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Abstract

Large language models (LLMs) have demon-
strated remarkable performance across a wide
range of industrial applications, from search
and recommendation systems to generative
tasks. Although scaling laws indicate that
larger models generally yield better gener-
alization and performance, their substantial
computational requirements often render them
impractical for many real-world scenarios at
scale. In this paper, we present a comprehen-
sive set of insights for training and deploy-
ing small language models (SLMs) that de-
liver high performance for a variety of indus-
try use cases. We focus on two key techniques:
(1) knowledge distillation and (2) model com-
pression via structured pruning and quantiza-
tion. These approaches enable SLMs to retain
much of the quality of their larger counterparts
while significantly reducing training/serving
costs and latency. We detail the impact of
these techniques on a variety of use cases in a
large professional social network platform and
share deployment lessons, including hardware
optimization strategies that improve speed and
throughput for both predictive and reasoning-
based applications in Recommendation Sys-
tems.

1 Introduction

Large language models (LLMs) (Dubey et al.,
2024; Jiang et al., 2023; Team et al., 2023; Liu
et al., 2024) have ushered in a new era in artifi-
cial intelligence and machine learning, driving sig-
nificant improvements in deployed systems across
various industries.

LLMs suitable for real-world applications come
in diverse forms, differing in size (ranging from
hundreds of millions to hundreds of billions of
parameters), architectural design (e.g., encoder-
based models like BERT (Devlin, 2018) versus
decoder-based models like GPT-3 (Brown et al.,
2020)), and training paradigms (such as pre-

training, instruction tuning, or test-time computa-
tion (Dubey et al., 2024; Team et al., 2023; Jiang
et al., 2023; Mueller et al., 2023; Liu et al., 2024;
Guo et al., 2025)).

Specifically for the Social Network Platforms,
LLMs are heavily leveraged and deployed for a
multitude of applications: 1. Semantic Search
(e.g., embedding generation (Wang et al., 2022,
2023b) and semantic ranking/matching (Qin et al.,
2023)); 2. Recommendation Systems (RecSys),
specifically Retrieval and Ranking (Zhao et al.,
2024) (Li et al., 2023b; Firooz et al., 2025;
Li et al., 2023a); 3. Generative Use cases,
such as chatbots, assistants, image generators,
etc. (Achiam et al., 2023; Dam et al., 2024;
Ramesh et al., 2022).

Furthermore, scaling laws for LLMs have es-
tablished a strong correlation between model
size, validation loss, and downstream task perfor-
mance (Kaplan et al., 2020; Hoffmann et al., 2022;
Raffel et al., 2020; Wei et al., 2022). As a re-
sult, increasing the size of the model is often one
of the most effective strategies to enhance perfor-
mance. Modern LLMs, particularly autoregressive
decoder-only models, have expanded to hundreds
of billions of parameters.

Although large LLMs exhibit extraordinary per-
formance, the deployment of such large models
incurs substantial infrastructure costs, especially
for latency- or throughput-sensitive tasks in Rec-
ommendation Systems (RecSys). However, both
academia and industry have developed strategies
for creating and deploying efficient small lan-
guage models (SLMs). Here, we primarily fo-
cus on methods that leverage an existing internally
trained large LLM to create an efficient SLM that
largely maintains the original model’s accuracy.
Approaches to achieve this include white-box or
black-box distillation (Hinton, 2015; Gu et al.,
2024; Jin et al., 2021; Agarwal et al., 2024; Tun-
stall et al., 2023), compression techniques such as
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quantization (Frantar et al., 2022; Behdin et al.,
2023) and sparsification (Frantar and Alistarh,
2023; Meng et al.; Sun et al., 2023; Meng et al.,
2024a; Campos et al., 2023).

In this work, we present a suite of insights
from the training and deployment of various ef-
ficient SLMs in production at a large-scale profes-
sional social networking company. We address a
wide array of predictive and generative use cases
in RecSys (including ranking, recommendations,
and reasoning), with inference performance and
latency constraints in serving as key considera-
tions. Our contributions are as follows.

• We discuss several large-scale RecSys use
cases for which language models are useful.

• For these use cases, we explore techniques
for developing tailored SLMs, with a focus
on knowledge distillation and model com-
pression methods such as quantization and
structured pruning.

• We discuss inference, latency, and other
serving considerations, offering insights into
the infrastructure required to reliably deploy
SLMs in high-throughput or low-latency pro-
duction environments, and share practical
lessons from our real-world deployments.

2 Preliminaries

Training details We consider models ranging in
size from a billion to ∼ 100B parameters. For all
use cases, we appropriately tune the learning rate,
learning rate warmup schedule and decay, as well
as weight decay. Context length varies from a few
hundred tokens to up to 32k, depending on the use
case. We provide use-case specific details at the
appropriate place.
Prompt Structures For predictive tasks, we are
mainly interested in ranking use cases. Hence, the
use of decoder-based LLMs is prefill-dominant.
For generative and reasoning based-tasks, we are
also interested in decoding latencies. We relegate
the details of the prompt structures to subsections
for the specific use cases.
Quality metrics We use different accuracy mea-
sures across tasks. For predictive tasks, we use
area under the curve (AUC). For generative tasks,
we rely on validation loss and task-specific met-
rics.
Foundational model for RecSys We base our ex-
periments on an internal foundation model (FM)

trained using text, primarily for the purpose of
ranking and recommendations (Firooz et al.,
2025). The FM is a Mixture-of-Experts (MoE)
model with an architecture motivated by the Mix-
tral family (Jiang et al., 2024). In particular, each
expert is initialized based on a Llama 3.1 8B In-
struct model (Dubey et al., 2024), with 16 experts
in total (4 active per token). The FM is trained to
approximate the following distribution for a large
variety of recommendation tasks where users in-
teract with items:

P (m, (e1, t1), ..., (eT , tT )), (1)

where m represents a user, and each pair (et, it)
for t = 1, ..., T represents the user’s interaction
it (like or click or equivalent) with an entity et
(such as post on a social media platform) . As
mentioned before, the featurization is performed
purely via text, allowing the FM to effectively gen-
eralize across heterogeneous tasks. The model is
then used to estimate the following probabilities
for future interactions with entities:

P (it, it+1, ...|Task instruction,

m, (e1, i1), ..., (et−1, it−1), et,

et+1, ...)

(2)

Text-based featurization makes decoder-only
LLMs an attractive option for training this model
jointly on a large and varied of recommendation
tasks. The FM uses single-token generation for
pointwise ranking and probability estimation. The
reader is encouraged to peruse the paper Firooz
et al. (2025) for more details about the FM.

Due to the large size of the FM—which con-
tains over 100 billion parameters—serving it on-
line for latency-sensitive applications is challeng-
ing. In this work, we present experiments demon-
strating how we achieved a more than 20× reduc-
tion in model size, enabling the online serving of a
compressed version of the FM with only a modest
loss in accuracy.

3 Methodology

We apply these methods to the following real-
world use cases in RecSys, with detailed method-
ology described in Appendix A.

• SLM for predictive tasks obtained through
distillation and pruning - We leverage a
foundation model (FM) for ranking and rec-
ommendations (Firooz et al., 2025; Li et al.,
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Figure 1: Overview of the process of creating SLMs via distillation and compression.

2023a) and leverage distillation and pruning
to create an SLM that is efficient for serving
latency-sensitive use cases. The final SLM
we create is more than 20× smaller without
any appreciable loss in quality.

• SLM for reasoning task obtained through
distillation - We leverage various flavors of
KD to compress a latency-sensitive reason-
ing model by more than 5× with comparable
quality.

Our approach, illustrated in Figure 1, proceeds
in three stages: 1) Distillation on the full model.
2) One-shot structured pruning1 to significantly
reduce the model size. 3) Re-distillation of the
pruned model to recover generalization capabil-
ities. All compression is performed in a post-
training setting using data from various recom-
mendation tasks (see Section A for details on
methods). We optionally also quantize the model
(details in Section 6). We measure quality by
reporting the AUC on the test sets of in-domain
tasks, computing AUC per task and then averag-
ing across tasks.

4 Experimental Results for Reasoning
Tasks

We detail experiments for a use case that requires
generating reasoning for various input prompts.

We investigate several distillation methods to
produce a 1.5B model initialized from Qwen-2.5-
1.5B-Instruct (Yang et al., 2024). The teacher
models are obtained by training various sizes of
Qwen-2.5 Instruct models using SFT with iden-
tical hyperparameters. Performance is primarily
measured by validation loss, with lower values in-
dicating higher accuracy (see Table 1).

In a single-stage, word-level training setup,
the Forward KL (FKL, β = 0) loss achieves

1“One-shot” indicates pruning without re-training.

the lowest validation loss, outperforming the
Jensen–Shannon Divergence (JSD, β = 0.5), SFT,
and Reverse KL (RKL, β = 1.0) approaches.
Notably, a larger teacher model does not neces-
sarily lead to superior outcomes; for example, a
3B→1.5B distillation can outperform a 7B→1.5B
configuration.

In contrast, a two-stage approach—an initial
word-level distillation phase followed by on-
policy training with the FKL loss (oFKL)—
consistently yields better performance than single-
stage training alone. Our experiments show that
initializing the second stage with the best check-
point from the first stage (e.g., an FKL-distilled
model) is more effective than starting from either
an SFT model or the original, non-SFT model.
Additionally, an on-policy sampling fraction of
1.0 maximizes accuracy, although a fraction of 0.5
(fr=0.5) may be preferred when faster training is
desired. We also observe that generating approx-
imately 300 tokens in this task (denoted as tk in
Table 1) during on-policy updates strikes an opti-
mal balance between performance and efficiency,
outperforming both 200-token and 400-token al-
ternatives, while a generation temperature in the
range of 0.8–0.9 is generally most effective.

Interestingly, the student model can sometimes
surpass the teacher’s performance. In the two-
stage training paradigm, employing larger teacher
models (e.g., 14B rather than 7B or 3B) appears to
provide additional benefits for the 1.5B student, al-
though this trend is less pronounced in the single-
stage FKL-only training.

Overall, these findings underscore the effective-
ness of a two-stage training strategy: an initial
supervised fine-tuning phase establishes a strong
generative foundation, and subsequent on-policy
distillation refines the model’s capabilities, lead-
ing to improved generalization and performance.

To further study the effectiveness of our distil-
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Ablation Training Method Val Loss

Baseline

SFT 0.2236
3B-SFT 0.2081
7B-SFT 0.1941

14B-SFT 0.1771

Single Stage

FKL 0.2045
FKL (3B) 0.2015

JSD (β = 0.5) 0.2143
RKL 0.2333
oFKL 0.2107

Two Stages

SFT-SFT 0.2295
SFT-oFKL 0.1982
FKL-oFKL 0.1939

FKL-oFKL (tk=200) 0.1910
FKL-oFKL (tk=300) 0.1894
FKL-oFKL (tk=400) 0.1910

FKL-oFKL (tk=300, fr=0.5) 0.1917

Different Teachers

FKL (3B)-oFKL (3B) 0.1954
FKL (3B)-oFKL (7B) 0.1918
FKL (7B)-oFKL (7B) 0.1894

FKL (14B)-oFKL (14B) 0.1863

Table 1: Validation losses for various training methods
and ablations. Unless explicitly specified (e.g., FKL
(3B) indicates distillation using the 3B-SFT model as
the teacher), the default teacher is the 7B-SFT model.

Model AUC Delta (%)
8B Distilled Model -
6.4B Pruned Model (20%) + SFT -0.47%
6.4B Pruned Model (20%) + Distillation -0.06%

Table 2: Distillation vs. SFT for post-pruning retrain-
ing.

lation recipes, we apply them to other open source
models. In particular, we use the Qwen3 (Yang
et al., 2025) model family. On an internal reason-
ing task, using the same recipes discussed above,
we distill a Qwen3 14B model into a Qwen3 4B
student model that matches the same accuracy
without any performance drops. In addition, using
the OpenThoughts reasoning dataset (Guha et al.,
2025), we distill the Qwen3 32B reasoning model
into Qwen3 8B and 4B student models. We evalu-
ate the student models on AIME 2024 (and 2025)
(Habib et al., 2023) benchmarks. Using our re-
copies, we improve the student model’s perfor-
mance by more than 20% for the 8B student model
and 15% for the 4B student model compared to
their initial base model.

5 Experimental Results for Predictive
Tasks

5.1 Knowledge Distillation Findings

To evaluate how knowledge distillation (KD) af-
fects model generalization, we compare it against
standard supervised fine-tuning (SFT). We fo-
cus on the task performance retention of the dis-
tilled (or fine-tuned) student models relative to
the original foundation model (FM). Specifically,

Model AUC Delta (%)
8B Model -
6.8B Pruned Model 0.0%
6.4B Pruned Model -1.33%
6.0B Pruned Model -1.72%

Table 3: Evaluation of the 8B-parameter model post-
SFT and its pruned variants, focusing on MLP pruning
performed in a one-shot manner (i.e., no retraining after
pruning).

Model #Params AUC Delta (%)
3B (Distilled from FM) 3B -
MLP Prune + Distill 2.4B -0.12%
MLP Prune + Distill (Gradual) 2.4B 0.03%

Table 4: Comparison of one-step vs gradual pruning
for a 3B model distilled from the FM.

we use Llama-3.1-8B-Instruct and Llama-3.2-3B-
Instruct (Dubey et al., 2024) as our student mod-
els. These models offer strong performance while
remaining sufficiently compact for throughput-
and latency-sensitive environments. In both KD
and SFT, responses are generated from the ground-
truth action-prediction labels. For KD, the per-
token loss is a weighted combination of: 90%
forward KL divergence between teacher and stu-
dent logits, and 10% cross-entropy loss with the
ground-truth labels.

Additionally, we include an extra 5% loss con-
tribution computed over the entire sequence (in-
cluding the prompt), normalized by its token
count. Thus, 95% of the loss is computed solely on
action prediction tokens (i.e., yes/no token), while
the remaining 5% is computed over the prompt to-
kens. This allows the model to maintain its foun-
dation model knowledge, helping generalization
to unseen tasks.

Each KD and SFT configuration undergoes
hyperparameter tuning (e.g., peak learning rate,
warmup schedule, decay schedule, and weight de-
cay). Figure 2 summarizes the results by reporting
the AUC delta relative to the original FM (which
achieves the best performance). The main obser-
vations are:

• SFT: The 3B and 8B student models fine-
tuned only with SFT underperform compared
to the FM, which is expected given their
smaller size and post-training. The perfor-
mance drop for the 3B model (−1.21%) is
larger than that of the 8B model (−0.62%).

• KD: Using logit supervision from the FM
consistently preserves task performance bet-
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Model #Params AUC Delta (%)
MLP Pruning 2.4B -
∧ + Attention Pruning 2.1B -1.07%
∧ + Distillation 2.1B 0.02%

Table 5: Results for attention pruning. We consider
the 2.4B gradual pruning model from Table 4 as the
base. The second row shows the result for one-shot
attention pruning, while the last row shows the results
after performing distillation.
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Figure 2: Comparison of Distillation and SFT on the
Foundation Model. Knowledge distillation consistently
outperforms SFT by effectively leveraging teacher su-
pervision to preserve and enhance performance.

ter than SFT. The 8B-KD model shows
a minor AUC drop of −0.06% (compared
to −0.62% for 8B-SFT), while the 3B-KD
model (-0.15%) substantially mitigates the
loss relative to 3B-SFT (−1.21%). These re-
sults demonstrate the effectiveness of KD for
transferring knowledge.

5.2 Post-training Compression Findings

After obtaining the distilled student models, we
apply structured pruning and on-the-fly FP8 quan-
tization to further compress the model to meet
our serving latency requirements (steps outlined
in Figure 1). Since the distilled models (DMs)
are decoder-only transformers, our approach fo-
cuses on applying structured pruning to remove re-
dundant MLP up/down projection neurons, as well
as attention heads in each transformer layer while
preserving its capabilities on in-domain ranking
tasks. Since an off-the-shelf application of one-
shot pruning can result in a loss in model quality
(utility), we apply targeted fine-tuning after each
pruning step to ensure that the model adapts to its
reduced size without significant performance loss.

To this end, we again leverage knowledge distil-
lation to bridge the gap between the original and
pruned models, transferring key insights and en-
suring the pruned version closely aligns with the
outputs of the original foundational model.

For structured pruning, we leverage the OSS-
CAR algorithm (Meng et al.) (see Section A.2
for details on methodology). We now discuss the
details of various ablations that we conducted to-
wards structured pruning.
Effect of SFT vs. distillation As illustrated in
Figure 1, we employ OSSCAR to prune the dis-
tilled model in a layerwise fashion. After pruning,
we use either SFT or KD to restore any lost gener-
alization, with the unpruned distilled model serv-
ing as the teacher. To demonstrate the effective-
ness of each approach, we examine an 8B distilled
model and its 6.4B pruned counterpart (i.e., 20%
pruning of the MLP layers). Table 2 presents the
results. Consistent with the findings for pure dis-
tillation, the pruned model benefits significantly
more from KD than from SFT. Results for the 3B
model (pruned to 2.4B) mirror this trend and are
omitted for brevity.

While SFT offers a more straightforward opti-
mization path, distillation provides additional flex-
ibility by leveraging teacher–student training to re-
fine model weights more effectively. In practice,
the choice of distillation algorithms and associated
losses (e.g., forward KL combined with SFT loss)
may vary depending on data availability, compu-
tational constraints, and the chosen pruning ratio.
Nevertheless, in most cases, including a forward
KL term proves highly beneficial in counteracting
the performance drop associated with pruning.

Pruning the 8B and 3B distilled models down to
6.4B and 2.4B, respectively, can yield further im-
provements in serving efficiency. Additional de-
tails on deployment are provided in Section 6.
Effect of degree and schedule of pruning We
next investigate how varying the pruning ratio im-
pacts downstream task accuracy. Table 3 reports
one-shot pruning results (i.e., no SFT or KD is ap-
plied post-pruning) on an 8B model that has un-
dergone an SFT stage (based on Llama-3.1- 8B-
Instruct) comparable to the foundation model. As
expected, more aggressive pruning reduces model
size but also significantly degrades task accuracy.
Notably, small pruning ratios (e.g., from 8B to
6.8B) have minimal effect on performance, while
heavier pruning leads to larger accuracy drops.
However, as shown in Table 2, such performance
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losses can be mitigated by applying distillation.
We also explore gradual pruning (Benbaki

et al., 2023; Meng et al., 2024b) in which the
model is pruned in multiple steps, with knowl-
edge distillation after each pruning. Table 4 sum-
marizes results for pruning a distilled 3B model
to 2.4B (a 37.5% MLP sparsity) either in a single
step or in two smaller steps (removing 1536 hid-
den neurons in each step, for a total of 3072). The
gradual approach recovers model AUC better than
the single-step approach, achieving near-lossless
compression from 3B to 2.4B.

Finally, to study attention-head pruning, we
take the 2.4B model obtained by gradual MLP
pruning and prune half of its attention heads via
OSSCAR in a one-shot manner, followed by KD.
Table 5 shows that one-shot attention pruning in-
curs a modest quality loss, but the subsequent KD
phase restores the model to AUC parity with the
2.4B baseline.

We also analyze the effect of calibration data
for pruning and results are summarized in Ap-
pendix B.2

6 Deployment

6.1 Predictive use case in RecSys

SLM variants of the RecSys use case have been
deployed to a large-scale A/B test.
Serving Infrastructure For all use cases, we
benchmark and serve traffics using nodes with 256
CPU cores, 2TB of host memory and 8 NVIDIA
H100 GPUs. As discussed in Appendix A.3, we
deploy SGLang (version 0.4.1) as the serving en-
gine. We use tensor parallelism to concurrently
use more than 1 GPU for inference. To maxi-
mize performance, we employ FP8 quantization
for both weights and activations and use FlashIn-
fer (Ye et al., 2025) as the primary attention back-
end. Moreover, SGLang incorporates RadixAt-
tention, which enables prefix caching for prompts
sharing common prefixes.
Workloads For the RecSys workload, we follow
the prompt structure outlined in Section 2 and uti-
lize context lengths of 16k and 32k. Given the pre-
dictive nature of the task, the output length (i.e.,
the number of generated tokens) is set to 1, ren-
dering the workload heavily dependent on the pre-
fill phase. Consequently, optimizing the prefill
stage is crucial for performance. For instance, pre-
fix caching substantially improves prefill (and de-
code) times when a prompt’s key (K) and value

(V) tensors for its shared prefix have already been
processed. In cases where there are k candidate
items to be ranked for a member m, k prompts are
served. These prompts share a long prefix contain-
ing the user information and historical item inter-
actions. Once one prompt is served, its KV ten-
sors are cached, allowing subsequent prompts for
the same member to reuse the cached data - the
process we refer to as a hot prefill.
Metrics We use two key metrics - time to first to-
ken (TTFT) and time per output token (TPOT).
For prediction tasks that are prefill-intensive,
TTFT is the primary metric as it reflects the dura-
tion of the prefill phase. For generative tasks, both
TTFT and TPOT are important. We report the total
serving throughput for various context lengths.
Results In terms of quality, the models under
consideration perform similarly with comparable
AUCs. For performance, we report TTFT and
throughput measurements for both 16k and 32k
context lengths. P99 TTFT results for a work-
load with 1 QPS (i.e., m = 1) and 1 or more
prompt per member (i.e., k = 1 or more) can be
found in Figure 3 (detailed p50, p99 and through-
put numbers can be found in Tables 8, 9 and 10
in Appendix B.3). From the results, we can con-
clude that latency drops drastically as model size
becomes smaller. Serving traffic with 32k context
is significantly slower than that with 16k context.
Setting k more than 1 doesn’t hurt latency much,
because of KV caching.

To better understand the effect of model pruning
on inference latency, we present the break down of
forward pass for a single layer in Figure 4. As it
can be seen, the attention step is the main latency
bottleneck. Our structured pruning of the attention
heads improves the attention latency by about 40%
which in turn results in more than 28% speed up
in prefill latency.

6.2 Generative use case in RecSys
The reasoning task in RecSys was launched on-
line for an 1% A/B test. Along with data changes,
KD helped the model improve by 20.29% on an
internal quality metric (IQM). We also discuss de-
ployment lessons from a generative use case to
study the effect of different quantization schemes
on model inference speed and accuracy.
Serving Infrastructure Our setup is mostly sim-
ilar to Section 6.1. However, in addition to using
NVIDIA H100 GPUs, we also study the effect of
using older NVIDIA A100 GPUs. To this end, we
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Figure 3: P99 TTFT (ms) for various LLMs

Model P50 TTFT (ms) P50 TPOT (ms) GPU
FP16 136 10.3 H100
FP8 122 9.4 H100
FP16 332 18.3 A100

W8A8 (INT) 227 12.9 A100
W4A16 (INT) 389 11.2 A100

Table 6: Comparison of different quantization methods
for the Llama-3 8B model.

use the vLLM backend (version 0.6.1) for serving.
We use 1 GPU for serving.
Workloads The workload here consists of
prompts with varying lengths, averaging to 3.8k
tokens per request, with 1 request per second. The
output generation is capped to 2k tokens. As we
focus on a generative task here, we report both
TTFT and TPOT. We study a Llama3-based model
with the 8B size, and consider several serving sce-
narios with or without quantization using different
hardware.
Performance Results The inference speed results
are reported in Table 6. Using the state-of-the-
art H100 GPUs results in faster inference (both
in terms of TTFT and TPOT) compared to A100
GPUs. In particular, we observe that FP8 serv-
ing with H100s leads to the smallest TTFT and
TPOT. However, for A100 GPUs, INT4(W4A16)
quantization yields the most speed-up, while INT8
(W8A8) is more appropriate for prefill-heavy
tasks. For the sake of completeness, we present a
brief comparison of quantization methods in terms
of accuracy in Appendix B.1.

7 Limitations

In this paper, we have studied extensively on the
training and deployment of efficient SLMs for in-
dustry use cases in Recommendation Systems. We
do not study any use cases beyond that; thus, our
work does not cover all the techniques related to
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Figure 4: Latency breakdown of a single Transformer
block for pruned and unpruned models. At longer con-
text sizes, attention is a bottleneck.

efficient LLM deployment and training. There are
several limitations that we want to briefly mention
here:

1. We did not include the state-of-the-art
(SoTA) sparse attention techniques due to the In-
ference Engine compatibility issues. Recent work
such as Star Attention (Acharya et al., 2025)
has shown promising results in offline inference
speedup. We have explored SoTA sparse attention
techniques and achieved >3x of offline inference
speedups. However, the SGLang inference engine
currently does not support those techniques. We
are working closely with the SGLang team to align
with their roadmap, and hopefully to enable those
features in the near future.

2. For the LLM model pruning techniques dis-
cussed in this paper, we focus only on structured
pruning due to its elegant theoretical guarantees
and hardware efficiency. However, recent work in
unstructured pruning (Jeong et al., 2025; Muñoz
et al., 2024) has shown promising performance in
inference speed-ups and model quality preserva-
tion. A future direction could be to combine un-
structured sparsity with structured pruning to fur-
ther enhance LLMs inference efficiency. To this
end, one can draw inspiration from recent work
on algorithmic approaches for unstructured spar-
sity (Meng et al., 2024a; Sun et al., 2023). Other
directions include exploring compression strate-
gies adaptive to downstream parameter efficient
fine-tuning (Makni et al., 2025).
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A Methods

In this section, we detail various techniques that
allow SLMs to retain strong generalization or
task-specific performance, while allowing effi-
cient serving from a latency or throughput stand-
point. Specifically, we discuss training via knowl-
edge distillation and post-training model compres-
sion. We also intersperse serving and training effi-
ciency concerns across the entire section.

A.1 Knowledge Distillation
Modern LLMs work with tokens as the currency
of input and output. Let x = [x1, x2, x3, . . . ]
represent an input prompt consisting of a se-
quence of tokens. Given this prompt, a large lan-
guage model (LLM) generates a response y =
[y1, y2, y3, . . . , yT ], producing tokens sequentially
in an autoregressive manner. An LLM models the
probability distribution qθ(y|x), parametrized by
θ.

Knowledge distillation (KD) (Hinton, 2015)
transfers knowledge from a larger and expressive
“teacher” model to a smaller “student” model, al-
lowing the latter to approximate teacher perfor-
mance with reduced computational resources. KD
can be broadly performed in two different ways
(1) by leveraging the output of a teacher model to
train the student (Tunstall et al., 2023; Guo et al.,
2025)(also known as black-box distillation) or (2)
by leveraging intermediate outputs (Muralidharan
et al., 2024; Hinton, 2015) (also known as white-
box distillation). White-box distillation using the
soft probabilistic outputs of the teacher is a pow-
erful technique and helps provide richer informa-
tion than hard labels used in supervised fine-tuning
(SFT), helping the student generalize better, espe-
cially in tasks where smaller models struggle to
discover patterns in noisy data.

We consider white-box KD using a training ob-
jective with the following general structure. For-
mally, given a fixed teacher model distribution
p(y|x), the student model qθ under the same vo-
cabulary is trained by minimizing the following
objective:

L[py,D(p∥qθ)] = (3)

Ex∼pxEy∼py(·|x)

[
T∑

t=1

D
(
p(·|y<t,x)∥qθ(·|y<t,x)

)
]

where py denotes the distribution from which the
response y is sampled, D is a divergence measure

between two next-token distributions, and T is the
maximum response length. This objective empha-
sizes two aspects:

1. Responses are drawn from py, which may
correspond to ground truth data, the teacher
model (sequence-level KD) (Kim and Rush,
2016), or the student model itself (on-policy
KD) (Agarwal et al., 2024; Gu et al., 2024;
Zhou et al., 2023). Recent advancements (Xu
et al., 2024; Ko et al., 2024) explore a balance
between on-policy and off-policy sampling
to mitigate the mismatch between student-
generated responses and the teacher’s distri-
bution while addressing inefficiencies in on-
line student autoregressive training.

2. The student model is optimized to minimize
the discrepancy between its next-token dis-
tribution qθ and the teacher’s predictions p,
ensuring knowledge transfer across the re-
sponse sequence.

In this work, we explore different KD strategies
based on the task requirements. We also experi-
ment with various student initialization techniques
and divergence measures.

Let V denote the vocabulary. The commonly
used divergences are:

• Forward Kullback-Leibler (KL) Divergence
(FKL):

DFKL [p(yt|y<t,x)∥qθ(yt|y<t,x)]

=
∑

i∈V
p(i|·) log

(
p(i|·)
qθ(i|·)

)
,

• Reverse Kullback-Leibler Divergence
(RKL):

DRKL [p(yt|y<t,x)∥qθ(yt|y<t,x)]

=
∑

i∈V
qθ(i|·) log

(
qθ(i|·)
p(i|·)

)
,

• Jensen-Shannon Divergence (JSD):

DJS(β) [p(yt|y<t,x)∥qθ(yt|y<t,x)]

= βDFKL [p∥m] + (1− β)DFKL [qθ∥m] ,

where m = βp + (1 − β)qθ is the mixture
distribution.
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A.2 Post-training model compression
Model compression is a widely studied area of
machine learning. We specifically focus on post-
training compression (PTC) techniques for im-
proving the inference efficiency of LLMs.

In post-training compression, we apply com-
pression to the model after training. A com-
mon compression procedure is based on pruning
or quantizing the model weights of a pre-trained
model but it can result in large loss in model utility
due to which alternative approaches are preferred.
Specifically, recent compression procedures em-
ploy a layerwise approach (Equation 4) where the
utility for every layer in a model is retained (to
the extent possible) by minimizing a suitable lay-
erwise objective function based on a calibration
dataset — this approach can be scaled to large
models while retaining model utility, and we use
this method in our work.

We describe a mathematical framework for lay-
erwise PTC using calibration data. Let X ∈ Rn×d

denote the calibration data that serve as inputs to
a linear layer of the model (e.g., an MLP or an
attention projection). Here, n is the number of to-
kens in the calibration dataset, and d is the input
dimension of the layer. For instance, in the case of
an MLP down projection layer of a Transformer
block, d corresponds to the intermediate size of
the model.

Furthermore, let W ∈ Rd×p denote the weight
matrix of the layer, where p is the output dimen-
sion. In the MLP down projection example, p rep-
resents the hidden size of the model. We denote
by Ŵ ∈ Rd×p the weight matrix after compres-
sion. The layerwise reconstruction error is defined
as ∥XW −XŴ∥2F . Thus, for each layer that un-
dergoes compression, we consider an optimization
problem of the form

min
Ŵ

∥XW−XŴ∥2F subject to Ŵ ∈ Q, (4)

where Q ⊆ Rd×p denotes the set of feasible
solutions that conform to a particular compres-
sion scheme (eg, unstructured or structured prun-
ing, quantization, etc), In practice, the set Q of-
ten exhibits a discrete structure, which renders
the optimization problem in (4) challenging to
solve. Past work has shown that a better optimiza-
tion procedure for Problem (4) generally results in
better utility-compression tradeoffs (Meng et al.,
2024a,b; Behdin et al., 2023), which motivates the
approaches we used in our work.

Here, we consider two compression techniques:
Quantization In quantization, the model weights
are represented in lower precision, using a fewer
number of bits. Quantization has proved to be suc-
cessful in the LLM domain, to obtain compressed
models with small accuracy loss (Frantar et al.,
2022; Xiao et al., 2023). In this work, we con-
sider weight-only quantization, where only model
weights are quantized, as well as weight and ac-
tivation quantization. We study methods such as
GPTQ (Frantar et al., 2022) and QuantEase (Be-
hdin et al., 2023) for 4-bit weight-only quanti-
zation (aka W4A16), SmoothQuant (Xiao et al.,
2023) for 8-bit weight-and-activation quantiza-
tion (aka W8A8), and 8-bit floating-point (FP8)
quantization. Since quantization is dependent on
hardware, we discuss the details of quantization-
related experiments in Section 6 (deployment).
Structured Pruning Post-training neural network
pruning has old roots (LeCun et al., 1989; Has-
sibi et al., 1993) – the basic idea is to identify
“redundant” model weights and set them to zero
to reduce model footprint. Recently, due to in-
creasing challenges associated with large mod-
els, advanced algorithms have been explored for
pruning neural networks at the post-training stage.
Some unstructured pruning methods for LLMs us-
ing layerwise reconstruction error include Meng
et al. (2024a); Frantar and Alistarh (2023); Sun
et al. (2023). Other pruning approaches us-
ing loss functions different from layerwise re-
construction error include approaches based on
global Fisher loss (Benbaki et al., 2023; Meng
et al., 2024b, and references therein), layerwise
loss functions that depend upon the future lay-
ers (Lucas and Mazumder, 2024), and low-rank
fine-tuning adapted loss functions (Makni et al.,
2025)[see references therein] — we leave the ex-
ploration of these approaches as interesting direc-
tions for future research.

Without any structure on the model sparsity,
however, it can be difficult to realize any infer-
ence acceleration from pruning2. Therefore, in
this work, we pursue a structured pruning ap-
proach. In structured pruning, the goal is to obtain
smaller models via removing some neurons from
the model weights. In particular, we study MLP
pruning, where the goal is to reduce the interme-
diate size of the model via removing some hidden

2Some of the approaches discussed above apply (Meng
et al., 2024a; Sun et al., 2023) to semi-structured pruning such
as 2:4 sparsity which is different from structured pruning.
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neurons in feed-forward layers. We also study at-
tention pruning, where we remove a certain num-
ber of attention heads from the model (Meng et al.;
Kwon et al., 2022; Kurtić et al., 2024). In this
paper, we use OSSCAR (Meng et al.) which
uses a discrete optimization approach for struc-
tured pruning. OSSCAR can be scaled to the
large-scale problems we consider here. We use
OSSCAR as it can result in state-of-the-art perfor-
mance when it comes to post-training structured
pruning of LLMs and leads to the least drop in ac-
curacy when compared to other methods.

A.3 Training and serving efficiency
Despite significant algorithmic advances, the chal-
lenges of training and serving LLMs persist. Ef-
ficient training and serving remain critical for
practical deployment, requiring ongoing improve-
ments in kernel optimization, distributed training,
and inference acceleration.
Training Efficiency LLM training presents a
formidable challenge due to the sheer scale of
these models and the quadratic complexity of
transformer architectures. Model FLOPs utiliza-
tion (MFU) (Chowdhery et al., 2023) is com-
monly used to measure GPU efficiency, making
it necessary to optimize kernel operations and dis-
tributed training strategies. We have implemented
Liger Kernel (Hsu et al., 2025) in Triton (Tillet
et al., 2019), incorporating several key optimiza-
tions. First, we employ kernel fusion to reduce
repetitive memory transfers between SRAM and
DRAM. Next, we adopt in-place tensor modifica-
tions to avoid creating additional tensors whenever
possible, thus lowering the memory footprint. We
also apply chunking, which prevents the full ma-
terialization of large tensors and provides tuning
flexibility while maintaining comparable perfor-
mance. In combination, these optimizations re-
duce training time by 20% and memory usage by
60%. Additional performance-memory tradeoffs
such as gradient checkpointing and CPU offload-
ing can lead to as much as a threefold speedup.

For distributed training, we use ZeRO (Ra-
jbhandari et al., 2020) to shard model param-
eters and data across multiple GPUs, overlap-
ping computation with communication to sustain
high MFU. Together with the DeepSpeed team,
we have optimized the ZeRO algorithm, and for
network-constrained clusters, we have developed
ZeRO++ (Wang et al., 2023a; Dai et al., 2024) to
mitigate non-deterministic synchronization issues

that can hinder convergence. ZeRO++ provides a
2.4× speedup over vanilla ZeRO.

Serving Efficiency Serving LLMs efficiently
poses unique challenges due to both high compu-
tational demands and strict latency requirements.
In production environments, the choice of serv-
ing frameworks is pivotal for maximizing through-
put and minimizing response times. Several so-
lutions, including vLLM, SGLag, TRT-LLM, and
MLC-LLM (Kwon et al., 2023; Zheng et al., 2024;
NVIDIA, 2024; team, 2023-2025), have been pro-
posed to address these needs. In our use cases,
we extensively evaluated vLLM and SGLang.
Our benchmarks revealed that SGLang is better
suited to our workloads because its radix tree-
based caching mechanism aligns well with our us-
age patterns and it integrates tightly with Flash-
Infer (Ye et al., 2025), whose efficient attention
kernels accelerate the sequence lengths and batch
sizes we typically handle.

To further improve serving performance, we de-
ploy our models on NVIDIA H100 GPUs at FP8
precision, striking a practical balance between
computational efficiency and model quality. Ad-
ditional details regarding our LLM serving engine
configurations can be found in Section 6.

B Additional Numerical Experiments

B.1 Comparison of Quantization Methods

We present a comparison of different quantiza-
tion methods. We use the Meta Llama 3.1 8B In-
struct model, and quantize the model using 1024
samples from the open source C4 (Raffel et al.,
2020) dataset as the calibration set. We report the
zero-shot accuracy of the model on three open-
source tasks PIQA (Bisk et al., 2020) and ARC
easy/challenge (Clark et al., 2018). We com-
pare W8A8 quantization with SmoothQuant (Xiao
et al., 2023), FP8 quantization on H100 GPUs, and
W4A16 quantization with GPTQ (Frantar et al.,
2022) and QuantEase (Behdin et al., 2023). The
results are shown in Table 7. We see that 8-bit
quantization generally has a small loss of accu-
racy. On the other hand, GPTQ with W4A16
shows some model quality degradation. However,
using QuantEase for better optimization helps to
reduce the model quality gap. In our internal ex-
periments, we have observed similar trends when
comparing different methods.
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Model ARC-c ARC-e PIQA
FP16 0.5299 0.8136 0.7982
FP8 0.5179 0.8056 0.7922

W8A8-INT 0.5171 0.8123 0.7954
W4A16-INT-GPTQ 0.436 0.7306 0.7437

W4A16-INT-QuantEase 0.5077 0.8068 0.7954

Table 7: Comparison of different quantization schemes
with the Llama 3.1 8B Instruct model.
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Figure 5: Comparison of one-shot pruning methods.
The bars indicate the drop (in percentage points) rela-
tive to the full precision baseline. The pruned model is
a 6.4B model (20% MLP pruning).

B.2 Effect of calibration data for Pruning

Figure 5 captures the effect of the calibration
dataset X (discussed in Section A and Equa-
tion (4)) on the accuracy of the pruned versions
of the 8B student model (results for the 3B model
are similar and are hence omitted for clarity). The
Full Precision bar illustrates the baseline accuracy
of the non-pruned model. We consider two dif-
ferent datasets for calibration - C4 (Raffel et al.,
2020), an open source dataset, and an in-domain
dataset. When we prune using a randomly sam-
pled portion of the C4 dataset (1,024 or 4,096 ex-
amples), accuracy drops, although more samples
mitigate this drop to an extent. These results indi-
cate that increasing the number of calibration ex-
amples from 1,024 to 4,096 can partially recover
lost accuracy due to pruning. However, leverag-
ing fewer but more domain-specific samples (350
or 700 examples from the target task) yields bet-
ter accuracy values, which closely match the full
precision baseline. This highlights the importance
of using task-relevant data for calibration, even if
it involves fewer examples, as it can produce more
accurately pruned models than generic calibration

sets.

B.3 Extra tables for Section 6

Model P50 TTFT (ms) P99 TTFT (ms) Throughput
FM 1032 1039 14127
8b 271 282 14121
6.4B 256 269 14121
3B 195 209 14121
2.4B 189 197 14122
2.1B 171 184 14110

Table 8: Results for m = 1, k = 1 for 16k context
length using 4 GPUs (tp=4).

Model P50 TTFT (ms) P99 TTFT (ms) Throughput
FM 407661 45791 15740
8b 626 643 28427
6.4B 600 613 28427
3B 452 472 28423
2.4B 437 456 28422
2.1B 367 391 28420

Table 9: Results for m = 1, k = 1 for 32k context
length using 4 GPUs (tp = 4).

Model P50 TTFT (ms) P99 TTFT (ms) Throughput
FM 179483 370376 45081
8b 646 671 115568
6.4B 626 655 115560
3B 477 500 115546
2.4B 465 488 115544
2.1B 378 403 115520

Table 10: Results for m = 1, and k = 4 for 32k context
length using 4 GPUs (tp=4).

C Implementation and Efficiency
Checklist

We provide an open source implementation of all
methods discussed in this paper, in addition to
examples to recreate our distillation and pruning
pipelines. Our python package can be found at
https://github.com/linkedin/FMCHISEL.

Additionally, we summarize the lessons from
our experiments by providing a practical check-
list to create efficient SLMs through distillation
and pruning for a specific task. We assume one
has access to a family of pre-trained LLMs such
as Llama.

1. Create a teacher model, for example, by
fine-tuning a large pre-trained on the desired
task(s).

2. Perform distillation using the teacher model
developed above, and a variety of student
models.
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3. Find the smallest student model that meets
the desired quality bar.

4. Perform profiling on the selected student
model to identify inference bottlenecks.

5. Prune and distill the selected student model,
targeting bottlenecks identified above, until
the pruned model’s quality approaches the
quality bar. This is the final model that will
be deployed.

6. Perform extensive benchmarking under vari-
ous workloads and scenarios (such as hard-
ware failure, bursty traffic, etc.) to obtain
a conservative estimation of the number of
GPUs required.

D Ethical Concerns

This paper presents a methodological study of
model compression techniques such as model
pruning and knowledge distillation. These tech-
niques aim to ensure the compressed models pro-
duce similar predictions compared to the original
ones and hence, these methods do not pose any
inherent ethical concerns. The analysis of larger
(teacher) models is out of the scope of this paper.

1702

https://github.com/linkedin/FMCHISEL

