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Abstract

Contact centers process millions of customer
conversations daily, requiring Quality Assur-
ance (QA) teams to evaluate agent performance
against compliance and service standards, of-
ten by answering agent evaluation question-
naires. Traditional manual QA cannot scale to
growing volumes, while fully automated eval-
uation using large language models presents a
cost-performance trade-off. High-performing
models excel at detecting rare but business crit-
ical Answers of Interest (Aol) but incur pro-
hibitive costs, while smaller fine-tuned models
are economical but suffer from poor Aol pre-
cision, generating high false positive rates that
erode agent trust and waste QA resources. We
introduce STREAQ, a two tier selective rout-
ing framework to intelligently route queries
between cost efficient and high-capability mod-
els. Based on benchmarking on a propri-
etary dataset across six large LMs, STREAQ
achieves substantial cost reduction while pre-
serving critical performance. Using Nova-Pro,
STREAQ reduces daily costs by 48% from
$34,162 to $17,842 while retaining 88.9% of
full model Aol precision. Our ablation studies
reveal that flawed reasoning from smaller mod-
els can degrade performance, emphasizing the
importance of carefully designing routing sys-
tems, making enterprise scale automated QA
both practical and economically viable.

1 Introduction

Contact centers are vital to customer experience,
handling millions of conversations that influence
satisfaction, retention, and compliance. Within
this ecosystem, Quality Assurance (QA) teams
play a crucial role in evaluating these conversa-
tions to ensure agents follow protocols, meet per-
formance standards, and uphold regulatory require-
ments. While manual QA is effective, it struggles

to scale across high volumes. The convergence
of contact center management and artificial intelli-
gence marks a transformative shift in how organiza-
tions manage customer experience and operational
quality (Roy et al., 2016). Large Language Mod-
els (LMs) such as GPT-4 (OpenAl, 2023), Claude
(Anthropic, 2023), and Gemini (Anil et al., 2023)
offer a compelling solution by automating QA as-
sessment with greater consistency and depth, but
their enterprise-scale deployment introduces new
technical and operational challenges.

Skewed QA Outcomes: Contact center QA
teams typically rely on standardized questionnaire,
that must be answered by analyzing conversa-
tion and assessing effectiveness of the agent’s in-
teraction with the customer (Ingle et al., 2024).
These conversations often yield imbalanced QA
outcomes, where some responses are overwhelm-
ingly more frequent than others. For example, the
question “Did the agent greet the customer prop-
erly?” usually receives a yes in well-trained centers,
as greetings are routine. Instances where agents fail
to greet, referred to as Answer of Interest (Aol), are
rare but critical, resulting in a minority of negative
labels must be accurately detected. This imbalance
reflects an operational reality: routine behaviors
are consistently performed well, while key failures
are infrequent but carry high business impact. For
example, incorrectly flagging an agent for “missed
customer greeting” (a false positive) triggers unnec-
essary compliance reviews, coaching, and erosion
of agent trust. In such cases, a high Aol precision
is more valuable than high overall Macro F1.

The Cost-Scale Dilemma: While large LMs
such as Claude-3.5-Sonnet have demonstrated
strong performance QA assessment task, their de-
ployment at enterprise scale remains economically
prohibitive (Ingle et al., 2024). Assuming a contact
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center processes 1.5SM conversations per day, each
requiring evaluation on 10-20 QA questions, this
translates to a daily cost of approximately $160,500
(refer to Appendix A ), rendering full-scale adop-
tion of large LMs infeasible for most organizations.
Ingle et al., 2024 has explored plan-guided fine-
tuning as a promising strategy to narrow the per-
formance gap between large and smaller models,
improving cost-effectiveness. However, our empir-
ical analysis reveals that performance on the Aol
remains significantly lower in such setups.

We hypothesize that this performance degrada-
tion arises from the inherently skewed nature of
contact center data. While methods like SMOTE
(Chawla et al., 2002), SMOTEBoost (Chawla et al.,
2003), and Balanced Random Forest (Leevy et al.,
2018) improve minority class performance in tra-
ditional classification tasks, they are less effective
here. Such techniques assume a consistent task be-
tween training and inference, where a model learns
to map input features to fixed output categories.
In contrast, contact center QA requires a model
to learn a generalizable reasoning process rather
than a fixed classification mapping, as the specific
QA questions encountered at inference time may
be entirely different. The core challenge is to teach
the model to systematically identify evidences, syn-
thesize them, and arrive at logical conclusions for
unseen questions. Simply balancing the yes/no la-
bel distribution does not address this fundamental
reasoning deficit, which is the primary cause of
failure in smaller models (Ingle et al., 2024).

Inspired by prior work on multi-tier model rout-
ing and selective computation in NLP (Sordoni
et al., 2023; Pan et al., 2023; Ding et al., 2024;
Chen et al., 2023), we present an empirical study
investigating the feasibility and effectiveness of a
two-step evaluation framework for contact center
QA. Specifically, we explore if selectively routing
predictions from lightweight LMs to more capable
LMs at inference time can enable a cost-effective
yet reliable QA pipeline. Specifically, our contribu-
tions are as follows:

1. We propose a ROBERTa-based binary classi-
fier that learns to identify low-confidence pre-
dictions from a smaller model and selectively
routes them to a more capable LM

2. We provide a detailed cost-benefit analysis
comparing selective routing with full-model
inference, demonstrating the practical viabil-
ity of our approach at enterprise scale

3. We establish how reasoning traces from
smaller LMs can negatively impact larger
LMs in a two-tier setup, and show that omit-
ting such context improves both performance
and efficiency, thus reinforcing the importance
of careful design choice for routing system

While multi-tier inference has been widely ex-
plored as a paradigm, to the best of our knowledge,
this is the first study to apply selective routing to
contact center QA with a specific focus on improv-
ing Aol performance, proposing an effective rout-
ing design tailored for this setting.

2 Benchmarking Large LMs on Aol

This section aims to evaluate out-of-the-box
(OOTB) performance of a suite of large LMs on the
contact center QA assessment task, with a specific
focus on improving performance on the Answer of
Interest (Aol). The methodology is detailed below.

2.1 Data Curation

To evaluate OOTB performance of large LMs on
contact center QA tasks, we curate a specialized
dataset, denoted as D¢ 4, consisting of binary QA
questions to be answered with either yes or no
based on agent-customer conversations.

We begin by selecting 10 representative QA
questions from a proprietary contact center cor-
pus, which span a diverse range of evaluation cat-
egories, including customer experience, compli-
ance, resolution competence, process adherence,
and professionalism. For each question, we sam-
ple English dyadic conversations from phone and
chat channels, relevant to the evaluation criteria, re-
sulting in an initial dataset of approximately 3,000
question—conversation pairs. We further employ
sampling heuristics to ensure a meaningful distri-
bution of both yes and no responses per question
(see Appendix B), thereby supporting reliable per-
formance estimates, particularly for the minority
Aol.

To obtain high-quality ground truth, each ques-
tion—conversation pair is independently annotated
by five domain experts with extensive experience
in contact center QA. Annotators are guided by a
detailed annotation protocol that encourages struc-
tured reasoning: identifying relevant conversa-
tional evidence, synthesizing it, and determining
the final answer, similar to the methodology out-
lined by Ingle et al., 2024. This process emulates
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the judgmental reasoning followed by professional
QA analysts and ensures annotation traceability.

To ensure reliability of Dg4, we retain only
those samples in which at least three annotators
agreed on the final answer, producing a refined
dataset of 1,879 question—conversation pairs (ap-
proximately 62% of the initial set), each labeled
with the majority agreed answer and its supporting
rationale!.

2.2 Experimental Setup

We evaluate the OOTB performance of six large
LMs, spanning three major model families, on the
QA dataset Dg 4. This evaluation suite is denoted
as: M = {M; | i € T} where:

nova-pro,
nova-premier, o3-mini,
gpt-40, claude-3.5-haiku,
claude-4-sonnet

Each LM £ € M is prompted with
a question-plan-conversation triplet (Q,P,C),
where (Q,C) € Dg4 and P is an evaluation plan,
obtained from annotators in Section 2.1 detailing
how they assessed agent behavior in response to
the question while annotating D¢ 4. The model is
instructed to assume the role of a contact center
QA specialist (Kong et al., 2024). The model is
tasked with performing conversation-guided chain-
of-thought (CoT) reasoning (Wei et al., 2022), in-
volving three sequential steps: (1) identifying rele-
vant evidences from C that pertain to Q, (2) synthe-
sizing these evidences into a coherent reasoning,
and (3) concluding a final answer A € {yes,no}
as proposed by Ingle et al., 2024.

While Ingle et al. (2024) leverages the evalua-
tion plan to distill reasoning from a large LM into
a smaller one during training, we hypothesize that
even large models can benefit from being explic-
itly guided by the plan at inference time. This
allows their reasoning to align more closely with
business-specific QA requirements, rather than re-
lying solely on general world knowledge. Accord-
ingly, we slightly adapt the prompting methodology
for larger LMs by integrating the plan into the in-
put, encouraging them to ground their responses
per QA expectations.

Additionally, we also evaluate an in-house model
fine-tuned on contact center data based on the

'We cannot release the dataset due to proprietary reasons.

paradigm described in Ingle et al., 2024 on D¢ 4.
This CoT-based prompting approach mirrors the
human annotation process (Section 2.1), enabling
a fair comparison between model-generated and
human-annotated responses.

2.3 Evaluation Strategy

We hypothesize that the proposed approach in Sec-
tion 2.2 evaluates an LM’s ability to understand
contact center conversations and autonomously rea-
son through them to answer the question Q in D 4
based on supporting evidence. To align with real-
world QA use cases, where each question may have
a different Answer of Interest (Aol) and distinct
label skew, we evaluate performance independently
per question by computing Precision, Recall, and
F1 scores on the minority class, which is often
the Answer of Interest (Aol), to assess model per-
formance. This per-question evaluation emulates
the practical requirement that models perform reli-
ably across a diverse set of QA criteria, each with
varying operational importance and statistical prop-
erties. We emphasize Aol metrics, as they capture
performance on the business-critical minority class
prevalent in skewed QA distributions. To ensure
holistic assessment, we also report Macro F1 to
account for potential degradation in performance
on the majority class.

In addition to predictive ability, we report the
computation cost of each model, estimated based
on the total number of tokens processed and gener-
ated over the dataset Dg 4 and projected to 1.5M
daily conversations (assumption). For Nova and
Claude models, we use token pricing published
by Amazon Bedrock; for OpenAl models, we refer
to pricing from Azure OpenAl as of July 04, 2025.
This allows us to quantify the financial implications
of model selection in enterprise-scale deployments.

2.4 Utility at Scale

As shown in Table 1, while the in-house model
offers an extremely economical inference cost of
$3,070 per 1.5M conversations, it exhibits limited
effectiveness, particularly on Aol precision, which
is a key business requirement in QA scenarios. Par-
ticularly, an Aol precision of just 54.2% indicates
a high rate of false positives that can lead to un-
necessary coaching, agent distrust, and wasted QA
bandwidth. This, coupled with an overall Macro
F1 of 67.0% and Aol F1 of 56. 1%, suggests that
it lacks the robustness of reasoning required to ac-
curately identify and support high confidence rare
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case detections.

In contrast, large LMs in M demonstrate consis-
tently superior performance, particularly in terms
of Aol precision. While Claude-4-Sonnet achieves
the highest Aol precision at 84.6%, other models
such as Claude-3.5-Haiku (82.4%), Nova-Premier
(82.3%), and 03-Mini (80.5) perform lower. Cru-
cially, each of these models still represents a sub-
stantial improvement over the in-house model. This
indicates that large LMs offer a significant boost in
precision, enhancing the reliability of QA assess-
ment in high-stakes enterprise settings.

However, this precision gain on Aol comes at
a significant economic cost. The most accurate
model, Claude-4-Sonnet, incurs a cost of $204,956
per 1.5M conversations, nearly 70x higher than the
in-house baseline. Even relatively lower-cost mod-
els like Nova-Pro ($34,162) or Claude-3.5-Haiku
($43,059) remain an order of magnitude more ex-
pensive. Additionally, we observe that marginal im-
provements in Aol precision often result in steep in-
creases in cost, making direct deployment of these
models prohibitively expensive at enterprise scale.

This stark trade-off between performance and
economic feasibility motivates our exploration of
selective routing, with a special focus on attaining
high precision on Aol in a cost-efficient manner.

3 STREAQ: A Two-Tier Routing
Framework

We propose a two-tier evaluation framework that
optimizes cost-performance trade-offs through in-
telligent query routing. Specifically, we implement
a system where computationally expensive LMs
are selectively utilized only when necessary.

3.1 Problem Formulation

Let M, denote a cost-efficient small LM and M;
denote a more capable, large LM with superior rea-
soning capabilities but higher computational cost.
Given a QA assessment input instance I = (g, p, ¢),
where ¢ is the evaluation question, p is the corre-
sponding plan, and c is the conversation transcript,
we follow the methodology proposed in Ingle et al.
(2024). Each instance is first processed by M to
produce a textual response g5 which includes evi-
dence, synthesis, and a binary answer (either yes
or no). A routing function R(I, Ms(I)) — {0,1}
then determines whether to accept the prediction
from M, (R = 0) or escalate to M; (R = 1). The
final system output is defined as:

if R(I, M(I)) =0
if R(I, My(I)) =1
(1

) (D),
Grinar (1) = {Ml(], M(I)),

The total cost of processing n instances is:

n

Ciow = Y |C1) + R(L, M(1) - €] @)

=1

where Céi) and Cl(i) denote the costs of process-
ing instance I; with Mg and M; respectively. We
hypothesize that an intelligent routing strategy R
can substantially reduce Cioy While preserving per-
formance comparable to full inference using M; on
all instances.

3.2 Experimental Setup

To evaluate the effectiveness of the proposed ap-
proach in Section 3.1, we fix My = M nouses
the most cost-efficient model available, and vary
M; € M, where M is a set of larger, more capa-
ble LMs as discussed in Section 2.2. We adopt an
adversarial routing strategy R, employing a fine-
tuned RoBERTa-based binary classifier to make
informed routing decisions. The routing function is
defined as R(I, Ms(I)) = ®(concat(l, M(I))),
where ® denotes a learned binary classifier that
takes as input the concatenation of the original in-
stance I and the small LM’s output M(I).

Our choice of routing mechanism is inspired by
prior work on adversarial routing strategies (Sor-
doni et al., 2023; Chen et al., 2023), which demon-
strate significant gains in classification accuracy
through learned decision boundaries. We further
analyze the impact of different routing functions
and observe trends consistent with those reported in
(Pan et al., 2023) and (Ding et al., 2024) While rout-
ing function design plays a critical role in overall
system performance, a comprehensive investiga-
tion is beyond the scope of this paper. For all sub-
sequent experiments, we use the best-performing
routing configuration identified through prelimi-
nary evaluations. A detailed comparison of routing
strategies is provided in Appendix C.

In our implementation, router R is instantiated
as a fine-tuned RoOBERTa-based binary classifier.
It is trained on a curated dataset of historical QA
assessment instances, where ground truth routing
labels are assigned based on alignment between
the small model prediction M, and the gold stan-
dard annotation. Specifically, an instance is labeled

1714



Group \ Model Configuration \ Aol Precision (%) Aol Recall (%) AolF1(%) MacroF1 (%) Daily Cost
Baseline M, | Min-house \ 54.2% 64.1% 56.1% 67.0% $3070
nova-pro (M;) 79.0% 77.3% 73.9% 82.0% $34,162

nova-premier (M;) 82.3% 78.0% 78.8% 85.6% $114,122

Full Inference 03-mini (M;) 80.5% 76.8% 72.8% 81.4% $90,097
(M) gpt-4o (M;) 79.9% 84.2% 80.1% 85.8% $135,779
claude-3.5-haiku (M;) 72.4% 83.0% 75.5% 82.0% $43,059

claude-4-sonnet (M) 84.6 % 83.5% 81.7% 87.0% $204,956

M, = nova-pro (M;) 70.2% 61.2% 63.7% 74.5% $17,842

Two-Tier Inference M R, nova-premier (M) 74.3% 71.3% 71.3% 79.4% $60,950
(M z, M) M, 2 03-mini (M) 73.6% 70.6% 69.7% 78.7% $40,354
(M reasoning is passed to M) | pr Ry ot 40 (M) 73.5% 72.6% 70.1% 76.2% $67,775
M, % claude-3.5-haiku (M) 65.9% 61.2% 61.3% 72.4% $20,476

My R, claude-4-sonnet (M) 76.0% 74.2% 72.3% 80.0% $87,533

Table 1: Performance comparison across Full Inference (M s and M;) and Two-Tier Inference (M 11% M) inference
configurations. Blue indicates the best within each group, bold highlights the overall best. Cost is calculated as

daily token-based API cost (refer to Section A).

Setup | Inference Paradigm | Scratchpad | M, Context | AolP (%) AoIR (%) AolF1(%) MacroF1 (%) Cost
PO M 54.20% 64.10% 56.10% 67.00% $3,070
PI Mis 7900%  77.30%  73.90% 82.00% $34.162
P2 M, 5 My, v v 7020%  61.20% 63.70% 74.50% $17,842
P3 M, B M., v 69.30% 60.40% 62.30% 73.10% $16,947
P4 M, B My, 7620%  71.90% 70.70% 79.30% $17,842

Table 2: Ablation study: Performance of different inference paradigms across evaluation tasks. Best results for each
column are highlighted in bold. Checkmarks (v') indicate enabled features, empty cells indicate disabled features.

with a routing decision of 0 if M(I) matches the
ground truth (i.e., accepted), and 1 otherwise (i.e.,
routed). Full training details, including training
data collection strategy, hyperparameters and fine-
tuning configurations, are provided in Appendix D.

3.3 Evaluation Strategy

We evaluate the proposed two-tier inference frame-
work on Dg4 following the evaluation strategy
outlined in Section 2.3. The results across all con-
figurations are summarized in Table 1.

4 Results and Discussion

4.1 Cost-Performance Trade-Off

As shown in Table 1, Claude-4-Sonnet continues
to achieve the highest Aol Precision within the
proposed two-tier framework, consistent with our
earlier observations in Section 2.4. While full in-
ference using Claude-4-Sonnet remains the top-
performing configuration across all baselines, it
incurs a prohibitive daily cost exceeding $200,000,
rendering it impractical for most enterprise-scale
deployments. In contrast, our proposed two-tier
approach strikes a favorable balance, achieving
76% Aol Precision—preserving 89.8% of the per-
formance of full inference with Claude-4-Sonnet
while reducing daily inference cost by approxi-

mately 58%. This also translates to approximately
40% relative gain in Aol Precision compared to
using M, alone.

Interestingly, we find that full inference with
Nova-Pro not only outperforms two-tier inference
with Claude-4-Sonnet across all metrics but also
reduces cost by 61%, making it a more practical al-
ternative for enterprise-scale QA automation. This
suggests that Claude-4-Sonnet, despite its accu-
racy, may not be suitable for cost-constrained de-
ployments. On the other hand, simply resorting to
full inference with Nova-Pro provides high perfor-
mance on Aol while simultaneously maintaining
cost efficiency. However, for organizations oper-
ating under tighter budget constraints, a two-tier
inference setup using Nova-Pro still emerges as a
strong contender—offering a further approximately
50% reduction in cost (to $17,842 per day) while
retaining 88.9% of Aol Precision compared to full
inference with Nova-Pro, and delivering a 29.5%
relative gain over the M baseline.

A critical consideration is whether the observed
drop in Aol precision (e.g., 8.6 percentage points
for the two-tier Claude-4-Sonnet) is acceptable in
practice. The answer depends on the operational
context. For highly critical compliance tasks where
errors can lead to significant regulatory or legal
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penalties, the best-performing model may be non-
negotiable, regardless of cost. However, for many
standard QA use-cases, particularly those operat-
ing with a human-in-the-loop to validate flagged
interactions, an 8.6% precision drop is a reasonable
trade-off for a 58% reduction in daily costs (a sav-
ing of over $117,000). This allows organizations
to reallocate substantial budget toward expanding
QA coverage or other quality initiatives.

4.2 Ablation Study

We conduct a comprehensive ablation study ex-
amining how different inference paradigms affect
performance on Aol metrics. As established in Sec-
tion 4.1, the Nova-Pro model emerges as a strong
candidate for two-tier routing due to its favorable
balance between cost-efficiency and performance.
Accordingly, we select Nova-Pro as the focus of
this study. However, our ablation methodology
is model-agnostic and can be readily extended to
other models in the set M.

Table 2 presents a comparative analysis in four
key inference setups. As discussed in Section 2.4,
full inference using M; (setup P1), achieves the
highest performance across all metrics and serves
as an upper bound for what is achievable by selec-
tive routing strategies. The prompts used for these
settings can be found in the Appendix section E.1

In Setup P2, we hypothesize that prompting
M to independently generate a detailed reasoning
trace (scratchpad) before contrasting it with M’s
output could allow M; to both identify weaknesses
in My’s reasoning and reflect more deeply upon its
reasoning trace using evidences surfaced by M;.
In line with our expectation, removing the scratch-
pad component from the reasoning generated by
M (setup P3) in turn leads to a noticeable drop
in performance across all metrics. This is likely
due to the absence of M;’s independent reasoning
process, which diminishes its ability to critically
assess and revise conclusions.

Surprisingly, Setup P4, where both the scratch-
pad and M;’s reasoning are omitted, results in a
substantial improvement in Aol metrics. This indi-
cates that flawed reasoning from M, can negatively
bias M;’s inference trajectory, even when M, is a
significantly more capable model. From the anal-
ysis of this behavior, an example is chosen from
a consistent set of failures from P2 and P3, high-
lighting the possible cause behind this behavior
in Section E.3. These findings reinforce the idea
that, in two-tier routing systems, including reason-

ing traces from low-precision models may degrade
overall evaluation quality. Furthermore, omitting
this context not only improves performance but
also reduces token consumption, thus offering ad-
ditional cost benefits. Therefore, this becomes our
ideal STREAQ Routing R set-up.

Our ablation studies reveal that careful model
design, particularly avoiding the propagation of
flawed reasoning from weaker models, can further
enhance performance. Overall, our findings under-
score the potential of selective routing as a scalable
and cost-efficient strategy for high-stakes QA as-
sessment in real-world deployments.

4.3 Model Sensitivity and Scaling Laws

To further analyze model sensitivity and the scal-
ing relationship between cost and performance, we
calculated the marginal cost required to achieve
incremental gains in Macro F1. As shown in Table
3, there is a clear trend of diminishing returns for
both full and two-tier inference configurations.

In the "Full Inference" setup, upgrading from
Nova-Pro to Nova-Premier costs approximately
$22,211 for each percentage point of F1 gain. This
cost escalates dramatically for the top-performing
models; the final step from gpt-4o to claude-4-
sonnet costs over $57,000 per F1 point. Our
STREAQ framework significantly lowers these
marginal costs in the lower and mid-tiers, demon-
strating superior cost-effectiveness. For instance,
the upgrade from nova-lite to nova-pro costs only
$3,957 per F1 point in the two-tier setup, mak-
ing performance gains much more accessible for
budget-constrained operations.

5 Prior Work

Traditional contact center QA relies on manual,
rule-based evaluations using scorecards, where an-
alysts assess a sample of conversations for com-
pliance, empathy, and conversation flow. This ap-
proach is labor-intensive, inconsistent, and does not
scale to high-volume environments (Lee, 2023).
Domain-specific QA requirements in finance,
telecom, and healthcare include financial disclo-
sures (Altinok, 2018), HIPAA compliance (Ne-
upane et al., 2025; Rahman et al., 2024), and
technical troubleshooting accuracy (Kaplan, 2020).
These tasks often demand customized lexicons,
domain-tuned entity recognition, and sentiment
analysis aligned with regulatory standards. Such
specialization leads to severe class imbalance
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Configuration | Model Upgrade (M;) | Add. Daily Cost Macro F1 Gain  Marginal Cost per 1% F1
nova-pro — nova-premier +$79,960 +3.6% ~$22,211
Full Inference gpt-40 — claude-4-sonnet +$69,177 +1.2% ~$57,648
nova-premier — claude-4-sonnet +$90,834 +1.4% ~$64,881
nova-lite — nova-pro +$12,662 +3.2% ~$3,957
Two-Tier claude-3.5-haiku — gpt-4o +$38,137 +9.0% ~$4,237
nova-pro — nova-premier +$31,743 +1.6% ~$19,839
nova-premier — claude-4-sonnet +$34,179 +0.4% ~$85,448

Table 3: Analysis of marginal cost per 1% Macro F1 gain for model upgrades. The table highlights the diminishing
returns as models become more powerful, a trend STREAQ helps mitigate.

across QA labels. Henning et al. (2023) catego-
rizes deep learning approaches into sampling, loss
design, staged learning, and model-level strategies.
Sampling methods like ROS, RUS, adaptive, and
class-aware sampling (Carvalho et al., 2025) of-
fer trade-offs between performance and the risk of
overfitting or discarding informative examples.

Early model cascading aimed to balance accu-
racy and computational cost by invoking complex
models only when simpler ones failed. While tradi-
tional cascades were static, recent work has shifted
toward dynamic inference. Behera et al. (2025)
propose a deployment-aware taxonomy to guide
model selection under cost and latency constraints.
Wang et al. (2025) introduce COSMOS, a system
for predictable and cost-effective LLM adaptation
that anticipates deployment costs while maintain-
ing target performance.

Bai et al., 2024 provide a systematic survey of
resource-efficient LLMs, highlighting strategies
such as quantization, pruning, knowledge distil-
lation, and early exit mechanisms. Arefeen, 2024
explores cost-efficiency in vision Al pipelines, de-
tailing how query-aware optimization can be lever-
aged for LLM deployment in edge devices. These
findings extend to generative models, proposing dy-
namic batching and caching techniques to further
enhance performance.

6 Conclusion

We present STREAQ, a two-tier selective routing
framework that balances cost and evaluation quality
for enterprise-scale contact center QA. Our experi-
ments show that STREAQ achieves up to 48% cost
reduction while preserving over 88% of full-model
Aol precision using Nova-Pro, making it a practi-
cal solution for large-scale deployments. Through
a RoBERTa-based routing classifier and detailed
cost-benefit analysis, we demonstrate the viability
of selective routing in high-volume QA workflows.

Our ablation studies further validate that flawed
reasoning from smaller models can degrade per-
formance, highlighting the importance of routing
design. Together, these findings confirm STREAQ
as an effective and scalable approach for economi-
cally viable, high-precision automated QA.
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Limitations

This work presents several important limitations
that should be considered when interpreting our
results and applying our methodology in practice.

1. Dataset and Domain Constraints: Our eval-
uation is conducted on a proprietary contact
center dataset that cannot be released publicly,
limiting reproducibility and independent val-
idation. Additionally, our dataset is limited
to English-language conversations, predom-
inantly featuring American English speech
patterns, which constrains the generalizability
of our findings to multilingual or multicultural
contact center environments.

2. Model and Architecture Limitations: The
evaluation focuses on six specific LLM fam-
ilies (Nova, GPT, Claude), and performance
characteristics may vary significantly with
newer model releases or different model archi-
tectures.

3. Evaluation Scope and Metrics: Our study
is limited to binary QA tasks with yes/no re-
sponses, which may not reflect the complexity
of contact center evaluations that involve mul-
tifaceted assessments. Additionally, our cost
analysis is based on current API pricing mod-
els, which are subject to change and may not
reflect the true operational costs of enterprise
deployments.

4. Annotation and Ground Truth Limitations:
Our ground truth labels are based on major-
ity agreement among five expert annotators,
achieving 62% agreement rates. This rela-
tively low agreement suggests inherent am-
biguity in some QA tasks, which may limit
the reliability of our evaluation benchmark.
Furthermore, the static nature of our annota-
tions does not account for evolving business
requirements or changing evaluation criteria
over time.

5. Generalizability Concerns: Our findings are
specific to the contact center QA domain and
may not generalize to other text classification
or routing tasks. The effectiveness of our rout-
ing strategy is likely dependent on the specific
characteristics of contact center conversations,
including their length, structure, and the types

of QA questions typically asked. Organiza-
tions with different conversation patterns, eval-
uation criteria, or operational constraints may
experience different cost-performance trade-
offs.

Ethical Considerations

The integration of artificial intelligence in em-
ployee performance evaluation demands adherence
to established ethical principles and proactive risk
management. We present our ethical framework
organized around three core pillars: stakeholder
protection, system integrity, and organizational re-
sponsibility.

Stakeholder Protection and Rights
1. Data Rights and Privacy Protection:

* All voice recordings undergo anonymiza-
tion procedures, removing personally
identifiable information before compu-
tational processing.

* Data retention policies must align with
regulatory requirements and organiza-
tional needs, with clear deletion time-
lines.

* Employees should have visibility into
what data is collected, how it is used,
and the duration of storage.

2. Equitable Treatment Across Demograph-
ics:

* The system’s current calibration for
American English speech patterns lim-
its its applicability to diverse linguistic
backgrounds.

* Deployment should be restricted to con-
texts where the training data adequately
represents the target population.

* Future adaptations must incorporate di-
verse speech patterns and undergo rigor-
ous bias testing before implementation.

System Integrity and Reliability

1. Technical Robustness and Validation:

* Continuous monitoring protocols detect
performance degradation, unexpected be-
havioral changes, or systematic errors.

» Regular validation against human expert
evaluations ensures alignment with orga-
nizational quality standards.
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* Fallback mechanisms activate when sys- adaptation, and commitment to prioritizing hu-
tem confidence levels fall below accept- man welfare alongside operational efficiency.
able thresholds. Regular reassessment ensures our practices

2. Interpretability and Auditability: eyolve with tec?hnological capabilities and so-

cietal expectations.
 Evaluation criteria and scoring method-
ologies are documented and accessible

to relevant stakeholders. References

* The system prov.ldes. explanatlons for Marah Abdin, Jyoti Aneja, Hany Awadalla,
its assessments, highlighting key factors Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
that influenced scoring decisions. Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao,

* Audit trails maintain records of system Harkirat Behl, Alon Benhaim, Misha Bilenko, Jo-

.. . . han Bjorck, Sébastien Bubeck, Martin Cai, Qin
decisions, updates, and interventions for Cai, Vishrav Chaudhary, Dong Chen, Dongdong
accountability purposes. Chen, and 110 others. 2024. Phi-3 technical re-
port: A highly capable language model locally on

Organizational Responsibility and Governance your phone. Preprint, arXiv:2404.14219.

1. Leadership Accountability: Duygu Altinok. 2018. An ontology-based dia-
.. ) logue management system for banking and finance

* Management maintains ultimate respon- dialogue systems. Preprint, arXiv:1804.04838.
sibility for evaluation decisions and their Rohan Anil, Sebastian Borgeaud, Yonghui Wu,
consequences on employee welfare. Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,

* Clear escalation procedures exist for ad- Johan Schalkwyk, Andrew M. Dai, Anja Hauth,

. . ... Katie Millican, David Silver, Slav Petrov, Melvin

dressing system malfunctions, bias inci- Johnson, Ioannis Antonoglou, Julian Schrittwieser,

dents, or ethical concerns. Amelia Glaese, Jilin Chen, Emily Pitler, Timothy P.

. Regular ethical impact assessments eval_ Lillicrap, and 33 others. 2023 Gemini: A fam-

uate the system’s effects on workplace ily of highly capable multimodal models. CoRR,

lture and employee well-bein abs/2312.11805.

cu ploy & Anthropic. 2023. Model card: Claude 3 technical

report. [Online; accessed 18-July-2024].

2. Adaptive Governance Framework:
Md Adnan Arefeen. 2024. Cost-Efficient Vision

* A multidisciplinary ethics committee Al: Challenges and Solutions for Real-Time and
oversees system deployment, including Stored Video Analytics With Classical and Gen-
representatives from HR, legal, technical, érgll”;fb‘f‘;' Ph.D. thesis, University of Missouri-

umbia.
and employee advocacy groups. , G Bai, Z Chai, C Ling, S Wang, J Lu, and N Zhang.

* Periodic reviews assess the system’s 2024. Beyond efficiency: A systematic survey of
alignment with evolving ethical stan- resource-efficient large language models. arXiv
dards and regulatory requirements. preprint arXiv:2401.00625.

* Stakeholder feedback mechanisms en- AP Behera, JP Champati, and R Morabito. 2025.
Towards efficient multi-llm inference: Characteri-

sure continuous improvement and re- zation and analysis of Ilm routing and hierarchical
sponsiveness to emerging concerns. techniques. arXiv preprint arXiv:2506.06579.
Miguel Carvalho, Armando J. Pinho, and Susana
Brés. 2025. Resampling approaches to handle
class imbalance: a review from a data perspective.
Journal of Big Data, 12(1):71.
N. V. Chawla, K. W. Bowyer, L. O. Hall, and
W. P. Kegelmeyer. 2002. Smote: Synthetic minor-
* Change management processes support ity over-sampling technique. Journal of Artificial
employees in adapting to Al-augmented Intelligence Research, 16:321-357.
evaluation practices. Nitesh V. Chawla, Aleksandar Lazarevic,
Lawrence O. Hall, and Kevin W. Bowyer. 2003.
4. Implementation Commitment: This ethi- Smoteboost: Improving prediction of the minority
cal framework guides our approach to deploy- class in boosting. In Knowledge Discovery in

. . : Databases: PKDD 2003, pages 107-119, Berlin,
ing Al-powered evaluation systems responsi- Heidelberg. Springer Berlin Heidelberg.

bly. We recognize that ethical Al implementa- Lingjiao Chen, Matei Zaharia, and James Zou.
tion is an ongoing process requiring vigilance, 2023. Frugalgpt: How to use large language

1719

3. Organizational Impact Considerations:

* Training programs prepare supervisors
to effectively integrate Al insights with
their professional judgment.


https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/2404.14219
https://arxiv.org/abs/1804.04838
https://arxiv.org/abs/1804.04838
https://arxiv.org/abs/1804.04838
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://search.proquest.com/openview/a75b4c9a982f763a3cc10cb2e12b2a2a/1
https://search.proquest.com/openview/a75b4c9a982f763a3cc10cb2e12b2a2a/1
https://search.proquest.com/openview/a75b4c9a982f763a3cc10cb2e12b2a2a/1
https://search.proquest.com/openview/a75b4c9a982f763a3cc10cb2e12b2a2a/1
https://arxiv.org/abs/2401.00625
https://arxiv.org/abs/2401.00625
https://arxiv.org/abs/2506.06579
https://arxiv.org/abs/2506.06579
https://arxiv.org/abs/2506.06579
https://doi.org/10.1186/s40537-025-01119-4
https://doi.org/10.1186/s40537-025-01119-4
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953

models while reducing cost and improving per-
formance. Preprint, arXiv:2305.05176.

Dujian Ding, Ankur Mallick, Chi Wang, Robert
Sim, Subhabrata Mukherjee, Victor Ruhle, Laks
V. S. Lakshmanan, and Ahmed Hassan Awadal-
lah. 2024. Hybrid llm: Cost-efficient and quality-
aware query routing. Preprint, arXiv:2404.14618.
Sophie Henning, William Beluch, Alexander
Fraser, and Annemarie Friedrich. 2023. A sur-
vey of methods for addressing class imbalance in
deep-learning based natural language processing.
Preprint, arXiv:2210.04675.

Digvijay Ingle, Aashraya Sachdeva, Surya Prakash
Sahu, Mayank Sati, Cijo George, and Jithendra
Vepa. 2024. Probing the depths of language mod-
els’ contact-center knowledge for quality assur-
ance. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Pro-
cessing: EMNLP 2024 - Industry Track, Miami,
Florida, USA, November 12-16, 2024, pages 790-
804. Association for Computational Linguistics.
Micaela Kaplan. 2020. May i ask who’s call-
ing? named entity recognition on call center
transcripts for privacy law compliance. Preprint,
arXiv:2010.15598.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li,
Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang, and
Xiaohang Dong. 2024. Better zero-shot reasoning
with role-play prompting. In Proceedings of the
2024 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), NAACL 2024, Mexico City, Mexico, June
16-21, 2024, pages 4099-4113. Association for
Computational Linguistics.

Christopher M. Lee. 2023. Formulated quality as-
surance (qa) and customer satisfaction (csat) score-
cards indexing and inference research information
from the business process outsource (bpo) work-
place. SSRN Electronic Journal.

Joffrey L. Leevy, Taghi M. Khoshgoftaar,
Richard A. Bauder, and Naeem Seliya. 2018. A
survey on addressing high-class imbalance in big
data. Journal of Big Data, 5(1):42.

Ilya Loshchilov and Frank Hutter. 2019. De-
coupled weight decay regularization. Preprint,
arXiv:1711.05101.

Subash Neupane, Sudip Mittal, and Shahram
Rahimi. 2025. Towards a hipaa compliant
agentic ai system in healthcare.  Preprint,
arXiv:2504.17669.

OpenAl. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Liangming Pan, Michael Stephen Saxon,
Wenda Xu, Deepak Nathani, Xinyi Wang, and
William Yang Wang. 2023.  Automatically
correcting large language models: Surveying the
landscape of diverse self-correction strategies.
ArXiv, abs/2308.03188.

Md Abdur Rahman, Md Abdul Barek, ABM Kam-
rul Islam Riad, Md Mostafizur Rahman, Md Bajlur
Rashid, Smita Ambedkar, Md Raihan Miaa, Fan

1720

Wau, Alfredo Cuzzocrea, and Sheikh Igbal Ahamed.
2024. Embedding with large language models for
classification of hipaa safeguard compliance rules.
Preprint, arXiv:2410.20664.

Shourya Roy, Ragunathan Mariappan, Sandipan
Dandapat, Saurabh Srivastava, Sainyam Galhotra,
and Balaji Peddamuthu. 2016. Qa': A system
for real-time holistic quality assurance for contact
center dialogues. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, Febru-
ary 12-17, 2016, Phoenix, Arizona, USA, pages
3768-3775. AAAI Press.

Alessandro Sordoni, Xingdi Yuan, Marc-
Alexandre Co6té, Matheus Pereira, Adam Trischler,
Ziang Xiao, Arian Hosseini, Friederike Niedtner,
and Nicolas Le Roux. 2023. Joint prompt
optimization of stacked llms using variational
inference. Preprint, arXiv:2306.12509.

J Wang, A Albarghouthi, and F Sala. 2025. COS-
MOS: Predictable and cost-effective adaptation of
llms. arXiv preprint arXiv:2505.01449.

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. 2022. Chain-of-
thought prompting elicits reasoning in large lan-
guage models. In Advances in Neural Informa-
tion Processing Systems 35: Annual Conference
on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, and
3 others. 2020. Transformers: State-of-the-art nat-
ural language processing. In Proceedings of the
2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations,
pages 38—45, Online. Association for Computa-
tional Linguistics.

Mangzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon,
Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2021. Big bird:
Transformers for longer sequences. Preprint,
arXiv:2007.14062.


https://arxiv.org/abs/2305.05176
https://arxiv.org/abs/2305.05176
https://arxiv.org/abs/2305.05176
https://arxiv.org/abs/2404.14618
https://arxiv.org/abs/2404.14618
https://arxiv.org/abs/2210.04675
https://arxiv.org/abs/2210.04675
https://arxiv.org/abs/2210.04675
https://doi.org/10.18653/V1/2024.EMNLP-INDUSTRY.60
https://doi.org/10.18653/V1/2024.EMNLP-INDUSTRY.60
https://doi.org/10.18653/V1/2024.EMNLP-INDUSTRY.60
https://arxiv.org/abs/2010.15598
https://arxiv.org/abs/2010.15598
https://arxiv.org/abs/2010.15598
https://doi.org/10.18653/V1/2024.NAACL-LONG.228
https://doi.org/10.18653/V1/2024.NAACL-LONG.228
https://doi.org/10.2139/ssrn.4854813
https://doi.org/10.2139/ssrn.4854813
https://doi.org/10.2139/ssrn.4854813
https://doi.org/10.2139/ssrn.4854813
https://doi.org/10.2139/ssrn.4854813
https://doi.org/10.1186/s40537-018-0151-6
https://doi.org/10.1186/s40537-018-0151-6
https://doi.org/10.1186/s40537-018-0151-6
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2504.17669
https://arxiv.org/abs/2504.17669
https://doi.org/10.48550/ARXIV.2303.08774
https://api.semanticscholar.org/CorpusID:260682695
https://api.semanticscholar.org/CorpusID:260682695
https://api.semanticscholar.org/CorpusID:260682695
https://arxiv.org/abs/2410.20664
https://arxiv.org/abs/2410.20664
https://doi.org/10.1609/AAAI.V30I1.9887
https://doi.org/10.1609/AAAI.V30I1.9887
https://doi.org/10.1609/AAAI.V30I1.9887
https://arxiv.org/abs/2306.12509
https://arxiv.org/abs/2306.12509
https://arxiv.org/abs/2306.12509
https://arxiv.org/abs/2505.01449
https://arxiv.org/abs/2505.01449
https://arxiv.org/abs/2505.01449
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://arxiv.org/abs/2007.14062
https://arxiv.org/abs/2007.14062

A LLMs API Cost Estimation

We assume the system handles approximately
1.5 million user conversations per day. Each
conversation triggers a single API call to an
LLM, which is evaluated against an average
of 15 question-answering (QA) prompts. We
assume continuous speech without pauses or
turn-taking delays.

For the spoken content, we use a typical
speech rate of 140 words per minute, con-
sistent with natural conversational English.
Based on this rate, we estimate that a single
conversation corresponds to approximately
1,688 words of spoken text. Using a stan-
dard word-to-token conversion ratio (approxi-
mately 0.75 tokens per word), this translates
to 2,250 input tokens per conversation. The
output from the LLM, representing a concise
answer or response, is estimated to be about
256 tokens.

According to the Claude-3.5-Sonnet pricing
model, input tokens are billed at $3 per million
tokens, while output tokens are billed at $15
per million tokens.

Given these assumptions, the system would is-
sue approximately 22.5 million API calls per
day (1.5 million conversations x 15 prompts).
This results in a daily token usage of about
50.6 billion input tokens (2,250 x 22.5M) and
5.7 billion output tokens (256 x 22.5M). Ap-
plying the pricing structure, the estimated cost
amounts to $151,875 for input tokens and
$8,625 for output tokens, yielding a total pro-
jected daily LLM API cost of approximately
$160,500.

These estimates highlight the substantial cost
implications of large-scale LLM integration
and underscore the need for optimization
strategies in production environments.

B Data Distribution and Sampling
Heuristics

This section provides a detailed overview of
the 10 QA questions constituting our bench-
marking dataset D¢ 4, along with the distribu-
tion of their binary labels in Table 4. We also
shed light on the general sampling heuristics
employed in carefully sampling conversations
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for these questions to maintain a meaningful
distribution across both class labels.

B.1 Conversation Sampling Heuristics

We leverage a fundamental understanding of
contact center conversation transcripts, based
on turns and natural language phraseology,
to arrive at elementary heuristics for assign-
ing provisional answer labels to question-
conversation pairs. While these heuristics are
bound by their limitations and human annota-
tion is subsequently required for high-quality
ground truth labels, these do provide some di-
rection in ensuring a good sample size across
both class labels for each question. A few
such heuristics for different questions are out-
lined below:

* For the question - Was the customer’s
complete email address mentioned by the
agent prior to the customer saying it? -
we use a regex pattern to detect email
strings in the transcript, and if the first
such instance occurs in an agent turn, we
conclude the answer as yes. We also add
some customer name checks to mitigate
false positives, as the agent may occa-
sionally provide the email of one of their
support colleagues to assist the customer.

* A similar approach is used for the ques-
tion, Was the customer’s complete phone
number stated unprompted by the agent?,
where the first positive match of a phone
number regex string in an agent turn re-
sults in a yes. That said, accounting for
"complete" phone number patterns of ge-
ographically diverse locations becomes a
challenge, besides again, the agent shar-
ing a support phone number with the cus-
tomer.

* For the question - Did the agent reflect an
understanding of the customer’s query
or concern? - We employ a temporally
constrained combination of fuzzy and se-
mantic matching of the first few, say 2
or 3, customer and agent turns. This is
usually where the customer elaborates
on their issue, and the agent responds
with a paraphrased version or asks clar-
ifying questions around the same. A
strong match points to the answer yes,



Question

| No | Yes |

Total

Does the agent respond empathetically?
Did the agent reveal customer email unsolicitedly?

Did the agent follow proper unresponsiveness pro-

tocol?

Did the agent correctly identify customer’s need to
change mode of order?

Did the agent verify the customer’s identity?

Did the agent breach PII compliance by sharing
sensitive customer data?

Did the agent demonstrate active listening?

Did the agent address the customer with proper salu-

tations?

Did the agent share appropriate documentation with
the customer?

Did the agent take nessecary steps to lead the call
to conclusion?

108
62

273
180

48
52

92
48

99

169

130

69

99

40
37

141
45

57

69

238
123
342
279
88

233
93

156

Table 4: Label Distributions for Questions in Bench-

mark Dataset

although this heuristic can suffer if the
agent doesn’t verbalize their understand-
ing of the customer’s concern.

* For the question - Was the customer’s de-
livery location stated by the agent before
being mentioned by the customer?, we
use out-of-the-box Named Entity Recog-
nition (NER) to identify location type
entities in transcript turns, and if the first
occurrence is in an agent turn, we flag
this as yes.

C Routing Strategies

We evaluate three distinct routing strategies,
each targeting different aspects of the cost-
performance optimization problem:

C.1 Probabilistic Routing (Baseline)

The probabilistic routing strategy serves as our
baseline, implementing query-agnostic rout-
ing decisions through a Bernoulli distribution:

Rpyrob (1, Ms(I)) ~ Bernoulli(p)  (3)

where p € [0, 1] is a fixed routing probability.
This strategy provides a cost-controlled base-
line that is independent of query characteris-
tics or model outputs, enabling assessment of
whether intelligent routing mechanisms pro-
vide meaningful improvements over random
selection.

C.2 Deterministic Routing
(Business-Aware)

The deterministic routing strategy leverages
domain knowledge about business-critical per-
formance requirements by routing based on
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predicted answer classes and their business
importance:

1, ifys = Ytarget

Ryet (I, My (1)) =
e D) 0, otherwise

“)

where yreer Tepresents the answer of inter-
est determined by business requirements for
each question and s is the binary answer ex-
tracted from M;(I). The routing rule can be
business-defined based on specific operational
requirements and cost considerations. For this
study, we routed on the minority class label
(Ytarget = minority) since most QA use cases
require higher precision on the minority class
to achieve business-relevant outcomes such as
agent coaching.

C.3 Routing R (Learned)

The routing strategy employs a fine-tuned
RoBERTa-based binary classifier to make in-
telligent routing decisions:

Riearned (I, M4(1)) = ®(concat(I, Ms(I)))
(5

where ® represents a learned binary classifier
that takes as input the concatenation of the
original instance [ and the small model’s tex-
tual response M, (). In the current setup, we
implement ® as a fine-tuned RoBERTa-based
binary classifier. The classifier is fine-tuned
on a dataset of historical examples where
ground truth routing decisions are determined
by comparing M, and M, predictions, with
instances routed when M predictions differ
from M; ground truth labels. Detailed fine-
tuning procedures, hyperparameters, and train-
ing configurations for the RoBERTa-based
classifier are provided in Section D.

D Training Configurations for
RoBERTa-based binary classifier

This section details the experimental setup for
training the RoBERTa-based binary classifier,
including data preprocessing, model architec-
ture, hyperparameter selection, loss function,
and optimization strategies.



D.1 Data Preprocessing and Label
Binarization

The dataset comprises prompts and corre-
sponding responses from two large language
models (LLMs): an in-house LLM (fine-tuned
phi-3-mini (Abdin et al., 2024)) and a large
LLM M, (Zaheer et al., 2021). Each data
point is labeled based on the correctness of
these responses. For the routing task, we bina-
rize the labels to focus on whether a prompt
should be routed to the large LLM M;:

e Label 1: Cases where the large LLM
M is correct and the in-house LLM is
incorrect, or both are incorrect.

e Label 0: All other cases.

This binarization ensures the classifier is opti-
mized for the routing decision.

The training dataset was curated following the
methodology described in Section 2.1, scaled
to include a larger volume of diverse prompts
and their corresponding responses. The orig-
inal multiclass labels were binarized for the
routing task, where samples requiring routing
(labels -1 and 1) were assigned to class 1, and
all others to class 0. The dataset was parti-
tioned using stratified sampling with an 80-
10-10 split for training, validation, and testing,
respectively, ensuring balanced class distribu-
tion across all splits.

D.2 Model Architecture

We employ Google’s bigbird-roberta-base
model (Zaheer et al., 2021), a transformer-
based architecture capable of handling long
sequences efficiently. The model is fine-
tuned for binary sequence classification using
the HuggingFace Transformers library (Wolf
et al., 2020). The training hyperparameters
were selected based on empirical analysis of
the dataset and memory constraints. Key set-
tings include:

* Maximum Sequence Length: 4096 to-
kens (covers 100% of data with a safety
margin).

» Batch Size: 16 for training, 32 for evalu-
ation.

* Number of Epochs: 20.

* Learning Rate: 1 x 1075,
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* Gradient Accumulation Steps: 2 (ef-
fective batch size: 32).

* Warmup Steps: 150.
* Weight Decay: 0.01.

* Gradient Clipping: Maximum norm of
1.0.

* Mixed Precision Training: Enabled
(FP16).

* Gradient Checkpoints: Enabled for
memory efficiency.

* Evaluation and Checkpoints: Evalu-
ation and checkpoints occur every 40
steps, with a maximum of 5 checkpoints
retained.

Given the class imbalance in the routing
task, we employ a weighted cross-entropy
loss. Class weights are computed using the
compute_class_weight utility from scikit-
learn, ensuring that minority classes are not
neglected during training. The loss function
is implemented as:

N
L=—- Z wy, log py, (6)
i=1

Where:

* N is the number of samples,

* wy, is the weight for the true class y; of
sample 1,

* py, is the predicted probability for the
true class y; of sample .

The model was optimized using the AdamW
optimizer (Loshchilov and Hutter, 2019). A
linear learning rate schedule with warmup was
employed, where the learning rate was ini-
tially increased linearly for the first 150 steps
before decaying. To prevent overfitting and
improve generalization, weight decay regular-
ization with a coefficient of 0.01 was applied.
Gradient clipping was used to stabilize train-
ing, with the maximum gradient norm set to
1.0.

Mixed precision training (FP16) and gradient
checkpointing were enabled to reduce mem-
ory consumption, allowing for longer input
sequences and larger batch sizes.

Balanced accuracy is used as the primary met-
ric for model selection, given the imbalanced



nature of the task. To further ensure robust-
ness, the training pipeline included frequent
evaluation and checkpointing, with up to 5
checkpoints retained during training.

E Baseline M, — M; Experiments

E.1 Prompt Templates

In this section, we provide various prompts
used in the experiments.

You are a seasoned expert in quality assurance for
customer support conversations.

You are presented with an evaluation question
intended to assess an agent’s performance during a
customer conversation. This question is broken down
into sub-criteria to ensure a thorough and
structured analysis. Alongside, you are also
provided with the full dialogue between the customer
and the agent. Extract relevant evidence for each
sub-point, synthesize these observations into a
clear rationale, and conclude with your final answer
Below are the required information pieces for your
task

Main question
Sub-criteria
Conversation transcript
Answer options

BwN =

To answer the given question, let’s think step by
step:

Evidences:
(List evidences for each sub-criterion)

Synthesis:
(Summarize your reasoning)

Hence, the final answer is: (Your chosen answer)

Figure 1: Implicit CoT Reasoning prompt template for
M, and M;. Used in PO, P1 and P4 ablation experi-
ments.

E.2 Performance across experimental
settings

This section reports the performance of the
baseline stacked model inference settings
where a smaller model M is used to route
inputs probabilistically or deterministically to
a larger model M;. We consider five primary
configurations:

* Probabilistic Routing (No Context): A
simple stacked setup where the routing
from M, to M is learned probabilisti-
cally without incorporating reasoning in-
formation from the output of M.

* Deterministic Routing (No Context): A
rule-based stacking approach that deter-
ministically routes inputs based on M

You are a seasoned expert in quality assurance for
customer support conversations.

You are presented with an evaluation question
intended to assess an agent’s performance during a
customer conversation. This question is broken down
into sub-criteria to ensure a thorough and
structured analysis. Alongside, you are also
provided with the full dialogue between the customer
and the agent. Extract relevant evidence for each
sub-point, synthesize these observations into a
clear rationale, and conclude with your final answer

You are supported by an AI assistant referred to as
the "L1 Layer,"” but it is essential that you
critically assess its reasoning and form your own
judgment where necessary.

Below are the required information pieces fror your
task

Main question
Sub-criteria
Conversation transcript
Answer options

L1 Layer Reasoning

L1 layer Response

ou s wN =

### Instructions:

1. Read the conversation and the evaluation question
carefully.

2. Assess each sub-criterion on its own merit.

3. Develop your own detailed analysis and determine
the correct answer to the main question.

4. If L1 s reasoning is thorough and accurate, you
may refer to it. If you detect errors, omissions,

or weak logic, prioritize your own independent
assessment.

5. Your response must end with a definitive "Yes” or
"No" answer to the evaluation question, grounded in
your analysis.

To answer the given question, let’s think step by
step:

Evidences:
(List evidences for each sub-criterion)

Synthesis:
(Summarize your reasoning)

Hence, the final answer is: (Your chosen answer)

Figure 2: Implicit CoT Reasoning prompt template for
M, and M;. Used in P3 ablation experiments where rea-
soning is passed but scratchpad (independent reasoning)
is not provided.

predictions, still without reasoning from
Ms.

* Deterministic Routing with M Con-
text: The same stacking-based routing
strategy as above, now with reasoning
from M to inform the decision.

* Machine-Learned Routing (No Con-
text): A data-driven routing function
trained to map the M output to M;, with-
out reasoning from M

* Machine-Learned Routing with Con-
text: A data-driven routing function
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You are a seasoned expert in quality assurance for
customer support conversations.

You are presented with an evaluation question
intended to assess an agent’s performance during a
customer conversation. This question is broken down
into sub-criteria to ensure a thorough and
structured analysis. Alongside, you are also
provided with the full dialogue between the customer
and the agent. Extract relevant evidence for each
sub-point, synthesize these observations into a
clear rationale, and conclude with your final answer

You will receive support from an AI assistant called
the "L1 Layer," but you must independently
scrutinize its reasoning and override it if needed.

Below are the required information pieces for your
task

Main question
Sub-criteria
Conversation transcript
Answer options

L1 Layer Reasoning

L1 layer Response

ouh wN =

### Instructions:

1. Review the conversation and question in detail.
2. Evaluate each sub-criterion individually.

3. Conduct your own analysis and determine the most
appropriate answer to the main question.

4. You may use L 1 s reasoning if it is thorough
and accurate. However, if you detect gaps, errors,
or incomplete logic, rely on your independent
judgment.

5. Conclude your evaluation with a definitive "Yes"”
or "No" answer, supported by your reasoning.

Please structure your response using the sections
below:

*xList your analysis here, without considering the
L1’s reasoning:#*x*

To answer the given question, let’s think step by
step:

Evidences:
(List evidences for each sub-criterion)

Synthesis:
(Summarize your reasoning)

Hence, the final answer is: (Your chosen answer)

nnn

Figure 3: Implicit CoT Reasoning prompt template for
My and M;. Used in P2 ablation experiments where
reasoning is passed, but scratchpad (independent rea-
soning) is also provided.

trained to map the M, output to M, us-
ing both predictions and reasoning M
as characteristics.

Each configuration is evaluated in multiple
model pairings, measuring performance via
Macro F1, Aol F1, Aol Precision, Aol Re-
call, and associated Inference Cost. The bold
values indicate the highest score for a given
metric in all configurations.
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E.3 Why not passing M reasoning to )/,
improves the performance

Upon manual analysis of examples where we
resisted passing the context to M; from M,
we identified a consistent behavior. M rea-
soning often dominates the general reason-
ing of the inference. We hypothesize that the
reasoning of M; is a very strong single form
for M;, which often dominates the reasoning
process of M;. Pair this with the fact that
an ideal routing framework should be routing
all the wrong answers from M exclusively,
passing the context ends up feeding wrong
information to M;. And given M; is suscep-
tible to being fooled by reasoning from Mg,
this creates a feedback loop in the routing
framework, where we send examples which
are wrong along with their reasoning, which
leaves M; vulnerable to making the wrong
decision again. We chose a representative
example that highlights this behavior over a
question about Did the agent follow proper un-
responsiveness protocol?, where the expected
answer is no

» M, synthesis: While the agent does not
use the exact phrases mentioned in the
sub-criteria, their statement about wait-
ing for the refund process to complete
can be interpreted as an indirect way of
ending the conversation or call due to
the inability to resolve the customer’s
issue further. The agent acknowledges
that they cannot provide any other solu-
tion and are essentially closing the con-
versation by initiating the refund pro-
cess.Answer: yes

» M; synthesis: The conversation shows
that the agent continues to attempt to
communicate with the customer even af-
ter the customer stops responding. How-
ever, there is no clear statement from
the agent indicating that they are ending
the call due to the customer’s lack of re-
sponse. The agent’s last communication
is still focused on providing information
and resolving the issue, rather than ex-
plicitly stating an intent to disconnect.
Answer: no

R . .
* M, — M, synthesis: - The conversation
shows the customer being very vocal and



Model Configuration ‘ Aol P (%) Aol R (%) Aol F1 (%) Macro F1 (%) Cost

M, B gptdo 62.3% 73.8% 65.2% 74.1% $49.216

M, 25 gpt-do-mini 58.3% 68.1% 60.9% 70.8% $2,068

M. s claude-3.5-haiku 62.5% 1% 65.2% 738% $14.789 Model Configuration | AoIP (%) AoIR(%) AoIF1(%) MacroF1 (%) Cost
M, Z, claude-4-sonnet 63.0% 71.1% 64.9% 73.9% $67,759 M, R, 03-mini 84.3% 49.8% 57.8% 72.1% $34,539
M, B novalite 60.7% 67.3% 61.5% 71.7% 48 M, =5 nova-pro 81.2% 50.3% 59.2% 73.0% $12,252
M. 5 nova-pro 60.6% 68.2% 62.0% 71.9% $11,577 1, =5 nova-premier 84.0% 52.2% 62.4% 75.2% $40,588
M, 25 nova-premier 62.2% 69.5% 63.3% 73.1% $37,134 1, =5 nova-lite 78.0% 45.8% 53.4% 69.4% $954
My 25 03-mini 60.0% 68.0% 60.8% 71.0% $30,791 1. =5 gpt-do-mini 78.9% 46.4% 54.2% 69.8% $2,294

B, claude-3.5-haiku | 76.6% 51.9% 60.4% 73.4% $15,403
&, claude-4-sonnet 86.6% 53.4% 63.8% 75.9% $73,149
M. =5 gpt-do 82.7% 52.9% 62.4% 75.4% $49,803

Table 5: Probabilistically Stacked-model inference

(M, £> M) without M, context. Bold highlights
best values across all models.

Table 6: Deterministic Stacked-model inference
(M, 5 M) without M, context. Bold highlights
best values across all models.

expressing frustration. The agent contin-

ues to respond to the customer’s concerns

and provides explanations and apologies.

There is no explicit disclosure from the

agent about disconnecting the call due to Model Configuration | AolP(%) AoIR(%) AolF1(%) MacroF1(%)  Cost

s M, 25 03-mini 78.0% 59.8% 64.0% 75.4% 35,542

the customer’s lack of response. Answer: o o3mind ‘ ‘ ‘ o8
M, 25 nova-pro 79.0% 46.8% 55.9% 70.8% $16,185
no M, 5 nova-premier 82.8% 58.0% 65.5% 76.6% $54,751
R M, =5 novaite 64.1% 47.5% 52.6% 67.7% $1,186
. /\48 = /\4l + MST‘BCLSOTLZ'TLQ synthesis: M, % ept-4o-mini 69.1% 55.0% 58.5% 71.3% $2,719
i M, B claude-3 5-haiku | 71.4% 54.5% 58.9% 72.0% $18,569
While the agent does not use the exact M, B> cludedsomet | $25%  544% 632% 7520 se1ads
M, 5 gpt-do 78.3% 59.4% 64.9% 76.0% $62,849

phrases mentioned in the sub-criteria,
their statement about waiting for the re-  Table 7: Deterministic Stacked-model inference
fund process to complete can be inter- (M, = M;) with M, context. Bold highlights best
preted as an indirect way of ending the  values across all models.

conversation or call due to the inability

to resolve the customer’s issue further.

The agent acknowledges that they cannot

provide any other solution and are essen-

tlally closing the COHVCI'S&tiOIl by initiat— Model Configuration | AoIP (%) AoIR(%) AolF1(%) MacroF1 (%) Cost
. .. M, i>03—mini (M) 76.8% 71.4% 69.9% 78.8% $39,246
ing the refund process. Additionally, the /= upman e s
b : M, 1} nova-premier (M;) 77.8% 70.7% 72.6% 80.9% $45.470
CuStomer S 1aSt message IS unCICar and M, Lnova—li(e(!ﬂl) 73.0% 67.5% 66.2% 76.1% $1,065
. . . . R P r q q 2.
incomplete, which could indicate that the M, 2 gptdo-mind (M) TRO% L 6d% 07% 8% S2a
M, B claude-3.5-haiku (M) | 71.5% 73.0% 70.0% 783% $17,019
agent deCidCd to Cnd the Ca]l due to the M, 25 claude-4-sonnet (M;) 78.1% 74.9% 73.9% 81.3% $79,649
M, i} gpt-4o (M) 76.7% 77.0% 75.0% 82.0% $55,156

lack of a coherent response.Answer: yes

Table 8: Two-tier inference (M r, M) with Router
R (stacking, no M reasoning added). Bold highlights
best values across all configurations.

This illustrates a cognitive anchoring effect:
M becomes biased by the interpretive lens
of Mj, treating its speculative reasoning as
strong evidence. Rather than acting as an in-
dependent verifier, M, starts echoing M;’s
flawed logic.

Thus, this behavior supports the hyp()thesis Model Configuration | Ao[P(%) AoIR(%) AoIF1(%) MacroF1(%) Cost
that M’ s reasoning is not just a soft prior but M. % o3-mini 6% T06% 69.7% 7I% 4034
. . . Mg — nova-pro 70.2% 61.2% 63.7% 74.5% $17,842

an overpowering lnﬂuence’ espeCIally harm- M, %}nova-premier 74.3% 71.3% 71.3% 79.4% $60,950
. . N M, L5 nova-lite 61.3% 61.8% 60.0% 70.8% $1,437

ful when Ms 1S wrong. This undermines the M, 25 gpt-4o-mini 65.5% 63.4% 62.5% 73.1% $3,113
. . . My 1>claucle—345—haiku 65.9% 61.2% 61.3% 72.4% $20,476

core goal of the routing framework, which is M. s gptdo a0 e o1 T6at s67.775
M Lclaude—‘t—sonne& 76.0% 74.2% 72.3% 80.0% $87,533

to leverage M;’s robustness to correct M;’s
errors, not amplify them.

Table 9: Routing R Stacked-model inference (M z,
M) with M context. Bold highlights best values across
all models.
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