conducted to evaluate
the real-world application of CLARITY in a larger-
scale setting. This study focused less on audience
behavior and more on the practical implementation
and outcomes of the system. During the pilot pe-
riod, a total of 55,856 dialogues were conducted.
The dialogue funnel analysis revealed a 92.3% con-
version rate to the next step after dialogue initiation,
with 54.7% of dialogues resulting in diagnostic

hypotheses and a referral to a physician. In all
cases, CLARITY performed the initial triage and
routed users toward the appropriate channel. For
appointment conversions, “online” consultations
(telemedicine appointments booked and conducted
via the platform) converted at 26.8%, whereas “of-
fline” consultations (in-person visits at clinics or
hospitals) converted at 5.6%.

The second pilot study demonstrated the scalabil-
ity and practical utility of CLARITY in real-world
conditions, with a high rate of dialogue progression
and a significant proportion of cases leading to ac-
tionable medical outcomes. The conversion rates
to both online and offline consultations further un-
derscore the system’s effectiveness in facilitating
user engagement and follow-through.

4 Discussion
The CLARITY system demonstrates the effective-
ness of a hybrid approach to medical dialogue sys-
tems, combining structured FSM-based dialogue
management with the flexibility of large language
models. Our experimental results validate this ar-
chitecture’s advantages while revealing important
insights about AI deployment in healthcare set-
tings.

Clinical Accuracy and Routing Efficiency. The
system achieved remarkable performance in spe-
cialist routing, with 77% precision for first recom-
mendations and 96% recall for top-3 recommenda-
tions. This surpasses typical human-level perfor-
mance in initial routing while requiring only one-
third of the usual consultation time (mean 2m 13s
vs ≈ 6-7 minutes for GP practice). These results
are particularly significant given current healthcare
bottlenecks. The traditional model, where patients
must first consult general practitioners for special-
ist referrals, creates substantial delays in accessing
specialized care. CLARITY demonstrates that AI
systems can effectively assume this initial triage
function, potentially accelerating patient access to
appropriate specialists while reducing the burden
on primary care providers.

Critical Condition Recognition The emergency
detection figures confirm an operationally accept-
able performance under the current stakeholder-
defined false-alarm budget, while highlighting the
need for future recall improvements. In real-world
deployment, the system identified 7.4% of cases as
requiring urgent intervention, aligning with emer-
gency department triage statistics. This achieve-
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ment is particularly noteworthy as existing medical
AI systems often struggle with reliable critical con-
dition identification. CLARITY’s hybrid architec-
ture, combining FSM rules with LLM flexibility,
provides a more dependable approach to detecting
potentially dangerous situations.

Engagement Metrics. The 32.4% conversion
rate to actual appointments indicates strong user
trust and clinical relevance, substantially higher
than typical digital platform metrics.

User Experience. The 80% positive interaction
ratings demonstrate the system’s ability to maintain
empathetic and professional communication while
adhering to clinical protocols. Operational Effi-
ciency: The mean consultation time of 2 minutes
13 seconds represents a significant improvement
over traditional consultations, without compromis-
ing diagnostic hypotheses accuracy.

Dialogue Control. The readiness estimator’s F1-
score of 78% and the question detector’s accuracy
of 94% demonstrate CLARITY’s sophisticated dia-
logue management capabilities. The near-zero rep-
etition rate (frep = 0%) in information collection
confirms efficient information gathering without
redundancy. Only 3.4% non-target dialogues in-
dicates exceptional conversation management, ad-
dressing a common limitation of pure LLM-based
systems.

These results suggest that successful medical AI
systems require more than just powerful language
models – they call for carefully designed hybrid
pipelines with the strengths of different approaches
of strict safety and reliability standards. CLAR-
ITY’s performance metrics demonstrate that such
hybrid systems can achieve both the high accuracy
and the appreciation of users, creating a viable path
for AI integration in a clinical setting.

5 Conclusion
In conclusion, CLARITY advances the field of
medical dialogue systems by successfully address-
ing the major challenges that have hindered the
widespread adoption of AI-powered conversational
agents in healthcare. By seamlessly integrating
structured reasoning, multi-agent collaboration,
and robust safety measures, CLARITY sets a new
standard for reliable, efficient, and user-centric
medical assistance.

The system’s strong performance in real-world
settings, coupled with the positive user feedback,
showcases its potential to facilitate the delivery

of healthcare services. The insights gained from
the development and evaluation of CLARITY will
undoubtedly inspire and guide future efforts in this
field, ultimately leading to the development of more
accessible, efficient, and personalized healthcare
assistants.

6 Contribution Statement
Vladimir Shaposhnikov, Aleksandr Nesterov,
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formulated the research, designed and ran the ex-
periments, performed the analysis, and drafted the
core manuscript text. Ekaterina Tsapieva and
Ruslan Abramov led the productization effort and
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world workflow. Ivan Bakulin and Egor Zhel-
vakov were responsible for technical deployment
and production integration. Iaroslav Bespalov,
Dmitry V. Dylov and Ivan Oseledets are co-senior
authors who supervised the project and analysed
the results. All authors took part in preparing the
final manuscript.

7 Limitations
Despite the strengths of the CLARITY system, sev-
eral limitations should be acknowledged:
• Limited interpretability of LLM outputs.

While the system provides structured responses
and intermediate explanations, it does not of-
fer full introspection into model reasoning. Im-
proving interpretability is an ongoing research
challenge in medical AI. In future iterations, we
plan to incorporate chain-of-thought tracing and
example-based rationales to make the decision
process more transparent for clinical users.

• Model identity disclosure. The system uses Gi-
gaChat as the foundation model for generation
and analysis. While this work is designed to be
LLM-agnostic, all reported results were obtained
with GigaChat under the production configura-
tion used in deployment.

• Generalization to rare or atypical conditions.
The system has primarily been validated on com-
mon and well-represented clinical cases, as these
reflect the majority of real-world usage scenarios
where CLARITY is currently deployed. Evalu-
ation on rare diseases, complex multi-morbidity
cases, and ambiguous complaints remains lim-
ited. We plan to address this in future devel-
opment by expanding the training dataset and
annotation pipeline to include synthetic and cu-
rated edge cases, thereby supporting broader and
more robust generalization.
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• Dialogue depth and coverage. In pilot studies,
31% of users reported that the consultation asked
“too few” questions. A formal root-cause analy-
sis has not yet been performed; it is scheduled for
Q4 2025 and will be led by an interdisciplinary
team of clinicians and product specialists. The
study will review a stratified sample of under-
questioned dialogs to identify failure modes (e.g.
premature readiness cut-off or vague initial com-
plaints) and will feed its findings into the next
iteration of the Readiness Estimator and Infor-
mation Collector. Planned mitigations include
(i) adding dialogue-length and answer-entropy
features to the estimator and (ii) augmenting the
training cache with synthetic edge-case dialogs.
Our target is to lift the “question sufficiency”
satisfaction rate above 85% while keeping the
average consultation time unchanged.

• Time–Satisfaction Mismatch and Explanation
Factuality Limit We acknowledge that shorter
consultations do not necessarily translate into
higher user satisfaction or trust: although median
time decreased, many users still rated interactions
as only partially useful, and we did not establish
a causal link between duration, perceived useful-
ness, and trust. In addition, while we evaluated
routing accuracy, we did not conduct a dedicated
factuality (hallucination) audit of generated ex-
planations. Future iterations will include targeted
user-trust studies and clinician-in-the-loop audits
of explanation correctness.

• Lack of clinical outcome validation. Although
diagnostic hypotheses and referral suggestions
were quantitatively evaluated, long-term patient
outcomes were not tracked. This is due to regula-
tory and data privacy limitations in pilot deploy-
ments. As part of ongoing collaborations with
clinical partners, we plan to conduct retrospective
chart reviews and, where possible, prospective
outcome-linked evaluations in future studies.

• Absence of active learning pipeline. Currently,
CLARITY does not implement real-time self-
updating mechanism or active learning. This
design choice reflects critical regulatory and ethi-
cal constraints guiding the deployment of medi-
cal AI. Medical AI systems must pass stringent
validation before algorithmic changes can be im-
plemented, making real-time updates impossi-
ble from a regulatory standpoint. Furthermore,
self-updating models based on patient interac-
tions raise privacy concerns and may lead to un-
predictable behavioural changes that undermine

confidence in clinical decision-making. As fu-
ture work, we are developing a controlled active
learning pipeline that will operate under strict
supervision and include offline batch learning cy-
cles with mandatory clinical validation, explicit
patient consent for the use of anonymised data,
and differential privacy techniques.

• Triage performance metrics. The emergency-
detection module is currently operated at a thresh-
old chosen by clinical stakeholders to keep the
false-positive rate below 0.02, because every alert
triggers an on-call physician review and may re-
sult in ambulance dispatch. This conservative
setting yields precision 0.72, recall 0.49 and F1

= 0.59 on the expert-annotated test set. Opera-
tional rationale: in our deployment scenario(≈
7% of dialogues genuinely critical) a higher re-
call would double the number of alerts and over-
whelm human triage resources, whereas missed
cases remain subject to the platform’s standard
“red-flag” questionnaire shown to all users.
Planned mitigation. A two-stage cascade is un-
der development: (i) a soft threshold t=0.05 to
maximise sensitivity, followed by (ii) an LLM
self-consistency vote (three parallel prompts, ma-
jority ≥ 2/3) that filters obvious false alarms.
The final choice of operating point will depend
on a governance-board review of workload im-
plications once additional deployment data are
available. All prospective changes will be au-
dited against the same expert-annotated test set
to ensure that patient safety is never traded for
convenience.

• Partial reproducibility. We are commit-
ted to open-sourcing all available compo-
nents of our system. The code will be
publicly released at: https://github.com/
AnonymousSubmission996/CLARITY upon ac-
ceptance. Certain production-specific services
remain under NDA and cannot be distributed.

• Lack of unified quantitative benchmarks.
There is still no publicly available dataset or pro-
tocol that simultaneously covers triage, special-
ity selection, emergency detection, and safety fil-
tering. Numerical head-to-head evaluation with
earlier systems is therefore impossible without
re-implementing each approach on private clin-
ical data. As a partial remedy we performed a
qualitative, functional comparison of CLARITY
with seven representative systems (AMIE, DISC-
MedLLM, CoD, Polaris, MedAgents, Dual-Inf,
and other). The resulting matrix - Appendix A
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Table 3 - contrasts core capabilities and high-
lights CLARITY’s unique FSM-based architec-
ture. While this analysis cannot replace a com-
mon benchmark, it offers readers a transparent,
like-for-like view of where our system stands rel-
ative to prior art and exposes gaps that future
community datasets should address.
Next step. We will publish an open evaluation
protocol (labeling guidelines, task definitions,
scoring scripts) that lets any third party apply our
four-task suite to their own data without shar-
ing protected records. This avoids legal con-
straints on commercial medical logs while en-
abling reproducible, apples-to-apples benchmark-
ing across independent institutions.

8 Ethics
Regulatory compliance. Under the applicable
national data-protection legislation, studies that
use fully de-identified service logs collected with
explicit informed consent are classified as non-
interventional quality-improvement research and
therefore exempt from mandatory Institutional
Review Board review. All analyses were con-
ducted on anonymised records stored in an en-
crypted, access-controlled environment.

Informed consent and data handling. All users
of the telehealth service explicitly agreed that
their anonymised dialogue records may be used
for research and quality-improvement purposes.
Personally identifiable information (names, free-
text IDs, contact details, timestamps finer than
one hour) is removed at ingestion by an auto-
mated de-identification pipeline. Only the resulting
anonymised logs were accessible to the research
team.

Model safety and audit. CLARITY enforces a
three-layer safety framework: (i) a domain-specific
moderation filter, (ii) conservative emergency-
detection thresholds, and (iii) deterministic FSM
transitions that bound interaction depth. All
prompts and model outputs are logged and peri-
odically audited by licensed physicians.
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A Related work
To describe the current state of medical dialogue
systems, we first examine their evolution, high-
lighting how they have progressed from rule-based
systems to modern LLM-powered AI. Then, we
identify key challenges that must be addressed to
develop robust and clinically reliable AI-driven
consultations.

A.1 Evolution of Medical Dialogue Systems
Medical dialogue systems have evolved through
three major stages:
1. Rule-Based Expert Systems – Early mod-

els such as Mycin (Shortliffe, 1977) and DX-
plain(Barnett et al., 1987) used manually en-
coded medical knowledge and decision trees.
While interpretable, they lacked adaptability and
could not handle open-ended patient input.

2. Task-Specific AI Models – Machine learning-
based systems such as Babylon Health (Mora-
marco et al., 2021) and Ada Health (Kühnel
et al., 2023) introduced data-driven triage and
symptom assessment, but they remained single-
turn and failed to engage in dynamic diagnostic
hypotheses transparency.

3. LLM-Powered Conversational Agents – Re-
cent systems, such as AMIE (Tu et al., 2024),
DISC-MedLLM (Bao et al., 2023), CoD (Chen
et al., 2024) and MEDAGENTS (Tang et al.,
2024), integrate structured multi-turn dialogue
processing and medical reasoning, improving
diagnostic hypotheses accuracy and interaction
depth.
Despite these advancements, medical dialogue

systems still struggle with fundamental issues re-
lated to structured reasoning, factual reliability, and
real-time decision-making.

A.2 Challenges in Medical AI Conversations
Medical dialogue systems have made significant
progress, but their deployment in real-world clini-
cal settings remains challenging. Despite leverag-
ing LLMs for more natural and interactive patient
communication, these systems exhibit critical limi-
tations that hinder their reliability and effectiveness.
The primary challenges include structured reason-
ing deficiencies, factual inaccuracies, and failure
to prioritize critical cases.

A.2.1 Insufficient Transparency in
Multi-Turn Diagnostic Dialogue

One of the primary shortcomings of current med-
ical dialogue systems is their inability to conduct

structured, multi-turn reasoning. Many models gen-
erate fragmented, inconsistent, or overly simplistic
responses, failing to follow a logical sequence sim-
ilar to a physician’s diagnostic hypotheses inquiry.

Several approaches have been proposed to ad-
dress the challenges of structured diagnostic hy-
potheses reasoning in medical dialogue systems.
Chain of Diagnosis (CoD) introduces a framework
designed to mimic the stepwise reasoning of physi-
cians, systematically guiding the diagnostic hy-
potheses process and reducing the risk of premature
conclusions (Chen et al., 2024). Another notable
system, AMIE, leverages a self-play training mech-
anism within a simulated environment, enabling
the model to iteratively refine both its questioning
strategies and decision-making capabilities across a
variety of medical scenarios (Tu et al., 2024). Sim-
ilarly, DISC-MedLLM enhances the depth of struc-
tured questioning by integrating medical knowl-
edge graphs and training on real-world, multi-turn
medical dialogues, ensuring that the system can
navigate complex patient interactions with greater
precision (Bao et al., 2023).

Despite these advancements, challenges persist.
Models struggle with handling ambiguous patient
responses, dynamically adjusting diagnostic hy-
potheses strategies, and effectively incorporating
context across long multi-turn conversations.

A.2.2 Hallucinations and Misinformation
A significant limitation of LLM-based medical dia-
logue systems is their tendency to generate factu-
ally incorrect or misleading information, known as
hallucinations. These inaccuracies can lead to di-
agnostic hypotheses errors and compromise patient
safety.

Several strategies have been proposed to miti-
gate the challenges associated with medical dia-
logue systems. Health-LLM utilizes a retrieval-
augmented generation (RAG) mechanism to
ground AI-generated responses in trusted medi-
cal sources, ensuring real-time verification and re-
ducing the risk of hallucinations (Yu et al., 2025).
In practice, retrieval and grounding can be sup-
ported by domain corpora that link clinical text
to controlled terminologies (e.g., UMLS/ICD),
such as NEREL-BIO, RuCCoN, and RuCCoD
(Loukachevitch et al., 2023, 2024; Nesterov et al.,
2022, 2025). Similarly, MEDAGENTS implements
a multi-agent framework in which AI-based "ex-
perts" collaboratively cross-validate each other’s
responses, thereby minimizing incorrect outputs
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and enhancing overall reliability (Tang et al.,
2024). Another approach, DISC-MedLLM, com-
bines structured multi-turn dialogues with the in-
tegration of medical knowledge graphs to provide
detailed explanations for each diagnostic step. This
design not only improves the transparency of the
reasoning process but also facilitates validation by
enabling clinicians to trace how conclusions are
reached (Bao et al., 2023).

Nonetheless, hallucinations remain prevalent in
complex diagnostic hypotheses cases, particularly
those involving rare diseases, overlapping symp-
toms, or mental health conditions. Ensuring real-
time fact-checking and clinician-in-the-loop vali-
dation remains a pressing challenge.

A.2.3 Failure to Recognize Critical Conditions
Medical AI systems often fail to detect and escalate
high-risk conditions requiring urgent medical at-
tention. This limitation reduces their effectiveness
in emergency triage and high-stakes diagnostic hy-
potheses settings.

Several approaches have been developed to im-
prove the recognition of critical conditions in med-
ical dialogue systems. Dual-Inf enhances diag-
nostic hypotheses reliability by employing bidi-
rectional inference, allowing the model to cross-
reference symptoms with potential diagnostic hy-
potheses to detect severe conditions more accu-
rately (Zhou et al., 2024b). Similarly, AMIE inte-
grates an uncertainty-aware decision-making mech-
anism, which prompts the model to request ad-
ditional clarifications whenever its confidence in
a diagnostic hypotheses is low, thereby reducing
the likelihood of incorrect or premature conclu-
sions (Tu et al., 2024). Another approach, Po-
laris, leverages specialized risk assessment mod-
els to identify high-risk cases and escalate them
for human intervention when necessary, ensuring
that critical conditions receive appropriate atten-
tion (Mukherjee et al., 2024).

However, LLM-based medical systems still
struggle with distinguishing time-sensitive symp-
toms from non-urgent ones, balancing AI auton-
omy with human intervention, and responding effi-
ciently to emergency cases.

B Methods
B.1 Proposed Solution to Challenges
Our proposed system, CLARITY, offers a compre-
hensive solution to the challenges faced by existing
medical dialogue systems, as summarized in Ta-

ble 3. By integrating Finite State Machines (FSMs)
with Large Language Models (LLMs), CLARITY
outperforms other approaches across key dimen-
sions: structured reasoning, safety, critical condi-
tion recognition, real-time readiness, adaptability,
and scalability.

Transparency: CLARITY ensures consistent
and structured multi-turn diagnostic hypotheses
reasoning through FSMs, mimicking the system-
atic approach of experienced clinicians. In contrast,
while systems like DISC-MedLLM and AMIE ex-
hibit strong reasoning capabilities, they lack the
robustness of FSM-driven workflows, leading to
fragmented or inconsistent interactions in complex
cases.

Safety: One of the most pressing challenges
in medical AI is hallucination and misinforma-
tion. CLARITY addresses this through a Retrieval-
Augmented Generation (RAG) approach, ground-
ing all outputs in trusted medical knowledge bases.
Systems like Polaris and Dual-Inf attempt simi-
lar mitigation strategies but fall short of the trans-
parency and reliability offered by CLARITY.

Critical Condition Recognition: The proba-
bilistic risk triage model in CLARITY ensures
real-time identification and escalation of high-risk
cases, outperforming solutions like MEDAGENTS,
which lack the precision and adaptability needed
for critical diagnostic hypotheses.

Real-time Readiness: CLARITY is designed
for seamless integration into clinical environments,
leveraging modular microservices for real-time de-
ployment. Task-specific systems such as Babylon
Health and Ada Health, while functional, are lim-
ited to specific use cases and lack the flexibility of
CLARITY.

Adaptability: Unlike other systems, CLARITY
dynamically adjusts to diverse scenarios, including
rare diseases and ambiguous patient inputs, due to
its hybrid architecture. LLM-based systems like
Health-LLM and AMIE struggle in these areas due
to limited context-awareness and reliance on static
models.

Scalability: The modular design of CLARITY
enables effortless scaling across various clinical
infrastructures, making it suitable for both large
hospital networks and smaller healthcare providers.
Existing solutions, including DISC-MedLLM and
Polaris, lack this level of deployment flexibility.

In summary, CLARITY demonstrates un-
matched performance across all key criteria, bridg-
ing the gap between cutting-edge AI research and
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Category System Transparency Safety Critical Real-time Adaptability Scalability

Rule-based MyCin(Shortliffe, 1977) +- + +- + - -
Dxplain (Barnett et al., 1987) +- + +- + - -

Task-specified Babylon Health (Moramarco et al., 2021) - - +- + - -
Ada Health (Kühnel et al., 2023) - - +- + - -

LLM-based DISC-MedLLM (Bao et al., 2023) + +- + + +- +-
MEDAGENTS (Tang et al., 2024) +- + + +- +- -
AMIE (Tu et al., 2024) + + + +- +- +-
Health-LLM (Yu et al., 2025) +- +- + +- - -
Polaris (Mukherjee et al., 2024) + + + + +- +-
Dual-Inf (Zhou et al., 2024b) + + + + +- -
CLARITY (ours) + + + + + +

Table 3: Qualitative capability matrix. Each ‘+’ corresponds to a documented, peer-reviewed evaluation; ‘±’ indicates partial
support or missing evidence.

practical healthcare applications. By combining
structured reasoning, advanced safety measures,
and real-time adaptability, CLARITY sets a new
standard for medical dialogue systems.

C Dialogue examples
D Detailed Component-Level Results
D.1 Moderator
The moderator was evaluated on a dataset of 10,000
messages, achieving an F1-score of 0.95. The sys-
tem demonstrated high accuracy in detecting pro-
hibited topics, with a false positive rate of less than
1.5%.

D.2 Emergency Detector
We trained the emergency detection module on
2,114 medical dialogues and evaluated it on a held-
out set of 682 chats, each independently annotated
by three licensed physicians. At the operating
threshold t=0.11, selected in alignment with stake-
holder requirements for high reliability, the system
achieved a precision of 0.72, an F1-score of 0.59,
and a false positive rate (FPR) of just 0.02. This
threshold was deliberately optimized to minimize
false alarms in real-world deployment, ensuring
the system maintains a high level of trust and sta-
bility in routine clinical use. While the current
configuration favors specificity, the model architec-
ture allows for straightforward adjustment of this
threshold to support more recall-oriented use cases,
such as emergency triage scenarios. This adaptabil-
ity makes the module suitable for diverse clinical
workflows, and its consistent performance across
evaluation settings provides a strong foundation for
safe and effective integration.

Beyond the primary emergency detector, the
safety stack includes:
• A domain-specific moderator that filters unsafe

topics at input and output stages.

• Deterministic FSM gates that prevent transi-
tion to the “Diagnostic Hypothesis & Routing”
state unless readiness is verified, holding low-
confidence dialogues for human handoff.

• A universal red-flag questionnaire presented to
all users as a final safety net.

D.3 Readiness Estimator
The readiness estimator was trained on a corpus
of 2,500 medical dialogues, with each message
labeled as part of the anamnesis collection or diag-
nostic hypotheses stage. The model used TF-IDF
and contextual embeddings for feature extraction,
achieving an F1-score of 0.78. The mean absolute
percentage error (MAPE) for predicting the dura-
tion of the anamnesis collection phase was 22%.

D.4 Question Detector
A total of 9,077 user messages were annotated to
train the question detector. The classifier, based
on logistic regression and contextual embeddings,
achieved a recall of 0.87 for the positive class,
a precision of 0.99 for the negative class, and a
macro-averaged F1-score of 0.94. These results
demonstrate high accuracy in identifying clarifying
questions.

D.5 Information Collector
The information collector module was tested on
1,000 dialogues, achieving a precision of 0.84 for
question relevance. The average response time
was 5 seconds, with 20% of cases utilizing cached
questions from the historical dialogue database.

D.6 Medical Specialty Selector
Medical specialty selection system input W =
{W1, ...,Wn}, n ∈ N is a set of n medical docu-
ments W . W is a text string that contains a chat be-
tween a patient and a doctor. Medical specialty se-
lection system output D = [[D1, ..., Dn]], n ∈ N is
a multiset of n multisets D = [[d1, ..., dk]], k ∈ N,
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Transparency Critical Safety Adaptability
Dialogue
exam-
ple

Doc: What’s bothering you?
Pt: I have a headache.
Doc: Where exactly is the
pain located?
Pt: The back of my head.
Doc: Are you experiencing
any other symptoms, such as
nausea, vomiting?
Pt: No.
Doc: How intense is the
pain?
Pt: 5 out of 10.
Doc:
Cervicogenic headache –
General practitioner. Pain
in the back of the head may
be related to issues in the
cervical spine.
Cervical osteochondrosis
– Neurologist. You have a
neck condition that could be
causing the headache in the
back of your head.
Doc: Is everything clear?
Feel free to ask questions!

Doc: What is bother-
ing you?
Pt: High blood pres-
sure.
Doc: Do you experi-
ence chest pain or an
increased heart rate?
Pt: Yes.
Doc: Do you have any
vision problems?
Pt: Yes.
Doc:
Your condition could
be close to critical!
Call 103 immediately.
Wait for the response,
do not hang up!
Briefly explain what
happened.

Doc: What’s bothering
you?
Pt: Who are you?
Doc: I am a neural
network model that
can assist with medical
questions. How can I
help you?
Pt: Help me with
algorithms in Python.
Doc: I’m sorry, I
didn’t understand your
response. Could you
please provide more
specific information
or rephrase your
message?
Pt: What can you help
me with?
Doc: I can provide
consultations on health
and medical issues.
Please tell me more
about your symptoms
or concerns so that I
can offer appropriate
assistance.

Doc: What’s bothering
you?
Pt: I’ve been smoking
for 5 years, half a pack
a day. I’ve started
coughing up very thick
phlegm. How can
I check my lungs?
Could you provide a
list of examinations
and doctors I need to
see?
Doc: You need to see
a general practitioner
(therapist) or a pul-
monologist first. The
doctor will order a
chest X-ray or a CT
scan of the lungs to
rule out pathological
changes.

Related
services
metrics

Information collector: P =
84%, frep = 0
Readiness estimator:
MAPE = 22%
Medical-specialty selector:
R@3 = 96%

Emergency detector:
F1 = 59%, FPR
= 2%

Moderator: F1 =
95%

Question detector:
F1 = 94%

Table 4: CLARITY dialogue examples and full-study results with relevant metrics.

where d is a text string that contains a doctor spe-
cialty. Expectations of system performance will be
shaped by the set of experts E = {E1, ..., Ez}, z ∈
N, where expert is a function E : W 7→ D. The
system itself is a function A : W 7→ D which is not
in a set of experts: χE(A) = ∅. Then we can define
the pairwise precision P and recall R between the
algorithm and the expert as

PAE@k =

∑n
i=1 µ(D

A
i , D

E
i )

nk2
(2)

RAE@k =

∑n
i=1 χ(D

A
i , D

E
i )

n
(3)

where DA
i = A(Wi), DE

i = E(Wi), µ is a multi-
plicity function, and χ is a characteristic function.
We consider the accuracy of the model’s answer
by the complete match of its answer and the ex-
pert’s answer. Thus, we can calculate the multiplic-
ity µ and the characteristic χ functions in case of

|DA| = |DE | = k:

µ(DA, DE) =

k∑

p=1

k∑

q=1

{
1 dAp = dEq

0 dAp ̸= dEq
(4)

χ(DA, DE) =

{
1 µ(DA, DE) > 0

0 µ(DA, DE) = 0
(5)

The raw dataset is a collection of n = 360 chats.
The first half of the dataset consists of chats from
two doctors played out a pre-determined scenario.
One of them knew the disease and their symptoms
and was the patient. The other tried to define the
disease by asking questions as the doctor. The
second half of the dataset consists of the chats be-
tween the actor playing the role of a patient and
CLARITY as the doctor. Ground truth labels for
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the dataset were marked by z = 7 experts. Two
of them are licensed doctors and other 8 are resi-
dent physicians. Each expert marked up all chats
with up to kmax = 5 answers. The quality metrics
presented in Table 5 are more than sufficient for
product use. It is also interesting that the model
ranks the answers in order of importance very well.
The share of the first answer among the total num-
ber of correct answers is 80%, the share of the first
two answers is 95%.
Table 5: Pairwise quality of the medical specialty selec-
tor compared to all experts. The number of specialists
in the answer is equal to k.

k Precision@k Recall@k
1 77±0.3% 77±0.3%
2 71±0.2% 92±0.4%
3 68±0.3% 96±0.4%

D.7 Language Model Details
All LLM-based components (answer generation, di-
agnostic hypothesis drafting, and explanation syn-
thesis) are powered by GigaChat. We used the
production configuration provided by the vendor;
prompts and safety constraints are listed in Ap-
pendix D. Where relevant, we apply deterministic
decoding for safety-critical paths and temperature-
limited sampling for open-dialogue responses.

E Formal Description of the FSM
Let the Finite State Machine be defined as
a tuple M = (Q,Σ,Ω, C, T, δ, λ, q0, qd, qca, F )
where:
• Q is a finite set of states.
• W is the input alphabet, defined as the set of all

possible strings representing user messages and
previous chat history.

• Ω is the output alphabet, defined as the set of all
possible text messages generated by the system.

• C is the set of all conditions for transitions.
• T is the set of all transitions.
• δ : Q×W → Q is the transition function.
• λ : Q×W → Ω is the output function.
• q0 ∈ Q is the initial state.
• qd ∈ Q is the default state.
• qca ∈ Q is the state with the correct answer.
• F ⊆ Q is the set of final states.
• N_ATTEMPTS is the maximum number of

attempts allowed in the internal cycle.

E.1 Set of Conditions C
The set of conditions C is defined as:

C = {c1, c2, . . . , cm}

where each ci is a condition that checks if the input
w ∈W satisfies certain criteria.

E.2 Set of Transitions T
The set of transitions T is defined as:

T = {t1, t2, . . . , tn}

where each tj is a transition defined by:

tj = (qj , cj , q
′
j)

where:
• qj ∈ Q is the source state.
• cj ⊆ C is the set of conditions for the transition.
• q′j ∈ Q is the target state.

Each transition tj has an associated function
is_triggered(w) that determines if the transition
is triggered by the input w ∈W . This function is
defined as:

tj .is_triggered(w) =
|cj |∧

i=1

ci(w)

E.3 Transition Function
The transition function δ is defined as:

δ(q, w) =





q′ if ∃ t ∈ T :

t. is_triggered(w) = true
qd otherwise

where:
• T is the set of all transitions.
• t.is_triggered(w) checks if the input w ∈ W ∗

received from the user satisfies the conditions of
transition t.

E.4 Output Function
The output function λ is defined as:

λ : Q×W → Ω

λ(q, w) = actionq(w)

where actionq is the function associated with state
q that generates the system response based on the
input w ∈W ∗ received from the user.
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Algorithm 1 FSM Algorithm
1: q ← q0 ▷ Set the initial state
2: while not user_interrupted do ▷ External

Cycle
3: w ← user_input ▷ Get the user input
4: inner_states← ∅ ▷ Initialize the inner

states list
5: while q /∈ F ∧ |inner_states| <

N_ATTEMPTS ∧ q ̸= qca do ▷ Internal
Cycle

6: q′ ← δ(q, w) ▷ Apply the transition
function

7: r ← λ(q′, w) ▷ Generate the output
8: inner_states ← inner_states ∪
{(q′, r)} ▷ Add the state-output pair to inner
states

9: q ← q′ ▷ Update the current state
10: end while
11: return r ▷ Return the system response
12: end while

E.5 External Cycle
The external cycle represents the system-user inter-
action sequence:

(qi, wi) ⊢ (qi+1, wi+1, ri)

where:
• qi ∈ Q is the current state.
• wi ∈ W ∗ is the input string received from the

user.
• ri ∈ Ω is the system response.

The external cycle continues until the user inter-
rupts it.

E.6 Internal Cycle
The internal cycle is defined as:

(q, w) ⊢∗ (q′, r)
where:
• ⊢∗ is the reflexive transitive closure of ⊢.
• q′ is the state reached after at most
N_ATTEMPTS steps.

• r ∈ Ω is the system response.
The internal cycle represents a single step in

the external cycle, where the system generates a
response based on the user input.

E.7 Termination Conditions
The internal cycle terminates when one of the fol-
lowing conditions is met:

q ∈ F∨|inner_states| = N_ATTEMPTS∨q = qca

E.8 Output
The output of the internal cycle is defined as a
tuple:

(r, q) ∈ Ω×Q

where r is the system response and q is the next
state for the external cycle.
F Information Collector Diagram
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H Gender distribution
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 Gender distribution

I Age groups distribution
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J User survey results: interaction
experience.
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60.0%

No
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Rather no
3.3%

I don't know
10.0%

Rather yes
20.0%

Do you agree: "Communication was friendly 
and respectful"?

K Statistics on the recommended
specialists in the expert-validated set of
dialogues.

M
D

Neurologist
Otolaryngologist
Gastroenterologis

Therapist
Dermatologist

Surgeon
Rheumatologist
Ophthalmologist
Endocrinologist

Cardiologist
Urologist

Pulmonologist
Gynecologist

Allergist
Other

0.0 5.0 10.0 15.0 20.0

Recommended specialties for further consultation, %

L User input description
The user interface of the CLARITY system ex-
poses the /v3/request request URL for queries
of various medical scenarios.

The user request body has the following contents

{
"Text": "User message",
"OuterContext": {
"Sex": true,
"Age": 21,
"UserId": "UserId",
"SessionId": "SessionId",
"ClientId": "ClientId",

}
},

where the "Text" field contains the input user mes-
sage and the "OuterContext" field contains all
the necessary information about the user. Inside
the "OuterContext" the "Sex" and "Age" fields
denote the user’s age and sex, respectively. The
"UserId", "SessionId" and "ClientId" fields
together form a unique dialogue identifier, which
is used across the CLARITY components for dia-
logue context propagation.

M System output description
The CLARITY output format:

{
"Text": "System output message",
"Results": [...]

}

The "Text" field contains the system message. The
"Results" field contains dialogue context and is
empty except in the Diagnostic hypotheses state,
where it contains three elements with this structure:

{
"Diagnosis": "One of three diagnoses",
"Doctor": "Recommended med specialty",
"Description": "Diagnosis description"

},

where the "Diagnosis" field contains the name
of the diagnosis, the "Doctor" field contains the
suggested medical specialty for further consultation
and the "Description" field contains text which
clarifies the diagnosis name.
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