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Abstract

Accurate clinical coding is essential for health-
care documentation, billing, and decision-
making. While prior work shows that off-the-
shelf LLMs struggle with this task, evaluations
based on exact match metrics often overlook
errors where predicted codes are hierarchically
close but incorrect. Our analysis reveals that
such hierarchical misalignments account for
a substantial portion of LLM failures. We
show that lightweight interventions, including
prompt engineering and small-scale fine-tuning,
can improve accuracy without the computa-
tional overhead of search-based methods. To
address hierarchically near-miss errors, we in-
troduce clinical code verification as both a stan-
dalone task and a pipeline component. To mit-
igate the limitations in existing datasets, such
as incomplete evidence and inpatient bias in
MIMIC, we release an expert double-annotated
benchmark of outpatient clinical notes with
ICD-10 codes. Our results highlight verifica-
tion as an effective and reliable step toward
improving LLM-based medical coding.

1 Introduction

Accurate clinical coding (often used interchange-
ably with medical coding) is essential for health-
care documentation, billing, and decision-making
(Johnson et al., 2016; Shickel et al., 2017). Stan-
dardized coding systems such as the International
Classification of Diseases, Tenth Revision, Clini-
cal Modification (ICD-10-CM)1 ensure consistency
across medical records (Hirsch et al., 2016; DeY-
oung et al., 2022). However, assigning correct
codes to clinical notes remains highly challenging
due to variability in medical narratives and the hi-
erarchical complexity of ICD-10-CM, where only
leaf nodes are valid for billing (Jha et al., 2009).
The task requires selecting up to 12 correct codes

∗ Equal contribution.
† Work done during internship at AWS AI.

1https://www.cdc.gov/nchs/icd/icd-10-cm

Figure 1: An illustration of our generate-expand-verify
pipeline. In this obfuscated example, the model-
predicted code has the correct description with the
wrong ICD-10-CM code. The expansion step uses ICD-
10-CM tabular table to lookup its siblings. The verifica-
tion step then selects the correct code and description
based on the clinical notes and the expansion candidates.

from a set of 72,000 billable ICD-10-CM codes,
making it a highly complex classification problem.

LLMs has spurred interest in automating med-
ical coding. However, prior research has shown
that off-the-shelf LLMs perform poorly, with low
scores on exact match metrics such as F1 (Boyle
et al., 2023; Soroush et al., 2024). These find-
ings align with our extensive evaluation of models
spanning various families, sizes, and architectures.
Scaling up model size alone does not solve the prob-
lem, and a significant portion of the errors are near
misses, where predicted codes are hierarchically
close but not exact matches. For example, an LLM
may generate I11.0 (Hypertensive heart disease
with heart failure) instead of I11.9 (Hypertensive
heart disease without heart failure). Such errors
expose a fundamental limitation in current evalua-
tion approaches, which rely on exact match metrics
and fail to capture hierarchical relationships. Prior
work (Liu et al., 2022) incorporated ICD hierar-
chies via specialized loss functions, but focused on
pre-LLM models, lacking its effect on LLMs.

Also, existing datasets such as MIMIC-III/IV
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(Johnson et al., 2016) present challenges for the
medical coding task. Not only do they use ICD-
9 instead of ICD-10 codes, but the data is also
limited to notes from the ICU, while the codes span
all departments for the entire encounter (Adams
et al., 2022). This makes it difficult to determine
whether a code is verifiable based solely on the
note, limiting their suitability for our task, where
explicit evidence in notes is critical. Moreover,
both datasets focus primarily on inpatient records,
whereas our work targets outpatient settings, where
notes tend to be shorter, less structured, and more
contextually straightforward (Shing et al., 2021).

To address these limitations, we first construct a
new double expert-annotated benchmark of outpa-
tient clinical notes with ICD-10-CM codes, based
on ACI-Bench (Yim et al., 2023).2 Each note is
double-annotated and adjudicated to ensure high-
quality supervision. Then we investigate two key
research questions. The first is understanding the
extent to which off-the-shelf LLMs can perform
clinical coding and the nature of the errors they
make. A systematic error analysis reveals that hi-
erarchical misalignments account for a substantial
portion of mistakes, emphasizing the need for eval-
uation methods that go beyond exact match. The
second question explores whether lightweight in-
terventions, such as prompt engineering and small-
scale fine-tuning, can significantly improve LLM
performance. These approaches offer practical
solutions that are cost-effective and adaptable to
evolving medical coding standards. To further ad-
dress these challenges, we introduce a clinical code
verification pipeline (Figure 1) that refines LLM
predictions by leveraging the hierarchical structure
of ICD-10-CM. The pipeline first expands candi-
date codes using ICD relationships and then refines
these predictions using LLM-based verification to
select the most contextually appropriate code. This
verification step mitigates hierarchical misalign-
ments and improves overall accuracy, up to 16 F1
for Haiku-3, for more reliable clinical coding.

2 Improving LLMs for Clinical Coding

2.1 Prompt Engineering

Prompt engineering is a lightweight, model-
agnostic method to adapt LLMs without addi-
tional training data. To investigate how structured

2The dataset accompanying this work is publicly
available at https://github.com/amazon-science/
toward-clinical-coding-verification-adaptation.

prompts influence clinical coding performance, we
evaluate five prompt types: a single-line baseline,
detailed instructions, chain-of-thought (CoT) rea-
soning, prompt decomposition (identifying key
clinical phrases before prediction), and a combina-
tion of detailed instructions with CoT. The single-
line prompt follows prior work (Boyle et al., 2023)
and is shown in subsection B.4. We also incorpo-
rate the MEAT (Monitor, Evaluate, Assess, Treat)
principle into detailed instructions to provide struc-
tured clinical context, mimicking expert reasoning.
By explicitly including descriptions and structured
reasoning, we hypothesize that LLMs can better
align predictions with the ICD-10-CM hierarchy.

2.2 Fine-Tuning

Fine-tuning enables task-specific adaptation of
LLMs by training them on small, high-quality
datasets. We investigate variants of fine-tuning to
evaluate how different combinations of codes and
descriptions affect performance. Specifically, we
fine-tune the models to generate: 1) codes alone, 2)
descriptions alone, 3) codes followed by descrip-
tions, and 4) descriptions followed by codes. These
configurations correspond directly to the experi-
ments in section 5, with results shown in Table 3.

Formally, let N = {n1, n2, . . . , nm} represent a
set of clinical notes paired with gold-standard codes
C∗ = {C∗

1 , C
∗
2 , . . . , C

∗
m}. The model is trained to

minimize the cross-entropy loss:

Lfine-tune = − 1

m

m∑

i=1

logP (C∗
i | ni),

where P (C∗
i | ni) denotes the model’s predicted

probability of the correct code C∗
i given the note

ni. These configurations allow us to systemati-
cally evaluate the effects of different task-specific
data representations. The goal is to provide a
lightweight yet effective alternative to compute-
intensive methods, such as retrieval-augmented
generation, while aligning with the structured na-
ture of ICD-10-CM.

3 Clinical Code Verification

3.1 Overview of ICD-10-CM Structure

Verification is critical in real-world healthcare sys-
tems, where erroneous codes can lead to financial,
legal, and clinical consequences. We first introduce
the structure of ICD-10-CM, which is a hierarchi-
cal coding system organized into two official lists:
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the tabular list and the index list. The tabular list is
a tree structure where nodes represent ICD-10-CM
codes, and edges encode parent-child relationships.
Only leaf nodes, referred to as billable codes, are
valid for billing purposes. Formally, the tabular list
is represented as a tree T = (V,E), where V is
the set of all ICD-10-CM codes and E ⊆ V × V
encodes the parent-child relationships.

For a code c ∈ V , its parent is defined as
P (c) = {p ∈ V : (p, c) ∈ E}. The set of sib-
lings, S(c), consists of codes that share the same
parent as c, formally S(c) = {s ∈ V : P (s) =
P (c) and s ̸= c}. Similarly, the set of cousins,
C(c), includes codes that share the same grandpar-
ent as c, defined as C(c) = {g ∈ V : P (P (g)) =
P (P (c)) and g /∈ S(c)}, shown in Appendix A.

The index list, on the other hand, is represented
as an undirected graph G = (V,E′), where the
edges E′ ⊆ V × V encode cross-references be-
tween codes based on textual similarity or alterna-
tive naming conventions. For a code c ∈ V , its
1-hop neighbors are defined as N1(c) = {n ∈ V :
(c, n) ∈ E′}, and its 2-hop neighbors as N2(c) =
{n ∈ V : ∃v ∈ V, (c, v) ∈ E′ and (v, n) ∈ E′}.

3.2 Clinical Code Verification Task Definition
Clinical code verification aims to determine
whether a pre-assigned set of candidate codes
Ĉ = {ĉ1, . . . , ĉk} accurately reflects the informa-
tion in a given clinical note N . Each candidate ĉi
is assigned a binary decision yi ∈ {0, 1}, where
yi = 1 indicates that ĉi matches a gold-standard
code C∗. Formally, the task is to produce binary
labels {y1, y2, . . . , yk} = fverify(N, Ĉ).

3.3 Verification Pipeline
The verification pipeline consists of two core
steps: candidate expansion and contextual revi-
sion. These steps leverage the hierarchical and
relational structures of ICD-10-CM to refine and
validate model-generated codes.

3.3.1 Candidate Expansion
The expansion step broadens the set of candidate
codes Ĉ by incorporating related codes derived
from the tabular tree T and the index graph G. For
a candidate ĉ, the expanded set is defined as:

Expand(ĉ) = S(ĉ) ∪ C(ĉ) ∪N1(ĉ) ∪N2(ĉ),

where S(ĉ), C(ĉ), N1(ĉ), and N2(ĉ) represent
the siblings, cousins, 1-step neighbors, and 2-step
neighbors of ĉ, respectively.

This step ensures that codes related to the ini-
tial candidates are explicitly included for further
consideration, effectively addressing potential hi-
erarchical misalignments. While complex retrieval
methods such as LLM-based semantic search could
theoretically be applied, we prioritize structured
approaches due to their efficiency, interpretability,
and alignment with ICD-10-CM.

In practice, we expand each predicted code by re-
trieving its siblings S(c), cousins C(c), and 1-hop
and 2-hop neighbors N1(c) and N2(c), forming the
full candidate set C(c) = S(c) ∪ C(c) ∪N1(c) ∪
N2(c). These choices are motivated by the hierar-
chical and referential structure of ICD-10-CM, and
we empirically evaluate different subsets. After
de-duplication, expansions remain small relative to
the full ICD-10-CM space (∼72k billable codes).
In practice, siblings and 1-hop neighbors typically
yield tens of candidates, while cousins and 2-hop
neighbors yield a few dozen. This corresponds to
roughly 0.05–0.5% of the full code list, depending
on the seed code and branch.

3.3.2 Contextual Revision
The revision step evaluates the expanded candi-
date set C(ĉ) by formulating clinical code verifi-
cation as a multiple-choice task, where the LLM
assigns relevance scores to candidate codes based
on the clinical note. We investigate several config-
urations to identify optimal presentation formats,
including codes alone, codes paired with descrip-
tions, and descriptions alone. Furthermore, we
evaluate the impact of chain-of-thought (CoT) rea-
soning, in which the model explicitly generates
intermediate steps before selecting the final can-
didate, thus better capturing hierarchical relation-
ships within ICD-10-CM. The final selected code
is given by ĉbest = argmaxc∈C(ĉ) fverify(N, c),
where fverify(N, c) represents the model’s scoring
function for a candidate c given the context N .
This verification pipeline can operate as a stan-
dalone module or integrate seamlessly into broader
medical coding workflows, including end-to-end
note-to-code generation systems, auditing proce-
dures, and claim validation processes. It effectively
mitigates hierarchical misalignment errors and en-
hances overall coding accuracy and reliability.

We investigate multiple configurations for the
revision process, including presenting the model
with only ICD-10-CM codes, codes paired with
descriptions, or descriptions alone to assess their
impact on verification accuracy. Additionally, we
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explore the effect of chain-of-thought (CoT) rea-
soning, where the model generates intermediate
steps to better capture hierarchical relationships
within ICD-10-CM before selecting the final candi-
date. These configurations allow us to analyze how
contextual information and structured reasoning
influence verification performance.

This verification pipeline can function as a stan-
dalone module or be integrated into broader med-
ical coding systems. For end-to-end tasks such
as clinical note-to-code generation, the verifica-
tion component complements existing generation
methods, reducing errors from hierarchical mis-
alignments and improving overall coding reliability.
Similarly, it can be incorporated into auditing work-
flows or claim validation pipelines to refine outputs
and ensure compliance with coding standards. Note
that broader expansions increase candidate cover-
age (i.e., the chance the gold code is included in
the candidate set) but also introduce more near-
miss distractors, which makes the multiple-choice
selection harder.

4 Experiments

As mentioned in the introduction, existing datasets
such as MIMIC-III/IV are not well-suited for our
task. They use ICD-9 codes instead of ICD-10, and
their clinical notes are limited to the ICU setting,
while codes span the full encounter, making it dif-
ficult to verify predictions from a single note. To
evaluate the proposed pipeline, we created a new
annotated dataset derived from the publicly avail-
able ACI-Bench benchmark. We selected outpa-
tient clinical notes and conducted additional expert
annotations, assigning gold-standard ICD-10-CM
codes and binary verification labels. Each note was
double-annotated, with disagreements resolved via
arbitration, resulting in 207 annotated examples (67
train, 20 dev, 120 test). Each example includes a
clinical note, candidate codes from upstream sys-
tems, gold-standard codes, and binary labels indi-
cating validity. Evaluations are performed at the
per-note level, aligning with practical requirements
in billing, insurance, and clinical decision-making.

4.1 Models

We evaluate the pipeline using a diverse set of
LLMs for both code generation and verification.
These include Claude Haiku and Sonnet (3, 3.5v1,
3.5v2) (Anthropic, 2024), LLaMA (3.1 with 405B,
70B, 8B parameters) (Dubey et al., 2024), and Mis-

tral (7B small, large, and Mixtral 8 × 7B) (Jiang
et al., 2024), covering different architectures, pa-
rameter sizes, and training paradigms. We also
include PLM-ICD, the conventional SOTA model
for ICD-10-CM prediction (Huang et al., 2022).

4.2 Evaluation Metrics
We evaluate the pipeline’s performance comprehen-
sively using standard, fuzzy match, and verification
metrics. Standard metrics (precision, recall, F1)
assess exact matches between predicted and gold-
standard codes at the per-note level, aligning with
real-world coding practices. However, exact match
metrics alone cannot capture hierarchical misalign-
ments within ICD-10-CM codes. Therefore, we
introduce fuzzy match metrics leveraging the hier-
archical structure of ICD-10-CM. Specifically, we
define prefix-n match, which relaxes exact match-
ing by accepting predicted codes whose prefixes
match the gold-standard codes up to n steps above
the lowest (leaf) level in the ICD hierarchy. For
example, prefix-1 match accepts predictions that
match at least one step above the leaf node, while
prefix-2 allows matching two steps above. Ad-
ditionally, the prefix overlap ratio measures the
weighted hierarchical overlap between predicted
and gold-standard codes, considering shared ances-
try depth. Finally, we report verification accuracy,
directly evaluating the model’s effectiveness at val-
idating pre-assigned candidate codes.

5 Results

We evaluate each component of our pipeline in-
dividually and assess their combined effect in a
full end-to-end setup. As illustrated in Figure 1,
our pipeline consists of three main steps: (1) code
generation, (2) expansion using the ICD-10-CM
hierarchy, and (3) verification to select contextu-
ally appropriate codes. The following subsections
analyze performance at each step and full pipeline
results showing each component’s the contribution.

5.1 Off-the-Shelf LLMs as Medical Coders
Performance Across Models. Larger models
generally outperformed smaller ones, but improve-
ments were not strictly proportional to scale. As
shown in Table 1, Sonnet-3.5v2 achieved the
highest performance across all evaluation met-
rics, surpassing both earlier Sonnet models and
larger-scale models like LLaMA-3.1-405B. Among
LLaMA models, LLaMA-3.1-405B outperformed
the smaller LLaMA-70B, but the gain was smaller
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Generation w/ Simple Prompt F1 (EM) F1 (P-1) F1 (P-2) POR

Haiku-3 41.6 51.3 54.6 62.4
Haiku-3.5 40.1 48.0 52.4 62.0
Sonnet-3 30.8 38.0 41.8 52.2
Sonnet-3.5v1 39.8 45.8 49.5 59.3
Sonnet-3.5v2 43.0 49.6 53.8 63.7
LLaMA-3.1-8B 12.3 14.1 15.5 20.9
LLaMA-3.1-70B 32.3 38.8 42.5 52.0
LLaMA-3.1-405B 35.3 42.8 45.4 54.2
Mistral 7B Instruct 0.94 0.99 1.4 2.11
Mixtral 8x7B Instruct 26.2 33.3 38.0 45.0
Mistral Small 26.9 32.9 38.2 46.1
Mistral Large 35.8 42.9 47.3 55.4

PLM-ICD 24.8 35.0 38.4 50.6

Table 1: Performance of off-the-shelf LLMs on clinical
coding with a simple prompt (see B.4). Exact Match F1
reflects strict correctness, requiring full code matches.
Prefix Match F1 scores relax this requirement by allow-
ing matches up to 1 or 2 levels higher in the ICD-10-
CM hierarchy, respectively. POR (Prefix Overlap Ratio)
quantifies partial correctness based on the shared hierar-
chical depth between predicted and gold codes.

compared to the improvement from LLaMA-8B
to LLaMA-70B, indicating diminishing returns at
extreme scales. Haiku-3 performed competitively,
further suggesting that architecture and training
paradigms matter significantly alongside model
size. Interestingly, Mixtral 7B Instruct had sur-
prisingly poor performance, likely due to mismatch
between task formulation and instruction-following
capabilities. Overall, these results suggest that scal-
ing alone does not fully resolve complexities of
medical coding, especially in outpatient settings
characterized by shorter and more varied notes.

Model Generalization and Dataset Transfer-
ability. Models pretrained or fine-tuned on in-
patient datasets, such as MIMIC-IV, struggled to
generalize effectively to our outpatient dataset.
PLM-ICD (Huang et al., 2022), a state-of-the-art
inpatient-focused model, experienced a substantial
performance drop in our evaluation. Nevertheless,
the Prefix Match F1 and Prefix Overlap Ratio met-
rics indicated that many of its errors were struc-
turally close to correct codes, highlighting transfer
learning challenges inherent in medical coding. Un-
like inpatient records, outpatient notes tend to be
shorter, fragmented, and contextually ambiguous,
making generalization particularly challenging.

Error Analysis: Near Misses and Hallucina-
tions. Many errors counted as incorrect under
Exact Match F1 were near misses, as evidenced
by substantial gaps between Exact Match F1 and
Prefix-based metrics (e.g., Sonnet-3.5v2 improved

Model Prompt Type Exact Match F1

Haiku-3

Chain-of-Thought 27.0
Detailed Instructions 36.0
Detailed + CoT 27.2
Prompt Decomposition 40.7
Single-Line (Baseline) 41.6

Sonnet-3.5v1

Chain-of-Thought 47.4
Detailed Instructions 47.9
Detailed + CoT 55.6
Prompt Decomposition 42.3
Single-Line (Baseline) 39.8

Table 2: Impact of prompt engineering on Haiku-3 and
Sonnet-3.5v1. Prompt types include structured reason-
ing (CoT), detailed instructions, prompt decomposition,
and a minimal single-line baseline in subsection 2.1. All
prompts except the baseline ask models to predict both
the code and description with priority given to code.

from 43.0 Exact Match to 53.8 Prefix-2 Match).
These near-miss errors typically occurred within
the same hierarchical family, demonstrating that
fuzzy match metrics provide a more informative
evaluation of clinical coding models. This rein-
forces the practical need for verification mecha-
nisms to refine outputs and maintain clinical valid-
ity, as we will present in Section 5.4.

5.2 Lightweight Methods to Improve LLMs
Prompt Engineering Benefits Stronger Models.
Prompt engineering significantly improved perfor-
mance for stronger models like Sonnet-3.5v1, with
gains exceeding 15 points in Exact Match F1 (from
39.8 to 55.6). As shown in Table 2 (more in Ap-
pendix B.1), the best performance was achieved
by combining detailed instructions with chain-of-
thought (CoT) reasoning. In contrast, Haiku-3
showed minimal improvement, with the simplest
single-line baseline outperforming all other prompt
types. This suggests that prompt engineering is
more effective when models have sufficient capac-
ity to follow and benefit from structured reasoning.

Fine-Tuning Enables Robust Adaptation. Fine-
tuning Haiku-3 on a small, high-quality dataset (67
examples) led to substantial performance gains. As
shown in Table 3, the best results were achieved
when the model was trained to generate both codes
and their corresponding descriptions, with code
appearing first (from 40.6 to 56.9). However, fine-
tuning was highly sensitive to the output format:
training on code alone resulted in a collapse in
performance (from 32.7 to 0.0). These results high-
light that fine-tuning can be highly effective but
requires careful prompt-target design.
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Prompt Setting Model Exact Match F1

Code Only Haiku-3 32.7
+ Fine-tuned (↓32.7) 0.0

Description Only Haiku-3 10.3
+ Fine-tuned (↓0.7) 11.0

Description → Code Haiku-3 30.4
+ Fine-tuned (↑21.6) 52.0

Code → Description Haiku-3 40.6
+ Fine-tuned (↑16.3) 56.9

Table 3: Fine-tuning results for Haiku-3 across differ-
ent generation targets. Configurations vary in whether
the model generates codes, descriptions, or both (in dif-
ferent orders). Inference uses the same format as the
corresponding prompt. Scores in parentheses denote the
performance changes (delta) after fine-tuning.

5.3 Verification and Full Pipeline Evaluation

Descriptions Boost Verification Accuracy. In
the standalone verification task, the model receives
a clinical note and a set of candidate codes ex-
panded from a gold code, ensuring the correct an-
swer is always present, with 100% as the upper
bound. As shown in Table 4, presenting only de-
scriptions consistently yields the highest accuracy
across all expansions. For instance, with cousin
expansions C(c), Sonnet-3.5v2 achieves 90.3%
accuracy using description-only input. Chain-of-
thought (CoT) reasoning, by contrast, fails to im-
prove performance and can slightly reduce it. This
suggests lexical context is more useful than struc-
tured reasoning in this setting. Verification accu-
racy also varies by expansion. Candidates from
sibling sets S(c) are harder to distinguish due to se-
mantic similarity, while 2-hop neighbors N2(c) are
more diverse and easier to filter. We observe a trade-
off that broader expansions can raise accuracy but
increase candidate count and inference cost. Com-
bining all expansion types increases coverage but
also enlarges the candidate set with near-miss dis-
tractors, which lowers this conditional accuracy. In
contrast, the full pipeline results in Table 5 optimize
coverage and selection jointly, yielding consistent
gains in end-to-end F1.

Full Pipeline Improves End-to-End Accuracy.
Generated codes are expanded using all struc-
tural relationships (S(c), C(c), N1(c), N2(c)) be-
fore verification. As shown in Table 53 , this im-

3Oracle performance is below 100% because expansions
are applied to model-predicted seeds. If the gold code lies
outside the expanded branch, it cannot be recovered even
under oracle selection.

Expansion Type Prompt Variant Accuracy (%)

Siblings S(c)

Code + Description 82.1
Code Only 82.5
Chain-of-Thought (CoT) 82.2
Description Only 88.3

Cousins C(c)

Code + Description 87.4
Code Only 86.6
Chain-of-Thought (CoT) 88.5
Description Only 90.3

1-Hop Neighbors N1(c)

Code + Description 82.6
Code Only 83.4
Chain-of-Thought (CoT) 82.3
Description Only 85.8

2-Hop Neighbors N2(c)

Code + Description 85.4
Code Only 85.4
Chain-of-Thought (CoT) 85.3
Description Only 87.4

All Combined

Code + Description 77.3
Code Only 78.9
Chain-of-Thought (CoT) 78.9
Description Only 82.2

Table 4: Verification accuracy (%) of Sonnet-3.5v2 un-
der different candidate expansion types and prompt for-
mats. Expansions include siblings S(c), cousins C(c),
1-hop N1(c), and 2-hop N2(c) neighbors as defined in
Section 3.1. All use multiple-choice formatting; prompt
variants vary in how candidate codes are presented.

Model Generation + Verification + Oracle

Haiku-3 41.6 47.2 54.1
Haiku-3 (Fine-tuned) 56.9 57.6 67.3
Sonnet-3.5v1 55.6 55.5 66.4
PLM-ICD 24.8 29.4 31.9

Table 5: Performance of the full clinical coding pipeline.
The “+ Verification” setting uses expanded candidates
(S(c), C(c), N1(c), N2(c)) with LLM-based Descrip-
tion Only verification in Table 4. “+ Oracle ” replaces
verification to select only the ground-truth labels from
the expansion (if in candidates) as the upper-bound.

proves performance across all models. Haiku-3
rises from 41.6 to 47.2 F1, PLM-ICD from 24.8 to
29.4, and fine-tuned Haiku-3 reaches 57.6 F1, an
increase of 16 points over the baseline. Stronger
models like Sonnet-3.5v1 also benefit or maintain
performance. Oracle selection, which uses gold
labels to pick the correct candidate, shows an up-
per bound of up to 67.3 F1. These results confirm
that verification is a lightweight, model-agnostic
component that reliably improves clinical coding.

5.4 Insights from a Clinical Perspective

Clinical coding follows strict domain-specific rules
that LLMs are not trained to model explicitly. Sev-
eral consistent patterns emerged: First, models
frequently assign codes for signs and symptoms
(e.g., ICD-10-CM “R” codes) even when the un-
derlying etiology is already provided. For example,
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predicting R26.2 (difficulty walking) is incorrect
when M51.27 (disc displacement) is also present
and fully explains the symptom. Second, models
often code for possible or suspected conditions,
which is discouraged in outpatient settings where
only confirmed diagnoses should be coded. More
broadly, both models tend to overcode, generating
plausible but unnecessary entries. While this is
preferable to undercoding (as human coders can
remove extras more easily than spotting omissions),
it can introduce noise and mislead downstream sys-
tems. We also observed clinically meaningful hallu-
cinations. In one case, a hemoglobin lab result was
misread as a hemoglobin A1c, leading the model to
falsely assign a diabetes code. While it is unclear
how common this is, such errors reveal a tendency
to overgeneralize from surface cues.

Verification Enhances Clinical Reliability. Our
full pipeline mitigates these issues in practice. In
the example shown in Figure 1, the fine-tuned
model incorrectly predicted M25.561 (Pain in right
knee) for a case describing left knee pain. Veri-
fication corrected this, identifying M25.562 (Pain
in left knee) as a sibling and selecting the appro-
priate code. In another example, the model pre-
dicted R78.71 (Abnormal lead level in blood) when
the correct code was R79.9 (Abnormal finding of
blood chemistry, unspecified). Verification revised
it to R78.9 (Finding of unspecified substance, not
normally found in blood), not exact, but semanti-
cally closer. These examples highlight the value
of structured verification and expert-guided evalua-
tion. Quantitative metrics provide signal, but quali-
tative clinical insight remains essential for safe and
trustworthy medical AI in the healthcare domain.

Overall, our error analysis shows that most near-
miss mistakes occur late in the ICD-10-CM hierar-
chy, typically at the leaf or leaf–1 levels. Common
cases include laterality (e.g., left vs. right), pres-
ence vs. absence of complications, or similar fine-
grained distinctions. This pattern is consistent with
our prefix-n metrics, which capture hierarchical
closeness of predictions.

6 Related Work

Clinical coding has traditionally relied on special-
ized models such as ClinicalBERT (Huang et al.,
2019) and PLM-ICD (Huang et al., 2022). Re-
cent studies using off-the-shelf LLMs report poor
performance under exact match metrics (Boyle
et al., 2023; Soroush et al., 2024), but do not ad-

dress hierarchical misalignment, which is the focus
of this work. Approaches like LLM-guided tree
search (Klang et al., 2024) and retrieval-augmented
generation (Baksi et al., 2024) improve accuracy
but are computationally expensive and hard to
maintain as coding standards evolve. Baksi et al.
(2024) also release a dataset, but their annotations
are locally scoped and less consistent; third-party
clinical experts rated our double expert annotated
dataset as higher quality. We view their work as
complementary. Lightweight adaptation methods
such as prompt engineering and small-scale fine-
tuning have shown promise for domain-specific
tasks (Brown et al., 2020), and we explore them
for clinical coding. Structured verification is com-
mon in fact-checking (Yuan and Vlachos, 2024) but
underexplored in this domain. Existing pipelines
include verification implicitly (Yang et al., 2023),
but it has not been evaluated as a standalone compo-
nent. Finally, most evaluations rely on exact match
and overlook the hierarchical nature of ICD-10.

7 Conclusion

We presented lightweight methods to improve the
reliability of LLM-based clinical coding. Our ex-
periments showed that prompt engineering and
small-scale fine-tuning can yield substantial gains
without the computational overhead of large-scale
retrieval or search. To further address common
near-miss errors, we introduced clinical code verifi-
cation, a model-agnostic pipeline that leverages the
ICD-10-CM hierarchy to refine predictions and cor-
rect hierarchical misalignments. A key contribution
of this work is the release of a new expert double-
annotated dataset of outpatient clinical notes with
ICD-10-CM codes. This resource provides high-
quality supervision in a setting underrepresented in
existing benchmarks, enabling more rigorous and
clinically meaningful evaluation.

From a clinical perspective, verification miti-
gates frequent mistakes such as miscoding of later-
ality or symptom versus etiology, offering a prac-
tical safeguard against errors with financial and
clinical implications. Our results highlight that
coding reliability depends not only on raw gener-
ation accuracy but also on structured mechanisms
for refinement and evaluation.
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Limitations

While our approach demonstrates meaningful im-
provements in clinical coding, several limitations
should be acknowledged. First, our experiments
are conducted on a small, expert-annotated dataset
of outpatient clinical notes, which may not fully
capture the diversity of coding scenarios across
inpatient settings or other healthcare domains. Sec-
ond, the verification step operates on candidate
codes produced by LLMs and is thus influenced
by the quality and biases of the underlying gener-
ation model. Third, the fine-tuning experiments
are performed on a limited dataset of 67 examples.
While this enables controlled evaluation under ex-
pert supervision, it may limit the generalizability of
the observed improvements. Finally, although our
results are promising, they do not imply readiness
for clinical deployment. Additional validation with
domain experts and assessments of robustness and
safety would be necessary for real-world use. All
prompts, 207-note dataset, ICD expansion scripts,
and evaluation code will be released under MIT
licence upon notification and approval.

Ethical Considerations

The use of LLMs in clinical coding raises impor-
tant ethical concerns, particularly regarding patient
privacy, bias, accountability, and the potential for
harm due to incorrect coding. While automated
coding can enhance efficiency, it also introduces
risks if errors propagate through billing, insurance
claims, and clinical decision-making.

Patient Privacy and Data Security. Clinical
coding involves sensitive patient information, mak-
ing privacy and data security paramount. Although
our approach does not require direct patient iden-
tifiers, LLMs trained on medical text may still en-
code latent biases or inadvertently reveal sensitive
details. Ensuring compliance with healthcare regu-
lations such as HIPAA (U.S.) and GDPR (EU) is
critical for responsible deployment.

Bias and Fairness. LLMs inherit biases from
their training data, which may lead to disparities
in coding accuracy across different demographic
groups, clinical conditions, or healthcare settings.
If left unchecked, these biases can disproportion-
ately affect underrepresented populations, leading
to systematic errors in billing and treatment doc-
umentation. Our verification step aims to reduce
coding errors, but future work should include bias

audits and fairness-aware training approaches to
mitigate these risks.

Accountability and Human Oversight. Clin-
ical coding impacts reimbursement, resource al-
location, and patient care. Over-reliance on AI
without human oversight could introduce systemic
errors, particularly if models reinforce preexist-
ing coding patterns without adapting to evolving
medical guidelines. Our verification approach is
designed as an assistive tool, not a replacement
for human coders. We advocate for AI-assisted
workflows where models support human decision-
making rather than fully automate coding.

Clinical Validation and Deployment Risks. De-
ploying AI-assisted coding systems in healthcare
settings requires rigorous validation. Misclassifi-
cations in ICD-10-CM codes can have financial
consequences, such as incorrect billing. Future
studies should involve clinical experts in evaluat-
ing model predictions, ensuring transparency in
decision-making, and establishing safety protocols
before real-world adoption.

Long-Term Implications. As LLMs continue to
evolve, ensuring ethical AI deployment in health-
care will require continuous monitoring, inter-
pretability improvements, and alignment with med-
ical best practices. Stakeholders, including health-
care providers, regulators, and AI developers, must
collaborate to establish guidelines for responsible
AI integration in clinical workflows.
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A ICD-10-CM Hierarchical Structure

ICD-10-CM codes follow a hierarchical structure
defined by the official tabular list. Each node in
the tree represents a diagnostic category, and only
leaf nodes are billable. This structure introduces
challenges for automatic coding, as models must
distinguish between closely related codes that differ
in specificity and billing eligibility.

Figure 2 illustrates a simplified example of the
ICD-10-CM tree structure, adapted from Yih et al.
(2023). Nodes are connected via parent-child rela-
tionships, with each level corresponding to a finer-
grained diagnostic category. Siblings (S(c)) share
the same parent, and cousins (C(c)) share a grand-
parent. Understanding these structural relations
is crucial for evaluating both exact and near-miss
predictions in clinical coding.

Figure 2: Example fragment of the ICD-10-CM hier-
archy, adapted from Yih et al. (2023). Only leaf nodes
are billable. Nodes with the same parent are considered
siblings; those with the same grandparent are cousins.

B Additional Results

This Appendix provides extended results for veri-
fication, prompt engineering, fine-tuning, and the
full pipeline evaluation. These results complement
the main text by presenting a detailed breakdown of
model performance across different configurations.

B.1 Prompt Engineering Results Across All
Models

Table 6 presents the complete results of our prompt
engineering experiments, which examined how dif-
ferent prompt engineering techniques affect model
performance. Our findings indicate that prompt
effectiveness varies across different models, and
there is no single prompt format that works best for
all models.

B.2 Verification Results Across All Models

Table 7 presents verification accuracy for all tested
models under two prompt configurations: one using

Code + Description and another adding a Chain-
of-Thought (CoT) step. These results demonstrate
the robustness of our verification approach across
different model architectures and parameter scales.
While some models (e.g., Sonnet-3 and Mistral
Small) show clear benefits from Chain-of-Thought
reasoning, we do not observe a consistent pattern
across different models.

B.3 Full Pipeline Results Across All Models
Table 8 presents the complete pipeline results for
all models using different expansion and verifica-
tion methods. When analyzed alongside Table 7,
we can observe that the effectiveness of our veri-
fication pipeline depends on both the verification
accuracy and the performance of the generation
model. Models with stronger generation perfor-
mance (e.g., Sonnet-3.5v1 and Haiku-3 Finetuned)
require higher verification accuracy to achieve
meaningful improvements, while weaker models
(e.g., Haiku-3 and PLM-ICD) generally benefit
from verification.

B.4 Single Line Prompt
The single-line prompt from prior work (Boyle
et al., 2023):

You are a professional ICD-10-CM coder.

Present your findings in a structured
JSON format as follows:
{
"1": {
"code": "X00.0"

},
"2": {
"code": "Y00.0"

},
...

}

Important: The "code" field should
contain only the ICD-10 code itself
(e.g., "F32.9", "I10"), without any
descriptions or additional text.

Here is the note:
${note}
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Exact Match F1 Prefix Match F1 (Prefix-1) Prefix Match F1 (Prefix-2) Prefix Overlap Ratio
Model Prompt Type

Haiku-3 Chain-of-Thought 27.000 36.588 39.134 46.953
Detailed + CoT 27.161 32.321 34.839 41.760
Detailed Instructions 36.048 42.941 45.691 53.159
Prompt Decomposition 40.720 46.969 49.890 57.692
Single-Line (Baseline) 41.639 51.294 54.640 62.407

Haiku-3.5 Chain-of-Thought 36.521 44.361 48.030 60.006
Detailed + CoT 41.438 49.553 56.421 60.541
Detailed Instructions 39.338 47.169 50.203 57.918
Prompt Decomposition 14.194 18.277 21.055 21.631
Single-Line (Baseline) 40.115 47.976 52.418 61.996

Sonnet-3 Chain-of-Thought 34.034 40.388 43.363 52.709
Detailed + CoT 41.465 49.902 52.069 60.511
Detailed Instructions 40.294 48.202 51.758 61.143
Prompt Decomposition 36.158 44.007 48.176 56.936
Single-Line (Baseline) 30.819 38.040 41.831 52.232

Sonnet-3.5v1 Chain-of-Thought 47.425 55.573 59.313 70.617
Detailed + CoT 55.643 62.429 65.095 74.463
Detailed Instructions 47.868 56.401 60.687 70.608
Prompt Decomposition 42.323 47.788 51.564 61.854
Single-Line (Baseline) 39.834 45.805 49.478 59.260

Sonnet-3.5v2 Chain-of-Thought 40.458 48.892 55.799 66.009
Detailed + CoT 50.587 60.594 63.668 74.632
Detailed Instructions 45.744 53.348 57.824 68.607
Prompt Decomposition 42.618 48.240 53.067 62.258
Single-Line (Baseline) 42.982 49.581 53.751 63.662

LLaMA-3.1-8B Chain-of-Thought 15.675 18.552 20.929 27.428
Detailed + CoT 21.826 27.789 29.087 36.424
Detailed Instructions 23.057 27.748 31.301 40.424
Prompt Decomposition 24.404 30.789 35.606 46.259
Single-Line (Baseline) 12.261 14.118 15.481 20.898

LLaMA-3.1-70B Chain-of-Thought 32.491 40.721 45.238 55.714
Detailed + CoT 36.121 44.992 49.367 59.396
Detailed Instructions 31.641 38.258 42.599 54.027
Prompt Decomposition 32.235 38.052 42.056 50.524
Single-Line (Baseline) 32.267 38.836 42.453 51.978

LLaMA-3.1-405b Chain-of-Thought 33.251 40.289 43.554 52.090
Detailed + CoT 34.036 42.810 45.014 52.819
Detailed Instructions 34.406 39.832 45.527 53.264
Prompt Decomposition 34.158 41.176 44.986 52.723
Single-Line (Baseline) 35.347 42.826 45.444 54.194

Mistral 7B Instruct Chain-of-Thought 17.669 22.890 25.381 32.931
Detailed + CoT 15.279 21.091 22.492 28.814
Detailed Instructions 12.882 17.735 19.263 27.121
Prompt Decomposition 19.960 24.881 27.057 35.601
Single-Line (Baseline) 0.941 0.994 1.405 2.114

Mixtral 8x7B Instruct Chain-of-Thought 26.417 35.803 38.382 45.245
Detailed + CoT 29.167 38.784 42.711 50.884
Detailed Instructions 29.114 39.390 45.617 53.742
Prompt Decomposition 33.222 39.097 46.115 53.795
Single-Line (Baseline) 26.198 33.291 37.983 44.990

Mistral Small Chain-of-Thought 22.146 29.621 32.845 37.718
Detailed + CoT 29.092 35.059 38.732 45.652
Detailed Instructions 19.323 24.688 27.717 35.906
Prompt Decomposition 29.775 37.511 43.035 51.553
Single-Line (Baseline) 26.863 32.878 38.250 46.128

Mistral Large Chain-of-Thought 34.332 44.899 50.683 57.119
Detailed + CoT 36.641 47.293 53.569 60.415
Detailed Instructions 34.264 43.181 48.304 55.545
Prompt Decomposition 36.328 47.204 51.553 57.968
Single-Line (Baseline) 35.754 42.880 47.286 55.443

Table 6: Performance of off-the-shelf LLMs on clinical coding. Exact Match F1 reflects strict correctness, while
Prefix Match F1 evaluates correctness at different hierarchical levels (1 or 2 levels). Prefix Overlap Ratio measures
partial correctness weighted by shared hierarchical depth.
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Expansion Type Siblings S(c) Cousins C(c) 1-Hop Neighbors N1(c) 2-Hop Neighbors N2(c) All Combined
Model Prompt Variant

Haiku-3 Code + Description 52.2 51.4 59.5 50.2 41.3
+ Chain-of-Thought (CoT) 58.4 56.9 56.9 50.0 40.1

Haiku-3.5 Code + Description 74.9 80.7 80.6 82.4 70.2
+ Chain-of-Thought (CoT) 78.9 77.9 81.7 76.7 68.4

Sonnet-3 Code + Description 66.0 64.2 68.4 54.9 43.9
+ Chain-of-Thought (CoT) 74.4 73.5 77.6 66.4 56.9

Sonnet-3.5v1 Code + Description 86.6 86.6 83.4 86.2 78.5
+ Chain-of-Thought (CoT) 83.7 86.5 85.3 86.5 77.3

Sonnet-3.5v2 Code + Description 82.1 87.4 82.6 85.4 77.3
+ Chain-of-Thought (CoT) 82.2 88.5 82.3 85.3 78.9

LLaMA-3.1-8B Code + Description 49.4 56.9 65.2 40.5 23.1
+ Chain-of-Thought (CoT) 55.1 59.3 63.0 37.6 25.3

LLaMA-3.1-70B Code + Description 73.6 77.7 75.1 68.2 61.9
+ Chain-of-Thought (CoT) 77.7 76.3 72.4 65.3 59.8

LLaMA-3.1-405b Code + Description 70.2 75.8 79.4 78.4 65.5
+ Chain-of-Thought (CoT) 72.0 77.0 80.7 71.5 66.4

Mistral 7B Instruct Code + Description 67.1 46.5 49.6 48.1 39.3
+ Chain-of-Thought (CoT) 54.8 39.7 50.0 42.8 27.6

Mixtral 8x7B Instruct Code + Description 64.9 51.1 61.1 47.4 38.4
+ Chain-of-Thought (CoT) 65.1 61.6 70.7 54.2 40.4

Mistral Small Code + Description 66.0 54.7 65.8 50.2 38.3
+ Chain-of-Thought (CoT) 78.5 74.3 77.4 57.7 48.7

Mistral Large Code + Description 76.9 70.5 73.5 78.3 62.0
+ Chain-of-Thought (CoT) 78.0 76.1 80.3 72.6 63.7

Table 7: Verification accuracy (%) across all models and two prompt configurations: using Code + Description and
an additional Chain-of-Thought (CoT) step.

Model Expansion Generation + Desc Revise + CoT Revise + Oracle

Haiku-3 Siblings S(c) 41.6 48.0 46.3 51.0
Siblings S(c) + Cousins C(c) 41.6 45.3 47.2 54.4
1-Hop Neighbors N1(c) 41.6 45.6 46.1 49.9
1+2-Hop Neighbors N1(c)|N2(c) 41.6 44.5 43.2 50.1
All Combined 41.6 47.2 47.2 54.1

Haiku-3 (Fine-tuned) Siblings S(c) 56.9 57.5 53.6 62.8
Siblings S(c) + Cousins C(c) 56.9 54.5 56.3 66.1
1-Hop Neighbors N1(c) 56.9 51.2 51.9 61.0
1+2-Hop Neighbors N1(c)|N2(c) 56.9 52.4 51.8 63.6
All Combined 56.9 57.6 55.8 67.3

Sonnet-3.5v1 Siblings S(c) 55.6 56.5 54.5 62.3
Siblings S(c) + Cousins C(c) 55.6 51.9 54.9 65.0
1-Hop Neighbors N1(c) 55.6 54.6 56.0 61.6
1+2-Hop Neighbors N1(c)|N2(c) 55.6 54.1 54.7 63.1
All Combined 55.6 55.5 55.1 66.4

PLM-ICD Siblings S(c) 24.8 28.1 27.7 25.8
Siblings S(c) + Cousins C(c) 24.8 24.7 28.2 28.3
1-Hop Neighbors N1(c) 24.8 32.8 33.1 32.5
1+2-Hop Neighbors N1(c)|N2(c) 24.8 28.0 29.8 30.2
All Combined 24.8 29.4 30.3 31.9

Table 8: Performance of the full pipeline with different expansions and verifications (revision) across all models.
The initial generations are done by the respective models, while the verification steps are done by Sonnet 3.5v2.
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