Divide, Link, and Conquer: Recall-oriented Schema Linking for
NL-to-SQL via Question Decomposition

Kiran Pradeep'

Kirushikesh D. B.2

Nishtha Madaan? Sameep Mehta®

Pushpak Bhattacharyya!

Indian Institute of Technology Bombay
{kiranpradeep,pb}@cse.iitb.ac.in

2IBM Research India
kirushi@ibm.com

{nishthamadaan, sameepmehta}@in.ibm.com

Abstract

Natural language to SQL (NL-to-SQL)
systems are increasingly critical in industry
for enabling non-technical users to access
structured data efficiently, supporting faster
decision-making and data accessibility.
However, state-of-the-art systems often
depend on large proprietary models, which
introduce serious concerns around privacy.
While open-source LLMs offer a viable
substitute, high-performing variants (e.g., 70B
or 405B) require substantial GPU memory,
making them impractical for many production
environments. Smaller open-source models
that fit on a single 80GB GPU present a more
deployable alternative, yet existing efforts to
enhance their Text-to-SQL performance rely
heavily on fine-tuning, limiting flexibility. We
propose RoSL, a plug-and-play framework that
improves SQL generation for smaller LLMs
without any task-specific training. While
schema linking is often omitted for larger
models, we show it remains essential for
smaller ones. Further, we are the first to apply
question decomposition at the schema linking
stage, rather than during SQL generation as
in prior work, to address the precision-recall
tradeoff. Our approach improves schema
linking recall by 25.1% and execution accu-
racy by 8.2% on the BIRD benchmark using
ibm-granite/granite-3.3-8b-instruct,
making it an effective and industry-friendly
NL-to-SQL solution. We further analyze
RoSL’s latency—efficiency characteristics,
showing that it maintains practical efficiency
for real-world deployment.

1 Introduction

With the growing need to make structured data
more accessible, NL-to-SQL systems are becoming
essential tools that empower non-technical users
to query databases using natural language. This
capability is especially valuable in fast-paced envi-
ronments where timely data access directly impacts

decision-making. According to recent industry re-
ports, data analysts spend nearly 30-40% of their
time debugging SQL queries due to syntax errors
or incorrect joins, significantly reducing produc-
tivity. Meanwhile, Al-powered SQL tools have
demonstrated the ability to reduce query genera-
tion time by 60-75%, highlighting their potential to
streamline workflows and accelerate insight deliv-
ery. These trends underscore the growing demand
for NL-to-SQL systems that are not only accurate
but also scalable and deployable in real-world en-
terprise settings.!

While proprietary models like GPT-4 and Gem-
ini dominate recent state-of-the-art results in NL-to-
SQL, their use raises serious concerns in industry
settings due to their limitations in privacy. Open-
source LLLMs offer a promising alternative, but
the best-performing variants, such as LLaMA-3.1-
70B and 405B, require substantial GPU resources,
up to 140 GB and 405 GB of VRAM respec-
tively for FP16 inference?, making them imprac-
tical for most production environments. Smaller
open-source models that can run efficiently on a
single 80GB GPU are far more feasible, but re-
main under-explored for NL-to-SQL. Existing ap-
proaches often rely on fine-tuning such models for
performance, which limits generalizability and in-
troduces training overhead.

NL-to-SQL systems typically consist of two key
stages: (1) schema linking, where the model identi-
fies relevant tables and attributes from the database
schema, and (2) SQL generation, where the final
SQL query is composed from the selected schema
components. In practice, schema linking tends to
favor precision by filtering irrelevant schema ele-
ments, but often at the expense of recall, thereby
excluding attributes that are necessary for generat-

1https://pmarketresearch.com/it/
ai-structured-query-language-sql-tool-market/

2https://huggingface.co/blog/llama31#
inference-memory-requirements

1727

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1727-1743
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://pmarketresearch.com/it/ai-structured-query-language-sql-tool-market/
https://pmarketresearch.com/it/ai-structured-query-language-sql-tool-market/
https://huggingface.co/blog/llama31#inference-memory-requirements
https://huggingface.co/blog/llama31#inference-memory-requirements

ing a valid query. Recent work by Maamari et al.
(2024) suggests that schema linking may be redun-
dant for very large language models (LLMs), which
can often infer schema relevance implicitly. How-
ever, for smaller LLMs, schema linking remains
indispensable. These models are more sensitive to
schema noise, and errors in the linking phase of-
ten propagate to the SQL generation step, reducing
overall execution accuracy.

To address these limitations, we propose a
lightweight and fine-tuning-free framework, RoSL,
that enhances schema linking in smaller LLMs
by introducing question decomposition, a strat-
egy previously applied only at the SQL generation
stage (Talaei et al., 2024; Wang et al., 2024). Our
key insight is that smaller models struggle to pro-
cess complex questions involving multiple entities
and relationships in a single pass. By decomposing
such questions into simpler, focused sub-questions,
we enable the model to retrieve relevant schema
elements more effectively and improve schema re-
call. Finally, we quantify RoSL’s computational
overhead through a latency and efficiency analysis,
demonstrating that its additional reasoning steps
remain practical for deployment in multi-worker
industrial environments.

Our contributions are:

1. Question decomposition for schema link-
ing, marking the first use of decomposition
at this stage in NL-to-SQL. This improves
schema linking recall by 25.1%, leading
to an 8.21% improvement in execution
accuracy on the BIRD benchmark using the
ibm-granite/granite-3.3-8b-instruct
model.

2. RoSL: A plug-and-play NL-to-SQL pipeline,
requiring no task-specific fine-tuning and de-
signed for seamless integration with open-
source LLMs. This supports deployment in
privacy-sensitive and resource-constrained en-
vironments.

3. Comprehensive evaluation of schema link-
ing in smaller LLMs, demonstrating that
structured question decomposition signifi-
cantly improves schema coverage and SQL
execution across multiple open-source models
and benchmark settings.

2 Related Work

Smaller LLMs for NL-to-SQL. While LLMs
have advanced NL-to-SQL performance (Gao et al.,
2023; Pourreza and Rafiei, 2024a; Dong et al.,
2023; Sun et al., 2023; Pourreza et al., 2024), their
compute demands and privacy concerns limit real-
world use. Recent work has turned to smaller open-
source models as practical alternatives. CodeS (Li
et al., 2024a) and DTS-SQL (Pourreza and Rafiei,
2024b) show that, with fine-tuning, small mod-
els can be competitive on benchmarks like Spi-
der (Yu et al., 2018) and BIRD (Li et al., 2024b).
With newer performant models such as Phi-4 (Mi-
crosoft, 2024), this line of work aligns with our
goal: enabling strong Text-to-SQL performance
using smaller, more deployable LL.Ms.

Schema Linking in NL-to-SQL. Schema link-
ing, the task of mapping query terms to relevant
tables and columns, is a critical NL-to-SQL step
(Lewis, 2019; Guo et al., 2019; Bogin et al., 2019;
Wang et al., 2019; Li et al., 2023). Recent ap-
proaches use LL.Ms for this task (Talaei et al., 2024;
Pourreza and Rafiei, 2024b), though Maamari et al.
(2024) argue it can be redundant for large models.
Our work reevaluates this claim for smaller LLMs,
where explicit schema linking remains essential.

Query Decomposition. Breaking down com-
plex questions into simpler sub-questions improves
SQL generation. Prior methods like (Pourreza
and Rafiei, 2024a; Wang et al., 2024) decompose
queries before SQL generation, but none apply de-
composition during schema linking. We fill this
gap by introducing question decomposition at the
schema selection stage, improving column recall
and execution accuracy.

3 Methodology

We propose a multi-agent framework for translat-
ing natural language (NL) queries into SQL by
decomposing the problem into three stages: ques-
tion decomposition, schema selection, and SQL
generation. Each stage is handled by a special-
ized agent powered by a Large Language Model
(LLM), working together to handle compositional
and multi-hop queries more effectively.

3.1 Problem Statement

The task is to generate an executable SQL query
s for a given natural language question q, con-
ditioned on a database schema D. The schema

1728

Question: How many accounts who choose issuance after transaction
are staying in East Bohemia region?

Evidence: A3 contains the data of region; 'POPLATEK PO OBRATU'
represents for 'issuance after transaction'.

Question Decomposer (QD)
Question is decomposed
into multiple sub-questions

What are the account_ids
of accounts with the
'POPLATEK PO OBRATU'

What are the district_ids of

O Direct Schema
Linking (SL)

district

A3

district_id

Selects relevant tables

account

and attributes directly
without decomposing,
which led to the omission
of a relevant attribute.

[Missing]

district_id

trans

k=symbel [Irrelevant]

the East Bohemia region?
frequency?

Schema Selector (SS)
Selects relevant schema

based on the sub-questions.

SQL Generator

Generates SQL given
the query and schema.

&

SQL Generator

Generates SQL given
the query and schema.

&

SELECT Count (*)
FROM account AS T1
g - INNER JOIN trans AS T2
district account ON T1.account_id T2 .account_id
INNER JOIN district AS T3
A3 frequency ON Tl.district id T3.district id
WHERE T2.k symbol '"POPLATEK PO OBRATU'
. . . v ' £ Lo
district_id account_id ANDRESTa) EasEREChenIa
account district
district_id district_id
SELECT C I'(T2.account_id) «

FROM district AS T1
INNER JOIN account AS T2
ON T1.district id = T2.district_id
WHERE T1.A3 = 'east Bohemia'
AND T2.frequency = 'POPLATEK PO OBRATU'

Figure 1: An example illustrating how direct schema linking misses critical columns (frequency) for com-
plex queries, while question decomposition enables correct column retrieval via simpler sub-questions. High-
lighted colors indicate the relevant parts of the schema associated with specific segments of the main

question.

The attribute (k=symbel) is incorrectly retrieved and serves as an extra column.

Model used:

meta-1lama/Meta-Llama-3.1-8B-Instruct. Refer Appendix A.6.

comprises a set of tables 7 and columns C: D =
{T.C}.

Input: Natural language question q, optional
hint h, and schema D.

Output: SQL query s that correctly answers q
over D.

3.2 Question Decomposer Agent

The Question Decomposer Agent determines
whether the input question q requires decompo-
sition and, if so, splits it into simpler sub-questions
{@1,42, .--,qn}. The agent is guided by the condi-
tion that each sub-question should correspond to a
partial SQL query, and when these are joined (typi-
cally via a JOIN operation), they should together
yield a query that answers the original question.
This step also helps reduce the reasoning burden
on smaller LLMs.
Input: Question q, optional hint h, schema D.

Output:

* A boolean indicator d for whether decomposi-
tion is required.

* A list of sub-questions @ = {q1, g2, ..., qn }-

* Chain-of-thought reasoning rgop explaining
the decomposition rationale.

The decomposition indicator d is essential as not
all queries benefit from decomposition; for sim-
ple questions, unnecessary decomposition may de-
grade performance or add noise.

3.3 Schema Selector Agent

Given each sub-question ¢;, the Schema Selec-
tor Agent identifies a reduced schema D; C D
that contains only the relevant tables and attributes
needed to answer ¢;. By working on decomposed
queries, the agent can more precisely focus on

1729

specific parts of the query, which improves both
schema linking recall and precision.

Input: Sub-question g;, optional hint h, and full
schema D.

Output: Reduced schema D; relevant to g;.

3.4 SQL Generator Agent

The SQL Generator Agent produces the final SQL
query using the reduced schema obtained from the
Schema Selector. It is conditioned on the original
question to ensure that the final SQL query answers
the full intent.

Input: Original question q, optional hint h, and
the union of all reduced schemas |, D;.

Output: Executable SQL query s.

Figure 1 illustrates our pipeline using an ex-
ample, showing how question decomposition
improves schema linking by retrieving relevant
columns and avoiding irrelevant ones. Refer to
Appendix A.6 for details.

We also explored an alternate setting where in-
dividual sub-questions were converted into SQL
queries, and a recomposer agent merged these into
a final query. However, this led to decreased execu-
tion accuracy. Details of this variant are presented
in Appendix A.8.

4 Experiments

We evaluate our approach on the Spider and
BIRD datasets, with further details provided in Ap-
pendix A.3. Execution Accuracy, Schema Linking
Precision, and Recall are used as evaluation metrics
(Appendix A.2). Our implementation employs a
modular prompting framework across stages, ques-
tion decomposition, schema linking, and SQL gen-
eration (Appendix A.12, using a diverse set of
instruction-tuned open-source LLMs, listed in Ap-
pendix A.5. Experimental ablations are conducted
on the subsampled_dev split.

4.1 Approaches

To analyze the impact of Question Decomposition
on Schema Linking, we evaluate the performance
of five different pipeline configurations:

NoSL: The SQL generator receives the full
database schema without any schema linking or
pruning. This serves as a baseline.

SL: A standard schema linking approach is ap-
plied using an existing schema selector. For our

experiments, we adopt the schema selector pro-
posed by Talaei et al. (2024). This also serves as a
baseline in our experiments to show the efficacy of
the addition of the query decomposer.

SL+QD (RoSL): This is our proposed method.
It applies the Question Decomposer agent (see Sec-
tion 3.2) on top of the SL variant, with constraints
to ensure sub-queries can be joined to form the
original query.

SL+SimpleQD: Similar to the SL+QD variant,
but without enforcing any constraints related to
database schema during question decomposition.
This helps isolate the benefit of structured decom-
position.

SL+TableQD: A constrained variant of SL+QD
where each sub-question is restricted to retrieving
information from a single table.

5 Results and Analysis

We evaluate our proposed approach on both the full
BIRD development set (Li et al., 2024b) and the
subsampled development set (Talaei et al., 2024).
Results on the Spider development set are reported
separately in Appendix A.11.

5.1 Execution Accuracy on the Complete

BIRD Development set
Model NoSL SL SL+QD (RoSL)
Llama-3.1-8B 46.08 47.19 49.28
phi-4-14B 51.36 59.77 59.91
granite-3.3-88 37.28 37.31 40.35
Qwen3-4B 4498 49.28 49.93
Llama-3.1-70B 62.12 61.34 61.41

Table 1: Execution accuracy (%) on the BIRD dev set
under different schema linking variants. RoSL applies
question decomposition at schema linking.

Table 1 presents the execution accuracy of dif-
ferent schema linking variants on the full BIRD de-
velopment set across four open-source LLMs. We
compare three settings: NoSL, which uses the full
schema without linking; SL, which applies schema
linking without decomposition; and SL+QD, our
proposed approach that incorporates question de-
composition into schema linking.

Our method (SL+QD) achieves the
highest execution accuracy for three
of the four models. Notably, for

ibm-granite/granite-3.3-8b-instruct,

1730

SL+QD improves execution accuracy from 37.31%
to 40.35%, demonstrating the largest gain among
all models. Similarly, Ll1ama-3.1-8B-Instruct
and phi-4-14B also benefit from decomposition,
with SL+QD outperforming both NoSL and SL
baselines.

Interestingly, for Llama-3.1-7@0B-Instruct,
the NoSL baseline already achieves the best per-
formance (62.12%), slightly outperforming SL and
SL+QD. This aligns with prior observations that
larger models can internally resolve schema rele-
vance, making explicit schema linking less benefi-
cial in some cases.

We further extend our evaluation to smaller-scale
models to assess RoSL’s generalizability under con-
strained settings. Using Qwen3-4B, we observe
execution accuracies of 44.98% (NOSL), 49.28%
(SL), and 49.93% (ROSL). While the absolute gain
in execution accuracy is modest, schema linking re-
call improves substantially from 0.6697 to 0.7196,
indicating that RoSL enhances schema coverage
even in low-capacity regimes.

Correct (%) Incorrect (%)

[= st
= st+ap = st+Qp

Exxecution Accuracy (%)

Challenging Challenging

Figure 2: Performance of LLaMA-3.1-70B-Instruct
model in challenging queries of the BIRD benchmark.

5.2 Difficulty-wise Analysis

From Table 2, we observe that the performance
of the LLaMA-3.1-70B-Instruct model declines
when Schema Linking (SL) is applied, con-
trary to the trend observed in smaller models.
These results are in line with the findings of
Maamari et al. (2024), which report that while
schema linking benefits smaller models (e.g.,
LLaMA-3.1-8B-Instruct), it often degrades the
performance of larger models. Since Schema Link-
ing typically increases precision at the expense of
recall, this trade-off appears detrimental to larger
models.

However, a more nuanced picture emerges when
we analyze the model’s performance across dif-
ferent difficulty levels, Simple, Moderate, and
Challenging, as defined in the BIRD dataset

(Li et al., 2024b). Across the NoSL, SL, and
SL+QD variants (see Section 4.1), we find that
the LLaMA-3.1-70B-Instruct model shows im-
proved execution accuracy on Challenging in-
stances when using schema linking. This perfor-
mance is further enhanced with the addition of
question decomposition (QD), increasing accuracy
from 47.73% (SL) to 49.24% (SL+QD). While this
increase may appear modest in absolute terms, it
becomes significant when we consider the underly-
ing factors. Challenging queries typically require
multiple JOIN operations, which substantially in-
crease the number of conditions the model must
attend to. We observe that schema linking recall
improves significantly in the SL+QD variant: from
84.83% to 89.63% (refer Appendix A.10) across all
queries, and from 81.84% to 89.66% specifically in
challenging instances. This suggests that QD aids
the model in understanding the question in smaller,
more manageable parts, thereby facilitating better
schema linking with minimal loss in recall. To fur-
ther validate this, we analyzed a subset of queries
where SL alone yielded incomplete column recall
(i.e., recall < 1.0), but SL+QD achieved full re-
call (i.e., recall = 1.0). Among these, 64.29% re-
sulted in correct SQL generation. This strengthens
the argument that the improved execution accuracy
stems from better schema linking recall enabled by
question decomposition, particularly in complex
scenarios involving multiple joins.

SL + SL + SL +
sl SL BaseQD QD TableQD
Llama-3.1-8B 07084 0.8637 0.8309 0.8100
Phi-4-14B 0.8635 0.8980 0.8903 0.8800
Granite-3.3-8B 0.5655 0.6253 0.6650 0.6500
DeepCoder-14B 07057 07326 0.7367 0.7200
Llama-3.1-70B 0.8484 0.8856 0.8858 0.8800
Llama-3.3-70B 0.8772 09102 0.8984 0.8920

Table 2: Schema Linking Recall across decomposi-
tion variants. SL: no decomposition; Base QD: un-
constrained; SL + QD: structured; Table QD: table-
restricted. Bold = best per model.

5.3 Effects of Query Decomposition on
Schema Linking Recall

Table 2 shows that both unconstrained (Base QD)
and structured (SL+QD) decompositions signifi-
cantly boost recall over the baseline (SL), confirm-
ing their effectiveness in capturing relevant schema
elements. Base QD achieves the highest recall on
half of the models, but SL+QD remains more con-

1731

Category Method Simple Moderate Challenging Total
(A) Finetuned Methods
SFT CodeS-15B - - - 58.47
DTS-SQL (Pourreza and Rafiei, 2024b) DeepSeek-7B - - - 55.80
ExSL granite-20b-code - - - 51.69
(B) Direct Inference + Proprietary LLMs
GPT-4 GPT-4 - - - 46.35
Claude-2 Claude-2 - - - 42.70
SQL-Palm (Sun et al., 2024) PalLM2 68.92 52.07 47.89 61.93
Distillery (Maamari et al., 2024) GPT-40 - - - 67.21
CHESS (Talaei et al., 2024) GPT-4 - - - 68.31
MCS-SQL (Lee et al., 2025) GPT-4 70.40 53.10 51.40 63.36
TA-SQL (Qu et al., 2024) GPT-4 63.14 48.60 36.11 56.19
MAG-SQL (Xie et al., 2024) GPT-3.5 65.94 46.24 40.97 57.62
MAC-SQL (Wang et al., 2024) GPT-4 65.73 52.69 40.28 59.39
E-SQL (Caferoglu and Ozgiir Ulusoy, 2025) GPT-40-mini 68.00 53.23 47.59 61.60
RSL-SQL (Cao et al., 2024) GPT-40 74.38 57.11 53.79 67.21
(C) Direct Inference + Open-source LLMs
Mistral Mistral-123B - - - 53.52
CHESS (Talaei et al., 2024) Llama-3.1-70B - - - 61.34
RoSL (Ours) granite-8b-code 49.08 27.86 25.00 40.35
RoSL (Ours) Llama-3.1-8B 57.29 39.01 31.03 49.28
RoSL (Ours) phi-4 (14B) 68.54 49.56 37.93 59.91
RoSL (Ours) Llama-3.1-70B 68.32 52.37 46.20 61.41

Table 3: Comparison of various Text-to-SQL methods based on execution accuracy across different query complexi-
ties. We separate finetuned methods, proprietary LLMs, and open-source models. Blue-shaded rows indicate our
method. Bold numbers represent the highest accuracy in each column.

sistent, outperforming all other variants on models
like Granite-3.3-8B and DeepCoder-14B.

The SL+TableQD variant improves over SL
in most cases but generally underperforms com-
pared to the unconstrained decomposition variants,
likely due to over-restriction that limits inter-table
attribute discovery.

We further analyze how query complexity and
sub-question depth relate to model performance in
Appendix A.7.

5.4 State-of-the-art Comparisons

Table 3 compares the execution accuracy of our ap-
proach (RoSL) with state-of-the-art Text-to-SQL
methods across three difficulty levels, Simple, Mod-
erate, and Challenging, on the BIRD benchmark.
Our method achieves strong performance in the
open-source category, particularly when using the
Llama-3.1-70@B model, reaching a total execution
accuracy of 61.41%. This is competitive with
proprietary GPT-4-based methods such as SQL-
PalLM (61.93%) and E-SQL (61.60%), and sur-
passes several recent proprietary models includ-
ing MAC-SQL (59.39%), TA-SQL (56.19%), and

MAG-SQL (57.62%).

Most notably, RoSL outperforms the CHESS
baseline (61.34%) when using the same
Llama-3.1-70B model by a little margin.
This demonstrates the effectiveness of our pro-
posed query decomposition at the schema linking
stage, which enables improved schema recall
without sacrificing precision.

On the more constrained phi-4 model (14B),
RoSL still achieves a strong overall accuracy of
59.91%, outperforming even some finetuned 15B
methods like CodeS-15B (58.47%) and DTS-SQL
(55.80%). These results confirm the utility of our
plug-and-play design for smaller open-source mod-
els, especially in deployment scenarios where pro-
prietary models are not feasible.

5.5 Latency and Throughput Analysis

While RoSL achieves substantial gains in exe-
cution accuracy, practical deployment in produc-
tion settings requires understanding its computa-
tional overhead. To address this, we conducted
a detailed latency and throughput analysis using
ibm-granite/granite-3.3-8b-instruct on a

1732

Setting EX (%) Avg. LLM Calls Avg. Tokens Latency (s/query) Effective Latency (8 workers)
NoSL 37.28 1.49 8,671 18.41 2.82
SL 37.31 5.82 11,606 35.57 18.60
RoSL 40.35 10.56 17,617 61.90 23.14

Table 4: Latency and throughput comparison for RoSL and baseline variants on the BIRD development set. “Latency”
refers to single-worker per-instance time; “Effective Latency” denotes per-query runtime under 8 parallel workers.

single NVIDIA A100 (80GB) GPU with vLLM. We
compare three pipeline variants: NOSL (no schema
linking), SL (standard schema linking), and ROSL
(schema linking with question decomposition). Re-
fer Table 4.

Per-instance Latency. As expected, introducing
question decomposition increases the number of
LLM calls (approximately 7x more) and total to-
kens processed (~2x). Consequently, the average
single-worker latency for RoSL is about 61.9s per
query, compared to 18.4s for NOSL and 35.6s for
SL.

Effective per-query latency. In realistic enter-
prise setups with parallel workers, the effective
per-query latency reduces significantly. With eight
workers in parallel, RoSL achieves an effective la-
tency of 23.1s per query, compared to 18.6s for SL
and 2.8s for NOSL. This demonstrates that RoSL’s
additional reasoning steps remain tractable when
deployed in distributed environments.

Accuracy-Efficiency Tradeoff. Despite a higher
computational cost, RoSL delivers an +8.23% ab-
solute improvement in execution accuracy over
NOSL and +8.14% over SL. The added latency
thus corresponds to a meaningful gain in reliabil-
ity and correctness, crucial for production-grade,
execution-sensitive applications. These results indi-
cate that RoSL offers a favorable balance between
efficiency and accuracy for smaller open-source
models in enterprise NL-to-SQL deployments.

6 Conclusion

RoSL is a lightweight, modular framework that
introduces question decomposition at the schema
linking stage, an underexplored but crucial part of
the NL-to-SQL pipeline. Unlike prior approaches
that apply decomposition only during SQL gener-
ation, RoSL improves schema coverage early in
the pipeline, enabling more accurate and complete
SQL generation. This is especially impactful for
smaller open-source LLMs, which offer better de-
ployability in compute and privacy constrained en-

vironments but typically underperform on complex
queries. Our experiments on the BIRD and Spider
benchmarks show that RoSL significantly boosts
schema linking recall and execution accuracy, all
without fine-tuning. These gains hold consistently
across instruction-tuned models under 15B param-
eters, demonstrating that RoSL serves as a practi-
cal, fine-tuning-free alternative to large proprietary
systems. By addressing both accuracy and deploy-
ment feasibility, RoSL contributes a scalable and
industry-ready solution for building efficient and
accessible NL-to-SQL systems.

Limitations

While RoSL shows strong performance improve-
ments, it has a few limitations:

* Decomposition Quality. The effectiveness
of the schema linking depends heavily on the
quality and semantic correctness of the gen-
erated sub-questions. Poor decompositions
may lead to irrelevant or incomplete schema
retrieval.

* Inference Overhead. Introducing question
decomposition increases latency due to addi-
tional LLM calls and token usage. On av-
erage, RoSL incurs ~61.9s per query under
single-worker inference and ~23.1s effective
latency with eight parallel workers, balanced
by an +8% improvement in execution accu-
racy. This tradeoff is acceptable for batch or
near-real-time analytics scenarios.

* SQL Recomposition Challenge. Although
we experimented with decomposed SQL gen-
eration followed by recomposition, this ap-
proach led to degraded performance (details
in Appendix A.8), suggesting limitations in
handling inter-query dependencies.

* Constraint Sensitivity. Highly constrained
variants like SL+TableQD, which force sub-
questions to target a single table, can under-
perform due to overly restrictive assumptions
that limit schema coverage.

1733

In future work, we aim to explore dynamic de-
composition strategies, LLM-driven sub-question
validation, and reinforcement learning techniques
to jointly optimize decomposition and SQL genera-
tion quality.

Acknowledgements

We would like to express our deepest gratitude to
our co-author, Prof. Pushpak Bhattacharyya, for
his invaluable guidance and inspiration throughout
this work. Prof. Bhattacharyya passed away shortly
before the camera-ready submission of this paper,
and we dedicate this work to his memory.

References

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019.
Global reasoning over database structures for text-to-
sql parsing. arXiv preprint arXiv:1908.11214.

Hasan Alp Caferoglu and Ozgiir Ulusoy. 2025. E-sql:
Direct schema linking via question enrichment in
text-to-sql. Preprint, arXiv:2409.16751.

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin
Zhang, and Wei Chen. 2024. Rsl-sql: Robust schema
linking in text-to-sql generation. arXiv preprint
arXiv:2411.00073.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, and 1 others.
2023. C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Jiagi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-sql in cross-domain database
with intermediate representation. arXiv preprint
arXiv:1905.08205.

Dongjun Lee, Choongwon Park, Jachyuk Kim, and
Heesoo Park. 2025. MCS-SQL: Leveraging mul-
tiple prompts and multiple-choice selection for text-
to-SQL generation. In Proceedings of the 31st Inter-
national Conference on Computational Linguistics,
pages 337-353, Abu Dhabi, UAE. Association for
Computational Linguistics.

M Lewis. 2019. Bart: Denoising sequence-to-
sequence pre-training for natural language genera-
tion, translation, and comprehension. arXiv preprint
arXiv:1910.13461.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023. Resdsql: Decoupling schema linking and

skeleton parsing for text-to-sql. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 13067-13075.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024a. Codes: Towards
building open-source language models for text-to-sql.
Proceedings of the ACM on Management of Data,
2(3):1-28.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,
Nan Huo, and 1 others. 2024b. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz,
and Amine Mhedhbi. 2024. The death of schema
linking? text-to-sql in the age of well-reasoned lan-
guage models. Preprint, arXiv:2408.07702.

Microsoft. 2024. Discover the new multi-lingual, high-
quality phi 3.5 slms. Accessed: 2024-10-16.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O. Arik. 2024. Chase-sql: Multi-path reason-
ing and preference optimized candidate selection in
text-to-sql. Preprint, arXiv:2410.01943.

Mohammadreza Pourreza and Davood Rafiei. 2024a.
Din-sql: decomposed in-context learning of text-to-
sql with self-correction. In Proceedings of the 37th
International Conference on Neural Information Pro-
cessing Systems, NIPS ’23, Red Hook, NY, USA.
Curran Associates Inc.

Mohammadreza Pourreza and Davood Rafiei. 2024b.
Dts-sql: Decomposed text-to-sql with small large
language models. ArXiv, abs/2402.01117.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before gen-
eration, align it! a novel and effective strategy for
mitigating hallucinations in text-to-SQL generation.
In Findings of the Association for Computational
Linguistics ACL 2024, pages 5456-5471, Bangkok,
Thailand and virtual meeting. Association for Com-
putational Linguistics.

Ruoxi Sun, Sercan O Arik, Alex Muzio, Lesly Miculi-
cich, Satya Gundabathula, Pengcheng Yin, Hanjun
Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang,
and 1 others. 2023. Sql-palm: Improved large lan-
guage model adaptation for text-to-sql (extended).
arXiv preprint arXiv:2306.00739.

Ruoxi Sun, Sercan O. Arik, Alex Muzio, Lesly Miculi-
cich, Satya Gundabathula, Pengcheng Yin, Hanjun
Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang,
and Tomas Pfister. 2024. Sql-palm: Improved large
language model adaptation for text-to-sql (extended).
Preprint, arXiv:2306.00739.

1734

https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://aclanthology.org/2025.coling-main.24/
https://aclanthology.org/2025.coling-main.24/
https://aclanthology.org/2025.coling-main.24/
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://arxiv.org/abs/2408.07702
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://techcommunity.microsoft.com/t5/ai-azure-ai-services-blog/discover-the-new-multi-lingual-high-quality-phi-3-5-slms/ba-p/4225280
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://arxiv.org/abs/2410.01943
https://api.semanticscholar.org/CorpusID:267406644
https://api.semanticscholar.org/CorpusID:267406644
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2024.findings-acl.324
https://arxiv.org/abs/2306.00739
https://arxiv.org/abs/2306.00739

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql synthe-
sis. arXiv preprint arXiv:2405.16755.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2019. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. arXiv preprint arXiv:1911.04942.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Ji-
aqi Bai, Linzheng Chai, Zhao Yan, Qian-Wen Zhang,
Di Yin, Xing Sun, and Zhoujun Li. 2024. Mac-sql: A
multi-agent collaborative framework for text-to-sql.
Preprint, arXiv:2312.11242.

Wenxuan Xie, Gaochen Wu, and Bowen Zhou. 2024.
Mag-sql: Multi-agent generative approach with soft
schema linking and iterative sub-sql refinement for
text-to-sql. arXiv preprint arXiv:2408.07930.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

A Appendix

A.1 Datasets

We evaluate our approach on two standard NL-to-
SQL benchmarks: Spider (Yu et al., 2018) and
BIRD (Li et al., 2024b). BIRD poses greater
complexity due to larger schemas and multi-hop
queries, while Spider serves as a widely used
testbed for cross-domain generalization. All evalu-
ations are conducted on the development sets. For
ablation studies, we use the subsampled_dev split
introduced by Talaei et al. (2024). Further dataset
statistics are provided in Appendix A.3.

A.2 Metrics

We evaluate the performance of our pipeline using
the following metrics:

Execution Accuracy (EX): The official evalu-
ation metric used for both the Spider and BIRD
datasets. It compares the execution results of the
predicted SQL query with those of the ground truth
query on the corresponding database instances.
This metric is robust to the existence of multiple
semantically equivalent SQL queries.

Schema Linking Precision: Measures the pro-
portion of correctly retrieved columns among all
columns selected by the model. It reflects the accu-
racy of the schema selection process.

Schema Linking Recall: Measures the propor-
tion of relevant (oracle) columns that were correctly
retrieved by the model. It evaluates the complete-
ness of schema linking with respect to the ideal set
of columns.

A.3 Dataset Statistics

Spider (Yu et al., 2018) is a large-scale, cross-
domain NL-to-SQL benchmark consisting of:

* 8,650 training examples

* 1,034 development examples

* 2,147 test examples

* 200 databases spanning 138 unique domains

It is widely adopted for evaluating generalization
across unseen database schemas.

BIRD (Li et al., 2024b) is a more recent bench-
mark that better reflects real-world enterprise sce-
narios. It includes:

* 9,428 training examples

1,534 development examples

1,789 hidden test examples
* 95 large-scale databases totaling 33.4 GB

* 37+ professional domains, including health-
care, education, blockchain, and sports

BIRD features significantly more complex queries
than Spider, including multi-hop reasoning and
nested SQL constructs.

For ablation experiments, we follow Talaei et al.
(2024) and use the subsampled_dev split, a cu-
rated subset of BIRD’s development set, chosen
for controlled evaluation of schema linking and
decomposition strategies.

A.4 Implementation Details

We evaluate our pipeline using a variety of open-
source, instruction-tuned Large Language Models
(LLMs). These models are employed across dif-
ferent modules such as question decomposition,
schema linking, and SQL generation. A complete
list of all models used and other details can be
found in Appendix A.5 and A.12.

1735

https://arxiv.org/abs/2312.11242
https://arxiv.org/abs/2312.11242
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425

A.5 List of LLMs Used

The following instruction-tuned LL.Ms were used
across different stages of our experiments:

e meta-llama/Meta-Llama-3.1-8B-
Instruct

* microsoft/phi-4
e ibm-granite/granite-3.3-8b-instruct
e agentica-org/DeepCoder-14B-Preview

e meta-llama/Meta-Llama-3.1-70B-
Instruct

e meta-llama/Llama-3.3-70B-Instruct

Question Decomposer. We employ a single-
agent setup with deterministic decoding (temper-
ature = 0.0). The question_decomposer prompt
template guides the model’s output. Full prompt
details are provided in Appendix A.12.

Schema Selector. We adopt the schema selector
design from Talaei et al. (2024), using the same
prompt and decoding configuration to ensure com-
parability.

SQL Generator. The SQL generation module
follows the candidate generation and revision
pipeline introduced in Talaei et al. (2024), using
low-temperature sampling for candidate generation
and a deterministic revision step.

All modules are implemented using a modular
prompting framework that allows seamless substi-
tution of LLMs and templates, ensuring controlled
and consistent evaluation across different configu-
rations.

A.6 Qualitative Analysis of Question
Decomposition

To better understand the effectiveness
of question decomposition, we present
a qualitative example in Figure 1 using
meta-1lama/Meta-Llama-3.1-8B-Instruct.
This case study highlights the limitations of
direct schema linking on a complex question
and demonstrates how decomposition improves
schema selection.

Input Question: How many accounts who
choose issuance after transaction are staying in
East Bohemia region?

Answering this query requires filtering ac-
counts based on a specific frequency condition

(‘POPLATEK PO OBRATU®) and their associ-
ation with a particular region (‘East Bohemia‘).
These conditions involve attributes from multiple
tables, account and district, necessitating accu-
rate schema linking.

In the Direct Schema Linking approach,
the model fails to identify the critical attribute
frequency from the account table. Moreover, it
selects additional irrelevant columns not needed for
answering the query, which harms Schema Link-
ing Precision. This decrease in precision is likely
caused by the model’s need to attend simultane-
ously to multiple entities and relationships within
a complex query, combined with noisy schema sig-
nals. Without explicit guidance, the model may
over-select columns to hedge against missing rel-
evant information, thereby introducing noise that
complicates downstream SQL generation.

Conversely, Schema Linking via Question De-
composition breaks down the original question
into simpler sub-questions, such as:

* What are the district_ids of the East Bohemia
region?

» What are the account_ids of accounts with the
"POPLATEK PO OBRATU’ frequency?

Each sub-question focuses on a distinct schema
fragment, allowing the schema selector to precisely
retrieve the relevant attributes A3, district_id,
and frequency without extraneous noise. This
targeted retrieval improves both Schema Linking
Recall and Precision, resulting in a more accurate
and executable SQL query.

This example supports the hypothesis that, for
smaller LLMs handling complex queries, decom-
position reduces cognitive overload and mitigates
schema noise by narrowing the focus at each step.
Consequently, it leads to better schema linking
quality and downstream task performance.

A.7 Analysis of Sub-Question Counts by
Difficulty and Outcome

To better understand how query decomposition be-
haves under varying difficulty and outcome con-
ditions, we analyze the average number of sub-
questions generated per query across three out-
come categories, correct, incorrect, and error,
for different difficulty levels (simple, moderate,
challenging). Figure 3 presents this compari-
son for four models: phi-4-14B, L1ama-3.1-8B,
granite-3.3-8b, and L1ama-3.1-70B.

1736

We observe that the average number of sub-
questions generally increases with query com-
plexity across all models. For instance, in the
phi-4-14B model, the average number of sub-
questions rises from 2.02 for simple queries to
2.76 for challenging ones in the correct category.
This trend holds for both incorrect and error cases,
where decomposition becomes increasingly granu-
lar with difficulty, indicating that models struggle
more as semantic complexity increases.

Interestingly, models like L1ama-3.1-8B con-
sistently generate more sub-questions than others
across all categories and difficulty levels, especially
in the challenging tier (e.g., 3.27 for correct an-
swers), suggesting that smaller models may require
more decomposition steps to comprehend complex
queries. In contrast, the larger L1lama-3.1-70B
model generates fewer sub-questions, particularly
in error cases (e.g., only 2.17 for challenging er-
rors), possibly due to premature termination or
over-simplified reasoning.

These findings demonstrate that decomposition
depth correlates with both task complexity and
model capability. Effective decomposition strate-
gies, especially for smaller models, can help reduce
reasoning overload and improve overall execution
accuracy. Full plots are shown in Figure 3.

A.8 SQL Recomposer Agent

To explore the utility of query decomposition
beyond schema linking, we experimented with
SQL generation through a recomposition strategy.
Specifically, we evaluate two additional variants:

* SL+QD+RC: Structured decomposition with
schema linking, where each sub-question is
converted into a partial SQL query, and a
recomposer agent merges them into a final

query.

¢ SL+TableQD+RC: A more constrained vari-
ant where each sub-question is limited to a
single table, and recomposed similarly.

As shown in Table 5, the SL+QD+RC vari-
ant generally underperforms compared to SL+QD
without recomposition (see Section A.9), and
only provides marginal gains for select mod-
els. For instance, phi-4-14B reaches 53.06%
with recomposition, which is slightly lower
than the 53.74% achieved with SL+TableQD.
Similarly, Llama-3.1-8B-Instruct drops from
44.67% (SL+QD) to 42.85% (SL+QD+RC).

These results suggest that decomposed SQL gen-
eration introduces new challenges in maintaining
logical consistency and join semantics across par-
tial queries. While promising in principle, recom-
position demands more robust alignment mecha-
nisms to be viable in practice. As such, our final
pipeline uses SL+QD without SQL recomposition,
which provides more stable and interpretable im-
provements.

A.9 Effects of Variations in Question
Decomposition

To evaluate the impact of query decomposition,
we compare multiple schema linking variants us-
ing the subsampled_dev split from Talaei et al.
(2024). As shown in Table 6, our structured de-
composition method (SL+QD) consistently im-
proves execution accuracy over both the NoSL
and SL baselines for most models. For example,
Llama-3.1-8B-Instruct improves from 38.26%
(SL) to 44.67% (SL+QD), and phi-4-14B im-
proves from 40.81% (NoSL) to 52.04%. Results
from incorporating a SQL Recomposer agent into
the pipeline are presented in Appendix A.8.

While a few models achieve their best perfor-
mance with other variants, SL+QD provides the
most stable improvements overall. On the full de-
velopment set, SL+QD outperforms both NoSL
and SL across nearly all models, as detailed in
Appendix ??, demonstrating its effectiveness at
enhancing schema linking and downstream SQL
generation.

A.10 Column Recall on the Complete BIRD
Development Set

Table 7 reports the Schema Linking Recall (i.e.,
column recall) for four open-source LLMs under
two settings: SL, which performs schema linking
without decomposition, and SL+QD, our proposed
approach that integrates question decomposition
during schema linking.

Across all models, SL+QD achieves higher
recall than the SL baseline, highlighting its
effectiveness in retrieving relevant schema el-
ements. The improvements are particularly
notable for smaller models. For instance,
ibm-granite/granite-3.3-8b-instruct sees a
substantial increase from 0.5334 to 0.6673, and
Llama-3.1-8B-Instruct improves from 0.7008
to 0.8446. This demonstrates that question decom-
position helps smaller LLMs recover a more com-
plete set of necessary columns, which is critical for

1737

Model

SL+QD+RC SL+TableQD+RC

meta-llama/Llama-3.1-8B-Instruct

microsoft/phi-4-14B

ibm-granite/granite-3.3-8b-instruct
agentica-org/DeepCoder-14B-Preview
meta-1lama/Llama-3.1-70B-Instruct
meta-1lama/Llama-3.3-70B-Instruct

42.85 40.13
53.06 53.74
37.41 -

45.57 40.81
56.46 55.10
53.06 55.10

Table 5: Execution accuracy (%) under different query decomposition settings on the subsampled_dev split from
Talaei et al. (2024). Refer section 4.1 for variants related information. Bold values indicate the best performance for

each model.
Model NoSL SL SL+SimpleQD SL+QD (RoSL) SL+TableQD
meta-1lama/Llama-3.1-8B-Instruct 42.17 38.26 4421 44.67 40.13
microsoft/phi-4-14B 40.81 53.40 50.34 52.04 53.74
ibm-granite/granite-3.3-8b-instruct 36.73 34.01 33.33 36.05 35.37
agentica-org/DeepCoder-14B-Preview 39.45 40.81 38.09 38.09 40.81
meta-1lama/Llama-3.1-70B-Instruct 5442 5442 52.38 53.06 55.10
meta-1lama/Llama-3.3-70B-Instruct 5442 57.82 55.78 54.42 55.10

Table 6: Execution accuracy (%) under different query decomposition settings on the subsampled_dev split from
Talaei et al. (2024). SL+QD represents our structured question decomposition method. Bold values indicate the best

performance for each model.

Model

SL SL+QD (RoSL)

meta-llama/Llama-3.1-8B-Instruct

microsoft/phi-4-14B

ibm-granite/granite-3.3-8b-instruct
meta-1llama/Llama-3.1-70B-Instruct

0.7008 0.8446
0.8653 0.8982
0.5334 0.6673
0.8483 0.8963

Table 7: Schema Linking Recall comparison between the SL and SL+QD variant as described in the section 4.1.

Bold values indicate the best performance for each model.

generating valid SQL. framework with state-of-the-art systems that use
Even for larger models like large proprietary models such as GPT-4 and Chat-
Llama-3.1-70B-Instruct and phi-4-14B, GPT. While these models achieve strong perfor-

SL+QD boosts recall noticeably—by nearly
5 percentage points—despite their stronger
baseline capabilities. These gains suggest that
decomposition not only mitigates the limitations
of smaller models but also benefits larger ones
by encouraging more exhaustive and structured
schema exploration.

Overall, these results reinforce the central claim
of this work: that question decomposition, when
applied at the schema linking stage, improves the
model’s ability to identify all relevant schema com-
ponents, thereby enhancing the reliability of down-
stream SQL generation.

A.11 Performance on Spider Development Set

Table 8 presents execution accuracy (EX) on the
Spider development set. We compare our RoSL

mance (e.g., DAIL-SQL with GPT-4 reaches 86.6%),
they rely on models that are inaccessible in many
real-world deployment settings due to privacy, cost,
and reproducibility concerns.

In contrast, our method operates using open-
source LLLMs and achieves competitive perfor-
mance without any fine-tuning. RoSL achieves
67.89% execution accuracy with Llama-3.1-8B
and 75.43% with phi-4-14B. These results show
that RoSL closes a significant portion of the per-
formance gap while remaining lightweight, acces-
sible, and reproducible, making it more suitable
for deployment in constrained or privacy-sensitive
environments.

1738

Method Model EX (%)

DAIL-SQL GPT-4 86.6
DIN-SQL GPT-4 85.3
DIN-SQL CodeX 78.2
C3 ChatGPT 82.3

RoSL (ours) Llama-3.1-8B 67.89
RoSL (ours) phi-4-14B 75.43

Table 8: Execution Accuracy (EX) on the Spider (Yu
et al., 2018) Development set. Cyan rows highlight our
results using open-source LLMs.

A.12 Prompts Used for Various Modules

The following figures illustrate the prompts used
across different modules in our framework.

1739

Average Number of Sub-Questions (Correct)

—@— phi-4-14B

—@— Llama-3.1-8B
—@— granite-3.3-8b
—— Llama-3.1-70B

Average # Sub-Questions
N N N N N w
o N B ()] (o] o

Average Number of Sub-Questions (Incorrect)

2.75 A

2.50 A

2.25 A

2.00 A

Average # Sub-Questions
w w w
o N (6]
o wv o

Average Number of Sub-Questions (Error)

3.75 4

3.50 A

3.25 1

3.00 A

2.75 A

2.50 1

2.25 A

Average # Sub-Questions

2.00 A

1.75 4

T

simple moderate challenging
Difficulty Level

Figure 3: Average number of sub-questions generated across difficulty levels (simple, moderate, challenging) for
each model, grouped by outcome category: Top — correct, Middle — incorrect, Bottom — error.

1740

%;;u are an expert and very smart data analyst. ﬁ\\

Your task is to analyze the provided database schema, comprehend the posed question, and
determine if it requires decomposition. If the question requires decomposition, break it down
into multiple sub-questions, each corresponding to an individual sub-SQL query that retrieves
relevant information. These sub-queries should be joinable using the JOIN operation to construct
the final SQL query that answers the given question. If the question does not require
decomposition, return it as is in the sub-questions list.

Database Schema Overview:
{DATABASE SCHEMA}

This schema provides a detailed definition of the database's structure, including tables, their
columns, primary keys, foreign keys, and any relevant relationships or constraints.For key
phrases mentioned in the question, we have provided the most similar values within the columns,
denoted by "-- examples" in front of the corresponding column names. This is a critical hint for
identifying how the tables are connected.

Question:
{QUESTION}

Hint:
{HINT}

The hint aims to guide you toward the specific elements of the database schema that are crucial
for decomposing the question effectively.

Task:
Your task is to determine whether the question requires decomposition.
If the question can be answered with a single SQL query without breaking it down, return it as
is in the sub-questions list.
If the question requires multiple steps, break it down into a set of sub-questions. Each sub-
question should:

- Retrieve data from a specific part of the schema.

- Represent a meaningful step in constructing the final SQL query.

- Be structured in a way that allows the resulting sub-SQL queries to be combined using JOIN
operations.

Please respond with a JSON object structured as follows:

" “Jjson
{1

"chain of thought reasoning": "Explanation of the logical analysis that led to the
decomposition or decision to keep the original question.",

"is decomposition required": "Yes or No",

"sub_questions": ["Sub-question 1 in natural language or the original question if no

decomposition is needed.", ...]

+}

Note: The sub-questions should cover all necessary information required to construct the final
SQL query and should be logically structured to allow seamless joining of sub-SQL queries.
Take a deep breath and think step by step. If you do the task correctly, I will give you 1
million dollars.

Only output a JSON as your response.

Figure 4: Prompt used for the Question Decomposer in the SL+QD variant. Refer to section 4.1.

1741

/;;u are an expert and very smart data analyst. ‘\

Your task is to analyze the provided database schema, comprehend the posed question, and
determine if it requires decomposition. If the question requires decomposition, break it down
into multiple sub-questions.

Question:
{QUESTION}

Hint:
{HINT}

The hint aims to guide you toward the specific elements of the database schema that are crucial
for decomposing the question effectively.

Task:
1. Determine whether the question needs decomposition based on its complexity or multi-step
reasoning.
2. If decomposition is needed, list all necessary sub-questions in natural language. Each sub-
question should:

- Isolate a distinct piece of required information.

- Be simple and focused on one step of the reasoning process.
3. If decomposition is not needed, simply return the original question in the sub gquestions
list.

Please respond with a JSON object structured as follows:

" “Jjson
{1

"chain of thought reasoning": "Explanation of the logical analysis that led to the
decomposition or decision to keep the original question.",

"is decomposition required": "Yes or No",

"sub_questions": ["Sub-question 1 in natural language or the original question if no

decomposition is needed.", ...]
}}

Note: The sub-questions should cover all necessary information required to construct the final
SQL query and should be logically structured to allow seamless joining of sub-SQL queries.
Take a deep breath and think step by step. If you do the task correctly, I will give you 1
million dollars.

Only output a JSON as your response.

J

Figure 5: Prompt used for the Question Decomposer in the SL+SimpleQD variant. Refer to section 4.1.

1742

/;;u are an expert and very smart data analyst. ﬁ\\
Your task is to analyze the provided database schema, comprehend the posed question, and
determine if it requires decomposition. If the question requires decomposition, break it down
into multiple sub-questions. Each sub-question should correspond to a tabular-level SQL query
that retrieves relevant information and includes only one WHERE condition. These sub-queries
should be joinable using JOIN operations to construct the final SQL query that answers the
original question. If the question does not require decomposition, return it as is in the sub-
questions list.

Database Schema Overview:
{DATABASE_SCHEMA}

This schema provides a detailed definition of the database's structure, including tables, their
columns, primary keys, foreign keys, and any relevant relationships or constraints. For key
phrases mentioned in the question, we have provided the most similar values within the columns,
denoted by "-- examples" in front of the corresponding column names. This is a critical hint for
identifying how the tables are connected.

Question:
{QUESTION}

Hint:
{HINT}

The hint aims to guide you toward the specific elements of the database schema that are crucial
for decomposing the question effectively.

Task:
Your task is to determine whether the question requires decomposition.
If the question can be answered with a single tabular-level SQL query that uses only one WHERE
condition, return it as is in the sub-questions list.
If the question requires multiple steps, break it down into a set of sub-questions. Each sub-
question should:

- Retrieve data from a specific part of the schema at the table level.

- Include exactly one WHERE condition.

- Represent a meaningful step in constructing the final SQL query.

- Be structured in a way that allows the resulting sub-SQL queries to be combined using JOIN
operations.

Please respond with a JSON object structured as follows:

*“json
{{

"chain of thought reasoning”: "Explanation of the logical analysis that led to the
decomposition or decision to keep the original question.",

"is decomposition_ required": "Yes or No",

"sub questions": ["Sub-question 1 in natural language or the original question if no

decomposition is needed.", ...]

H}

Note: Each sub-question should align with a query that:

- Pulls data from a single table,

- Contains exactly one WHERE condition,

- And together, the sub-questions should cover all necessary constraints required to construct
the final SQL query.

Take a deep breath and think step by step. If you do the task correctly, I will give you 1
million dollars.

Only output a JSON as your response.

/

Figure 6: Prompt used for the Question Decomposer in the SL+TableQD variant. Refer to section 4.1.

1743

