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Abstract

In enterprise systems, tasks like API integra-
tion, ETL pipeline creation, customer record
merging, and data consolidation rely on accu-
rately aligning attributes that refer to the same
real-world concept but differ across schemas.
This semantic attribute alignment is critical for
enabling schema unification, reporting, and an-
alytics. The challenge is amplified in schema
only settings where no instance data is available
due to ambiguous names, inconsistent descrip-
tions, and varied naming conventions.

We propose a hybrid, unsupervised frame-
work that combines the contextual reasoning
of Large Language Models (LLMs) with the
stability of embedding-based similarity and
schema grouping to address token limitations
and hallucinations. Our method operates solely
on metadata and scales to large schemas by
grouping attributes and refining LLM outputs
through embedding-based enhancement, justifi-
cation filtering, and ranking. Experiments on
real-world healthcare schemas show strong per-
formance, highlighting the effectiveness of the
framework in privacy-constrained scenarios.

1 Introduction

In modern data integration workflows such as
constructing ETL pipelines across heterogeneous
sources, interfacing APIs between third-party sys-
tems, or merging customer records across internal
business units, the successful integration depends
on identifying and aligning semantically equivalent
fields across schemas (Ceri et al., 2003). These
attributes may differ in name, structure, or format
but refer to the same underlying concept. For in-
stance, in human resources data, annual_salary
in one schema may correspond to yearly_income
in another. Although lexically distinct, these at-
tributes share the same semantic intent, and failure
to correctly align them compromises downstream
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analytics and decision making. This foundational
task, known as semantic mapping, ensures that in-
tegrated data remains interpretable and consistent
across systems.

Despite its critical role, automating semantic
mapping remains a long-standing challenge.
Schema heterogeneity manifested as
sistent naming conventions, varying schema
design philosophies, and domain-specific ter-
minologies introduces ambiguity. For example,
is_contractor may encode the same information
as employment_type, or last_purchased_item
may align with most_recent_transaction.
These relationships require contextual reasoning
to detect and cannot be resolved by surface-level
comparisons. This problem is further exacerbated
in privacy-sensitive domains such as healthcare
and finance, where access to instance-level data is
often restricted due to regulatory and compliance
constraints. As a result, semantic mappings must
be inferred using only schema-level metadata,
including attribute names and short natural
language descriptions—which are frequently
sparse, inconsistent, or under-specified.

Traditional approaches rely on string similarity
metrics or heuristic rules that operate on lexical
cues. These methods are fast and interpretable but
perform poorly when faced with semantic equiva-
lence that lacks lexical overlap (Rahm and Bern-
stein, 2001). Embedding based methods improve
on this by representing attribute names and descrip-
tions as vectors in a high dimensional semantic
space, enabling comparison through cosine simi-
larity (Cappuzzo et al., 2020). These techniques
can align fields like Temp_C and t_celsius, where
surface overlap is limited but semantic similarity is
preserved in the embeddings. However, such meth-
ods still fall short when the required alignment
depends on logical inference or deeper contextual
understanding, as in aligning is_contractor to
employment_type, or mapping purchasing behav-

incon-
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ior fields across domains.

Recent advances in large language models
(LLMs) offer new opportunities for tackling this
problem. LLMs can perform zero-shot reasoning
over natural language, allowing them to identify
conceptual equivalences even when attribute names
differ significantly. However, they are constrained
by fixed input token limits, which makes them un-
suitable for directly processing large schemas end-
to-end, a common scenario in enterprise environ-
ments like ERP systems, customer data platforms,
or healthcare registries. They are also prone to
hallucinating mappings that appear plausible but
lack grounding in the input schema, or generat-
ing additional matches based on overly loose or
generic justifications. Additionally, while LLMs
excel at contextual inference, they may overlook
surface-level alignments that are semantically valid
but underexplained, necessitating complementary
mechanisms to recover or verify these matches.

To address the limitations of prior approaches in
schema-only semantic mapping at scale, we pro-
pose a hybrid framework that combines the con-
textual reasoning capabilities of LLMs with the
semantic robustness of embedding-based similarity.
The framework consists of four key stages:

* Clustering and grouping of similar attributes in
order to fit with LLM token limits.

* Produce candidates based on attribute names and
descriptions using LLMs.

* Embedding similarity to (i) recover high-
confidence mappings missed by the LLLM and
(ii) filter out hallucinated or semantically weak
predictions.

* Post processing to remove hallucination and in-
consistencies, and to rank the candidates.

This modular pipeline enables robust, unsupervised

alignment of semantically equivalent attributes in

schema-only settings, without relying on labeled
data or instance-level values.

2 Related Work

Semantic attribute mapping has long been studied
across database, data integration, and knowledge
representation communities. Early approaches
relied on syntactic similarity measures such as
edit distance, token overlap, and naming heuris-
tics (Rahm and Bernstein, 2001). While effi-
cient and interpretable, these methods are lim-
ited in handling semantically equivalent but lex-
ically divergent attributes (e.g., is_smoker vs.

smoking_status).

Embedding-based techniques (Cappuzzo et al.,
2020) improved upon this by leveraging vector rep-
resentations of attribute names and descriptions to
capture semantic similarity. Though these methods
achieve higher recall than string matching, they
often fail to infer deeper relationships that require
contextual understanding. Supervised deep models
(e.g., SMAT (Zhang et al., 2021)) use BiLSTMs
with attention to model attribute pairs. While effec-
tive, they rely on labeled data, limiting generaliz-
ability across unseen schemas.

More recently, LLM-based methods have been
explored for schema alignment (Sheetrit et al.,
2024), demonstrating improved contextual reason-
ing. Some variants use retrieval-augmented gen-
eration, treating schema elements as documents
and fetching relevant context from external sources.
Although these methods enhance mapping qual-
ity, they often assume access to instance-level
data or external corpora, introducing infrastructure
complexity and limiting applicability in privacy-
sensitive, schema-only settings.

To our knowledge, no prior work addresses
LLM-based semantic mapping under strict schema-
only conditions. We propose a fully unsuper-
vised hybrid framework that clusters attributes us-
ing embeddings, invokes LLMs within token lim-
its, refines predictions through similarity scoring,
and prunes hallucinations via justification quality,
achieving scalable and accurate alignment without
training data or instance values.

3 Proposed Framework

3.1 Problem Formulation

Let S = {s1,82,...,8m} and T =
{t1,t2,...,t,} denote the set of attributes
in the source schema and target schema re-
spectively. Each attribute s; € S ort; € T is
associated with schema-level metadata in the form
of a tuple (n;, d;), where n; is the attribute name
and d; is a short textual description (if available).
No instance-level data or external ontologies are
assumed to be available. The goal is to identify a
set of semantic mappings:

M C (SU{0}) x (T U{0})

where each mapping (s;,t;) € M indicates that
the source attribute s; and target attribute ¢; are se-
mantically equivalent or closely related in meaning.
The objective is to construct the mapping set M as
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Figure 1: Proposed Framework for Semantic Mapping.

accurately and comprehensively as possible using

only schema-level metadata. We explicitly allow

the following types of mappings:

* One-to-one mappings: Semantic equivalence
between a source and a target attribute.

* One-to-many / Many-to-one mappings: Cases
where a single attribute semantically corresponds
to multiple attributes in the other schema.

* Empty mappings: Attributes from either
schema with no valid semantic counterpart.
These are captured as (s;, ) or (0, t;) in source
or target schema, respectively.

3.2 Framework Overview

Our proposed framework addresses the semantic

mapping problem in a fully unsupervised and scal-

able manner using a multi-stage architecture as
shown in Figure 1. It is composed of four stages:

1. Semantic Grouping: Partitioning schema at-
tributes into semantically coherent subsets using
embedding-based clustering to adhere to the to-
ken limit of the language model.

2. GenAl-based Mapping Generation: Employ-
ing a LLM to generate candidate semantic map-
pings between grouped source and target at-
tributes using only metadata such as names and
descriptions.

3. Embedding-Based Enhancement and Prun-
ing: Enhancing and filtering the LLM-generated
mappings by computing embedding-based sim-
ilarity scores, thereby removing semantically

weak or inconsistent pairs and adding semanti-
cally strong pairs (missed by LLM).

4. Information Processing and Final Mapping
Selection: Post-processing the filtered map-
pings to remove hallucinations, prune unjusti-
fied alignments, and rank candidates.

3.2.1 Semantic Grouping

Large language models (LLMs) have limited con-
text windows, making it impractical to align large
schemas directly. To address this, we partition the
source and target schemas into semantically coher-
ent groups using embedding-based similarity.

Leta € SUT, and let e, € RY denote the
embedding of attribute a. We define a similarity
matrix M € R™*™:

esi : et]'

M, =
Y les | e

We apply clustering (k-Nearest-Neighbors) on
the resulting matrix to generate k groups
{G1,...,Gk}. The number of groups is deter-
mined by the LLM token limit and average token
length per attribute. This ensures each group fits
within the LLM’s input window while preserving
contextual coherence.

3.2.2 GenAl-Based Mapping Generation

Once grouping is complete, each cluster of source
and target attributes is provided to a LLM through
carefully designed prompts as shown below. The
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LLM is instructed to generate candidate semantic
mappings using only the available attribute names
and descriptions. Prompts are optimized to elicit
high-quality outputs and may include structural
patterns or few-shot demonstrations to encourage
consistency and reduce ambiguity. The LLM pro-
duces a set of predicted mappings along with natu-
ral language justifications, which are retained for
downstream validation.

Formally, let G, = (Sk,T) denote the k-th
group of source and target attribute subsets after
grouping. For each group, we define the LLM as a
function:

LLM(Gk) — {((Si,tj),?"ij) ‘ S; € Sk, tj S Tk}

where each output consists of a candidate attribute
pair (s;,t;) and its corresponding justification ;;
in natural language. This structured output supports
downstream modules such as plausibility filtering
and explanation-based pruning.

Instruction: You are a knowledgeable assistant skilled at matching
fields between different data sources. Your task is to ensure that the
fields are mapped correctly and include explanations for each mapping
choice. Use the sourceName.fieldName format to specify each source
field clearly.

Few important points to consider while mapping -

(a) Avoid mixing fields from different sourceNames.

(b) Do not map within same schema.

(c) In case of non related mapping, return None.

(d) In case of multiple mappings return all valid mappings.

Sample Format -

{

"schemas": [

{

"sourceName": <sourceNamel>,
"properties": { ... }

}

{

"sourceName": <sourceName2>,
"properties”: { ... }
b

"sourceName": "<sourceName3>",
"properties": { ... }

}

]

}

Response: { ... }

Test Example -
Input: { ... }

Response:

\.

3.2.3 Embedding-Based Enhancement and
Pruning

In parallel to the LLM-based mapping generation,
we compute semantic similarity scores between
all source and target attribute pairs using static

embedding models (all-mpnet-base-v2 (Sentence-

Transformers, 2021a)). These scores are used in

two complementary roles:

* Enhancement: For each pair (s;,tj) € S x T,
we compute the cosine similarity (sim(s;,t;)).
If sim(si, tj) > Gadd (08) and (87;, tj) ¢ MLLM’
the pair is added to the candidate mapping set:

Menhanced < Mpim U {(5i7 tj)}

Along with the mapping, a simple justification is
attached based on the embedding score: The jus-
tification is generated as: “s; and t; are related
with a confidence of sim(s;, t;)”.
This enhancement allows recovery of semanti-
cally correct mappings that may have been omit-
ted by the LLM due to input limitations or am-
biguous prompt interpretation.

* Pruning: If (s;,t;) € Myowm but sim(s;, t;) <
Barop(0.2), the mapping is removed:

Mpruned < Menhanced \ {(Sia tj)}

This helps eliminate hallucinated or spurious
alignments where no meaningful semantic re-
lationship exists.

The thresholds 6,49 and Og4.0p are globally ap-
plied and selected through empirical tuning. By
combining LLM inference with embedding-based
validation and justification, this hybrid step en-
hances both the quality and interpretability of the
semantic mapping output.

3.2.4 Information Processing

The final stage focuses on refining and validating
the remaining set of candidate mappings. This
stage includes three steps:

* Hallucination Removal: We identify and elim-
inate mappings where the LLM introduces at-
tribute pairs not present in the actual source or
target schemas. We define the hallucination-free
mapping set as:

Miittered = {(Siatj) S Mpruned ‘ S; € S/\tj S T}

Any pair (s;,t;) € Mprunea Where s; ¢ Sort; ¢
T is considered a hallucination and is removed
from the final output.

* Justification Pruning: Each LLM-generated
mapping (s;,tj) € Miiered is associated with
a natural language justification J; ;. To as-
sess its plausibility, we apply a zero-shot en-
tailment classifier fzsc with candidate labels:
“strongly related”, “maybe related”, and
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Dataset ‘

String Similarity

Embedding-Based

Proposed (LLM-Based)

‘ Jw LV ME NG ‘ MPNet-dot MPNet-base DistilRoBERTa ‘ Granite LLaMA-3 Mistral DeepSeek LLaMA-4 Phi  Qwen
CMS 0.149 0.396 0.392 0.397 0.422 0.391 0.428 0.528 0.561 0.590 0.638 0.513 0.547 0.584
SAKI 0.339 0411 0.389 0.405 0.396 0.383 0.375 0.677 0.727 0.746 0.686 0.792 0.558 0.735
Synthea 0.221 0.352 0341 0.339 0.344 0.355 0.411 0.644 0.674 0.703 0.732 0.661 0.745 0.684
MIMIC-IIT | 0.244 0.383 0.386 0.384 0.349 0.345 0.388 0.564 0.645 0.614 0.713 0.628 0.659  0.649
MIMIC-IV | 0.218 0415 0415 0.404 0.409 0.411 0.441 0.506 0.510 0.589 0.600 0.542 0.611 0.553

Table 1: Performance (F1) comparison across full datasets and methods. Jaro-Wiker - JW, Levenshtein - LV,

Monge-Elkan - ME, N-Gram - NG.

“unrelated”. The classifier returns a confi-
dence score for each label, and we retain a map-
ping only if the confidence score for “strongly
related” exceeds a threshold Gepai:

score; j = fzsc(J;j; “strongly related”)

Must += {(Siatj) € Mhiitered | SCOre; > aentail}

The resulting set Mjyy is then passed to the rank-
ing module.

Ranking: In cases where multiple candidate
mappings exist for a given source attribute, we
apply an embedding-based ranking mechanism.
For each candidate target, we compute the co-
sine similarity. This process scores and orders
candidates based on their semantic similarity in
the embedding space, prioritizing mappings that
are more closely aligned with the source attribute
meaning.

These information processing steps help ensure
the reliability and precision of the final output. By
combining structured filtering and ranking mech-
anisms with LLM reasoning, the system produces
high-quality semantic mappings in a fully unsuper-
vised setting. The overall design remains modular
and adaptable, allowing for flexibility across do-
mains, schema sizes, and environments.

4 Experiments and Results

We evaluate on five schema-only datasets from
real and synthetic healthcare sources, varying in
size, complexity, and metadata quality (Table 2).
Each dataset is a source—target schema pair with
attribute names and descriptions; no instance-level
data is used due to privacy constraints. CMS:
(Zhang et al., 2021) Large-scale Medicare schema
with minimal metadata, posing a low-context chal-
lenge. SAKI: (Zhang et al., 2021) Curated inter-
operability schemas with moderate metadata and
semantic ambiguities. MIMIC-III: (Sheetrit et al.,
2024) ICU dataset with structured schema and rich
metadata. MIMIC-IV: (Parciak et al., 2024) Up-
dated MIMIC-III with restructured schema and new

CMS SAKI MIMIC-IT MIMIC-IV Synthea
38 24 26 9 12

Table 2: No. of schema pairs across different datasets.

fields. Synthea: (Zhang et al., 2021) Synthetic
EHR with clean metadata, enabling evaluation un-
der ideal and complex mapping scenarios.

We use expert-aligned mappings where avail-
able; all pairs include at least one verifiable match.

4.1 Evaluation Metrics

We evaluate alignment performance using the F/-
score. Each source attribute is treated as a classi-
fication instance with a predicted mapping (s, t),
where s is either a source attribute or the empty
token e (no mapping).

We define binary classification outcomes as:

* True Positive (TP): A non-empty predicted map-
ping (s, t) correctly matches the ground truth.

* False Positive (FP): A non-empty predicted map-
ping (s, t) does not exist in the ground truth.

» False Negative (FN): A ground truth mapping
exists, but either no prediction or no correct pre-
diction is made.

* True Negative (TN): Both prediction and ground
truth specify no mapping (i.e., t = ().

We compute F1-scores for both the marched and
unmatched classes, and report the final result as
their macro-average. This strategy accounts for
alignment correctness while penalizing spurious
predictions which is crucial in schema-only settings
where many attributes lack valid mappings.

4.2 Baselines

To evaluate the effectiveness of our framework, we

compare against representative baselines spanning

embedding-based, and classical string similarity

methods:

* Embedding-Based Models: We compute co-
sine similarity between attribute embeddings
using pre-trained sentence models—all-mpnet-
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Dataset Target Table Target Column Target De- Source Table Source Column | Source Description GT | Pred | Comments
scription ‘ ‘ ‘
CMS beneficiarysummary bene_death_dt date of death death death_datetime the date and time the person 0 1 Erroneous GT
was deceased.
CMS carrierclaims line_alowd_chrg_amt | line al- visit_occurrence provider_id a foreign key to the provider 1 0 Erroneous GT
lowed charge in the provider table who
amount 1 was associated with the
visit.

SYNTHEA patients address patient’s street person location_id a foreign key to the place of 0 1 This kind of Indirect map-
address with- residency for the person in ping may benefit the user.
out commas the location table, where the
or newlines. detailed address information

is stored.
CMS inpatientclaims clm_pmt_amt claim  pay- | procedure_occurrence quantity the quantity of procedures 0 0 LLM generated it; Embed-
ment amount ordered or administered. ding Pruning removed it.
CMS carrierclaims clm_thru_dt claims  end death death_datetime the date and time the person 0 0 LLM generated it; Justifi-
date was deceased. cation pruning removed it.
CMS carrierclaims clm_from_dt claims  start provider - Mapped within the same
date schema instead of the
provider schema column.
LLM hallucinated; Hallu-
cination Removal module
fixed it.

Table 3: Representative examples of alignment predictions showing ground truth inconsistencies and the filtering

effect of embedding and justification modules.

base-v2 (Sentence-Transformers, 2021a), multi-
ga-mpnet-base-dot-v1 (Sentence-Transformers,
2021b), and all-distilroberta-vl (Sentence-
Transformers, 2022)—and apply greedy align-
ment. These models capture contextual similarity
but may miss implicit or inferential mappings.

* String Similarity Methods (Rahm and Bern-
stein, 2001): Classical string-based techniques
(Jaro-Winkler, Levenshtein, Monge-Elkan, N-
gram) are used to score attribute pairs.

4.3 Results and Discussions

4.3.1 Comparison with String Similarity and
Embedding Based Approaches

We evaluate all approaches including string sim-
ilarity methods, embedding-based baselines, and
our proposed framework on a full dataset. For the
string similarity and embedding-based approaches,
we perform a grid search over similarity thresholds
ranging from 0.0 to 1.0 in increments of 0.1. For
each method, the threshold yielding the best per-
formance across the datasets is used for reporting.
Our proposed framework is evaluated using mul-
tiple language models, including Granite (granite-
3-8b-instruct (IBM Granite, 2024)), LLaMA3
(Llama-3.3-70B (Meta, n.d)), Mistral (mistral-
large (Mistral Al, 2024)), DeepSeek (DeepSeek-
V3 (DeepSeek-Al et al., 2025)), LLaMA4 (llama-
4-maverick-17b (Meta)), Phi (phi-4 (Microsoft)),
and Qwen (qwen2.5-72B-instruct (Qwen)) to as-
sess model-agnostic performance and robustness
across LLM variants.

Results are shown in Table 1, where our frame-
work demonstrates consistent improvements rang-
ing from 7% to 40% across datasets and model vari-
ants. Overall, the DeepSeek family outperforms

other models, likely due to its stronger instruction-
following capabilities, reduced hallucination behav-
ior, and superior performance on reasoning tasks.
This makes it particularly well-suited for structured
alignment tasks where concise, high-quality gener-
ation is essential.

4.3.2 Comparison with Supervised Approach

To contextualize the effectiveness of our unsuper-
vised approach, we also evaluated it against SMAT,
a supervised model trained on labeled mappings.
While this is not a strictly fair comparison—since
SMAT benefits from supervised training and task-
specific tuning—it provides a useful benchmark.
On the same dataset splits, our method achieved
F1-scores within 12—-18% of SMAT, despite operat-
ing in a zero-shot setting using only schema meta-
data. We believe that this performance gap could be
further narrowed, or even surpassed, with stronger
LLMs such as GPT-4, which offer improved se-
mantic reasoning and language understanding. We
scoped our evaluation to lower-cost, open-weight,
computationally feasible models.

4.3.3 Impact of Embedding Filtering and
Justification Pruning on Performance

Across all evaluated datasets and language models,
we observed a clear and consistent pattern regard-
ing the contributions of Embedding Filtering (EF)
and Justification Pruning (JP). The complete frame-
work, incorporating both EF and JP, consistently
achieves the highest performance scores. When ei-
ther EF or JP is individually removed, performance
declines moderately by approximately 2—5%, in-
dicating that each component independently en-
hances the model’s effectiveness. The simulta-
neous removal of both EF and JP results in the
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largest degradation, with performance drops rang-
ing from about 7-10% relative to the full configu-
ration. These findings collectively affirm that both
EF and JP play complementary and essential roles
in achieving robust and optimal performance across
diverse datasets and model architectures.

4.3.4 Qualitative Analysis of Results

Beyond quantitative metrics, we manually in-
spected selected predictions to assess ground truth
(GT) issues, and module contributions.

(1) Ground Truth (GT) Issues - We observed sev-
eral GT inconsistencies that affected F1 scores:

* The model produced semantically cor-
rect mappings absent from the GT (e.g.,
bene_death_dt — death_datetime; row 1),
marked as false positives.

* Some GT alignments were weak or in-
correct (e.g., line_alowd_chrg_amt —
provider_id).

* In cases with missing GT (e.g., row 3), the
model generated reasonable mappings like
address — location_id, inferred via im-
plicit semantics.

(2) Effect of Modules - The proposed layered ar-
chitecture helped suppress weak predictions:

* Row 4: Spurious mapping (clm_pmt_amt —
procedure_occurrence) was filtered by Em-
bedding Pruning.

* Row 5: Weak temporal link (cIm_thru_dt —
death_datetime) was discarded by Justifica-
tion Pruning.

* Row 6: LLM hallucinated a same-schema
mapping (cIm_from_dt — clm_thru_dt) in-
stead of cross-schema; corrected by Halluci-
nation Removal.

These cases demonstrate the importance of lay-
ered filtering in ensuring robustness. While the
LLM captures high-recall candidates, embedding
and justification pruning help eliminate weak or
hallucinated predictions, contributing to overall pre-
cision improvements.

5 Conclusion

We presented a fully unsupervised framework for
schema-only semantic mapping that combines the
interpretability of embedding-based similarity with
the contextual reasoning capabilities of large lan-
guage models (LLMs). By introducing an adaptive
grouping strategy that respects token constraints,
and a filtering pipeline to mitigate hallucinations,

our method provides a scalable and accurate solu-
tion for aligning schema attributes without requir-
ing training data or access to instance-level values.
Evaluations on real-world schemas show that
this hybrid approach effectively handles diverse
mapping challenges without requiring training data
or instance values. Our filtering module, prunes im-
plausible LLM outputs and ranks candidates based
on semantic plausibility, further improves the re-
liability and precision of mappings. Our method
enables accurate, unsupervised schema alignment
in a privacy-sensitive setting, offering a practical
solution for real-world data integration tasks.

Limitations

While our framework is effective in handling
schema-only mapping tasks, it has a few limita-
tions. First, the reliance on textual metadata (names
and descriptions) makes it sensitive to poorly docu-
mented or inconsistently labeled schemas. When
descriptions are too sparse or ambiguous, neither
embeddings nor LLMs may resolve the correct se-
mantic match without additional context.

Second, although our grouping strategy helps
overcome token limits, grouping quality directly
affects LLM output. Semantically incoherent
groups may lead to suboptimal or incomplete map-
pings. Future work could explore more sophisti-
cated group selection mechanisms that incorporate
ontology-based or retrieval-augmented context.

Third, while our hallucination and justification
pruning modules improve mapping reliability, they
may also remove valid mappings when the LLM’s
explanation lacks sufficient clarity or semantic co-
herence. This can occur in cases where the domain-
specific synonyms, abbreviations, or implicit rela-
tionships are triggered, where the correct mapping
is generated but the accompanying justification is
weak or generic. As our filtering logic relies partly
on the quality of these explanations, improving the
robustness of justification scoring or incorporat-
ing fallback reasoning from structured knowledge
could help preserve such mappings without com-
promising precision.

Finally, although our approach does not require
labeled training data, it also does not learn from
user feedback or mapping outcomes over time.
Incorporating feedback loops or lightweight fine-
tuning to adapt the system across domains remains
an open direction for enhancing long-term robust-
ness and generalizability.
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