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Abstract

Deploying natural language processing (NLP)
models on mobile platforms requires models
that can adapt across diverse applications while
remaining efficient in memory and computa-
tion. We investigate pre-finetuning strategies to
enhance the adaptability of lightweight BERT-
like encoders for two fundamental NLP task
families: named entity recognition (NER) and
text classification. While pre-finetuning im-
proves downstream performance for each task
family individually, we find that naïve multi-
task pre-finetuning introduces conflicting op-
timization signals that degrade overall perfor-
mance. To address this, we propose a simple
yet effective multi-task pre-finetuning frame-
work based on task-primary LoRA modules,
which enables a single shared encoder back-
bone with modular adapters. Our approach
achieves performance comparable to individ-
ual pre-finetuning while meeting practical de-
ployment constraint. Experiments on 21 down-
stream tasks show average improvements of
+0.8% for NER and +8.8% for text classifi-
cation, demonstrating the effectiveness of our
method for versatile mobile NLP applications.

1 Introduction

Mobile applications such as automatic calendar
event creation from emails and personalized rec-
ommendations based on messages rely on solving
multiple natural language processing tasks, particu-
larly text classification and named entity recogni-
tion (NER). Solutions often employ either gener-
ative large language models (Wang et al., 2024a;
Constantin et al., 2024) or BERT-like encoder mod-
els (Devlin et al., 2019), the latter are better suited
for on-device deployment due to the demands of
memory and computational efficiency.

As illustrated in Fig. 1, mobile operating sys-
tems (e.g., Android AICore) deploy a shared lan-

*Correspondence to: {junyi.zhu, savas.ozkan,
m.ozay}@samsung.com

Figure 1: An illustration of the practical deployment
setting on mobile device. Mobile applications (APP-
{1 . . . 4}) use the language model by calling system API
and sending their job with task-specific model adapters.
Adapters are often in form of LoRA or linear classifier.

guage model backbone that can be invoked by ap-
plications along with their task-specific adapters,
such as Low-Rank Adaptation (LoRA) (Hu et al.,
2022) or linear classifiers. This setup requires a
highly generalizable backbone—achieved through
adapter-based tuning—since mobile applications
are diverse and new ones continue to emerge after
system deployment.

Directly fine-tuning a pre-trained BERT-like en-
coder often yields sub-optimal results, particularly
when the available data for an application’s sub-
task is limited. This is because the pre-trained rep-
resentations—optimized primarily through masked
language modeling (Devlin et al., 2019; Liu et al.,
2019b)—may not align well with the objectives of
downstream tasks. To address this misalignment, a
pre-finetuning stage can be introduced:

Unlike pre-training, pre-finetuning focuses on
objectives that are better aligned with the tar-
get task, using data that typically includes task-
relevant annotations. Unlike downstream adap-
tation, however, pre-finetuning is performed on
general, large-scale datasets, and its objectives

1674



are not limited to specific sub-tasks such as pre-
dicting a fixed label set. This process enables
the model to acquire more task-relevant repre-
sentations, thereby improving its adaptability
to downstream tasks.

In this work, we investigate pre-finetuning strate-
gies to enhance the adaptability of a pre-trained
BERT-like encoder across two downstream task
families: NER and text classification. We use the
term task families because each comprises multi-
ple sub-tasks spanning diverse domains, label sets,
or entity types. As these task families depend on
distinct representational characteristics—context-
level for text classification and token-level for
NER—we first implement and evaluate dedicated
pre-finetuning strategies for each in Sec. 4.

Applying two individual pre-finetuning strate-
gies produces separate encoder models, whereas
our deployment setting requires a single shared
backbone (Fig. 1). To address this, we explore
multi-task pre-finetuning. However, we find that
optimizing the model for one task family can de-
grade its adaptability to the other. As a result,
naïve multi-task pre-finetuning—i.e., multi-task
pre-finetuning without proper separation—often
fails to match the performance of individual pre-
finetuned models. In Sec. 5, we analyze this issue
and identify an inherent incompatibility between
the pre-finetuning objectives of NER and text clas-
sification.

To address this challenge, we propose a simple
yet effective framework based on LoRA modules,
introduced in Sec. 6, with each module tailored to a
specific task family (Fig. 2). During multi-task pre-
finetuning, we apply LoRA modules to the last few
transformer layers of a pre-trained encoder, updat-
ing each module exclusively with its corresponding
task objective. Unlike conventional LoRA, which
freezes the backbone, we allow the entire encoder
to be jointly updated by both objectives. After
pre-finetuning, the encoder is deployed within the
mobile operating system, while the LoRA modules
are distributed to applications. These modules can
be used directly for inference or as initialization for
downstream task adaptation. We refer to them as
task-primary LoRAs.

Our contributions are:

• We implement two individual pre-finetuning
strategies for NER and text classification
and demonstrate their effectiveness on im-

proving downstream performance (on aver-
age +0.8 across 5 NER sub-tasks and +8.8
across 16 text classification sub-tasks). No-
tably, we propose a novel pre-finetuning strat-
egy for lightweight encoder models on NER
via knowledge distillation (see Sec. 4).

• Despite their individual effectiveness, we
show that the two pre-finetuning strategies
interfere with each other. Through analysis,
we provide experimental evidence that reveals
contradictory evolutions of representational
characteristics, highlighting their incompati-
ble optimization directions (see Sec. 5).

• Building on this analysis, we propose a simple
yet effective multi-task pre-finetuning frame-
work using task-primary LoRAs to resolve the
conflict between strategies. This approach de-
livers a single shared backbone and distributed
task-primary LoRAs, aligning with our de-
ployment constraints (Fig. 1), while achiev-
ing comparable performance to individual pre-
finetuned models (see Sec. 6).

2 Related Work

Text Classification. Advances in text classifica-
tion have been driven by transformer-based mod-
els (Vaswani et al., 2017), with BERT-like en-
coders (Devlin et al., 2019; Liu et al., 2019b) set-
ting benchmarks on tasks such as sentiment anal-
ysis and topic classification. Lightweight mod-
els like MiniLM (Wang et al., 2020) and Distil-
BERT (Sanh et al., 2019) have attracted attention
for their efficiency in resource-constrained environ-
ments, achieving competitive performance with
lower computational cost. Additionally, recent
work increasingly focuses on pre-finetuning strate-
gies, particularly weakly-supervised contrastive
learning with text pairs, which has proven effec-
tive for improving downstream performance (Wang
et al., 2022; Sturua et al., 2024; Günther et al.,
2023b; Zhang et al., 2023).
Named Entity Recognition (NER). NER in-
volves identifying entities (e.g., person names, or-
ganizations) in unstructured text (Jehangir et al.,
2023). Unlike text classification, which assigns
a single label to the entire input, NER requires
token-level predictions. Existing methods fall into
two categories: token classification (Devlin et al.,
2019), which labels each token based on predefined
entity types, and span classification (Ye et al., 2021;

1675



Zhong and Chen, 2020; Aarsen; Zhu et al., 2022),
which detects and classifies text spans. While span
classification often yields better performance, es-
pecially for complex or nested entities, it is less
efficient due to span enumeration and is thus im-
practical for resource-constrained scenarios such as
mobile devices. Similarly, generative approaches
based on LLMs (Wang et al., 2025; Ashok and Lip-
ton, 2023) are unsuitable for deployment on mobile
devices. Given the cost of entity annotation, recent
work has also explored pre-finetuning strategies to
boost downstream performance (Liu et al., 2021;
Bogdanov et al., 2024).

Multi-Task Learning of Text Classification and
NER. Recent studies have explored multi-task
training of models using both document-level and
token-level annotations to improve overall perfor-
mance, primarily in specific domains such as qual-
ity estimation (Deoghare et al., 2023), news recom-
mendation (Bi et al., 2022), and sentiment analy-
sis (Fan et al., 2022). However, a systematic anal-
ysis of multi-task pre-finetuning for diverse text
classification and NER tasks remains largely un-
explored. Additionally, (Feng et al., 2024) trains
multiple domain-specific LoRA modules and uses
a trained routing network to select between them.
In contrast, we focus on training a generalizable
backbone and reducing the number of parameters
proportional to the quantity of downstream tasks.

3 Evaluation of Downstream
Performance

We evaluate pre-finetuning strategies based on their
downstream performance, which involves adapting
the pre-finetuned model to a diverse set of sub-
tasks. In this section, we first describe the evalu-
ation setup. In the following sections, we report
average metrics across all sub-tasks, with detailed
per-dataset results deferred to the appendices.

NER Sub-Tasks. We adopt five NER datasets
spanning diverse domains and entity types: CoNLL
(4 entity types)(Tjong Kim Sang and De Meul-
der, 2003), MIT Restaurant (8 types)(Liu et al.,
2013), BioNLP (5 types)(Collier and Kim, 2004),
OntoNotes5 (18 types)(Hovy et al., 2006), and
CrossNER (39 types) (Liu et al., 2020).

Text Classification Sub-Tasks. We adopt
the widely used MTEB benchmark frame-
work (Muennighoff et al., 2023) and evaluate
on 16 datasets covering a variety of domains:

Figure 2: Illustration of different model configura-
tions for processing inputs: (a) NER model predicts
the entity type of each token; (b) text classification
model extracts a text embedding representing the en-
tire input; (c) our proposed shared encoder with task-
primary (TP) LoRAs supports diverse outputs, with each
LoRA module dedicated to its specific task.

Banking77, Emotion, AmazonCounterfactual,
MassiveIntent, TweetSentiment, ToxicChat,
News, Patent, FinancialPhrasebank, FrenkEn,
IMDB, ArXiv, DBpedia, TweetTopicSingle,
YelpReviewFull, and ToxicConversation.

Adaptation Setup. For text classification sub-
tasks, we follow the standard MTEB protocol, train-
ing a linear classifier on top of pooled token em-
beddings extracted from the encoder. We use mean
pooling, following the configurations adopted in
Jina (Günther et al., 2023a; Sturua et al., 2024; Gün-
ther et al., 2023b) and the E5 model family (Wang
et al., 2022, 2024b). For NER sub-tasks, we apply
LoRA (Hu et al., 2022) and perform token clas-
sification (Devlin et al., 2019). Further details of
training configurations are provided in App. A.

Models. Motivated by deployment requirements
on mobile devices and our stakeholder’s interests,
we conduct experiments using two lightweight
transformer encoders: MiniLM with 33M parame-
ters (Wang et al., 2020) and DistilBERT with 67M
parameters (Sanh et al., 2019). For both models we
consider the English-only version.

4 Pre-Finetuning Strategies for NER and
Text Classification

Pre-finetuning is applied to pre-trained models
prior to their adaptation to downstream tasks. Dur-
ing pre-finetuning the model is further trained on
general, large-scale datasets with learning objec-
tives that are more closely aligned with the target
tasks. Recent works have demonstrated the effec-
tiveness of pre-finetuning for either NER or text
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Model NER (5 DS) TC (16 DS) Average

Base model 76.4 55.1 65.8
PF for NER 77.1+0.7 53.9-1.2 65.5-0.3

PF for TC 74.6-1.8 63.9+8.8 69.2+3.4

Table 1: Comparison of downstream performance
across different pre-finetuning (PF) strategies and
the base model. NER results report the average F1
score over 5 datasets (DS), while text classification (TC)
results report the average accuracy over 16 datasets.
Gain and Loss are measured relative to the base model.
Results for individual datasets are provided in Tabs. 5
and 6. The model architecture used is MiniLM.

classification in isolation. Accordingly, we adopt
and extend these strategies to improve the down-
stream performance of lightweight encoder models
on two task families.

In the remainder of this section, we first describe
our pre-finetuning procedures for the two task fami-
lies, and then analyze the downstream performance
achieved by each approach.

Pre-Finetuning for NER. Bogdanov et al.
(2024) recently proposed using ChatGPT-3.5 to
extract identifiable concepts from large-scale unla-
beled corpora such as C4 (Raffel et al., 2020), re-
sulting in a dataset of 24.4M words, 4.38M annota-
tions, and 200k concepts. A pre-trained RoBERTa
model (Liu et al., 2019b) was then optimized on
this dataset via contrastive learning by aligning en-
tity embeddings with their corresponding concepts,
producing the pre-finetuned NuNER model.

However, NuNER’s embedding alignment effec-
tively performs self-distillation, which poses chal-
lenges for lightweight models used in on-device
applications due to their limited representational
capacity. To address this, we distill knowledge
from NuNER into lightweight models. Specifically,
we adopt NuNER’s 24.4M-word dataset and tag each
token using NuNER outputs. Since NuNER lacks a
classifier head, we extract token embeddings and
apply mini-batch k-means clustering to group them,
assigning pseudo labels based on cluster IDs. Fi-
nally, we train our encoder models—augmented
with a linear classifier—to predict these pseudo la-
bels using cross-entropy loss, see App. B for more
details.

Pre-Finetuning for Text Classification. Follow-
ing recent work (Wang et al., 2022; Günther et al.,
2023b), we apply weakly supervised contrastive
learning to pre-finetune the encoder. Given a paired

corpus D = {(xi, x+i )}Ni=1, where each pair shares
similar semantics, let fθ denote the encoder, and
define the ℓ2-normalized sentence embeddings as:

zi =
fθ(xi)

∥fθ(xi)∥2
, z+i =

fθ(x
+
i )

∥fθ(x+i )∥2
.

Contrastive learning encourages the encoder to
bring semantically similar pairs closer while push-
ing apart unrelated (negative) examples. We adopt
in-batch negatives: for each anchor xi, its paired
text x+i serves as the sole positive, while all other
samples in the minibatch serve as negatives. The
resulting InfoNCE loss (Chen et al., 2020) is:

LCL = − 1

|B|
∑

i∈B
log

exp
(
⟨zi, z+i ⟩/τ

)
∑

j∈B exp
(
⟨zi, z+j ⟩/τ

) ,

where ⟨·, ·⟩ denotes the dot product, and τ is a
temperature parameter (set to 0.05).

To ensure data quality and diversity, we
compile multiple datasets pre-processed by
SentenceTransformers (Reimers and Gurevych,
2019), totaling ∼ 895M text pairs. Further dataset
and training details are provided in App. B.

Downstream Performance after Pre-Finetuning.
We evaluate downstream performance after apply-
ing each pre-finetuning strategy and compare it to
the pre-trained base model. As shown in Tab. 1,
pre-finetuning improves performance within its re-
spective task family, with average gains of +0.7%
for NER and +8.8% for text classification. Addi-
tionally, we observe significant improvement for
NER under data scarcity: when only 10% of the
original downstream train data is used for adapta-
tion, the pre-finetuned model achieves an average
F1 improvement of +8.4% (see App. D for details).

Notably, we observe that each pre-finetuning
strategy hinders adaptation to the opposite task
family, indicating interference between the two ap-
proaches. This effect is consistent across NuNER
and other open-source pre-finetuned models for
text classification (see App. E for details). We ana-
lyze this issue in the next section and introduce our
solution in Sec. 6, which reconciles both strategies
to pre-finetune a unified encoder.

5 Interference Between Pre-Finetuning
for Text Classification and NER

We identify that the interference between pre-
finetuning for text classification and NER stems
from conflicting requirements on token embed-
dings. Our analysis reveals two key findings:
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(a) Text embedding similarity
during NER training.
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(b) Token embedding similar-
ity during TC training.

Figure 3: Similarity trends during pre-finetuning: (a)
perturbed sentences, as illustrated in Fig. 5, become
closer in embedding space when the model is optimized
for NER; (b) token embeddings within the same sen-
tence become more homogeneous when the model is
optimized for text classification (TC).

Finding 1: Different Sentences Appear Simi-
lar After Pre-Finetuning for NER. In the NER
pre-finetuning setup, a linear classifier operates on
token embeddings extracted from the encoder, re-
quiring that tokens representing entities of the same
type be mapped to similar representations. As a re-
sult, pre-finetuning for NER encourages the model
to reduce distinctions between individual entities
of the same type.

To examine this effect, we construct a perturbed
version of the CoNLL test set. We first extract
all entities from the test set and then replace each
entity in a sentence with a randomly sampled entity
of the same type, generating four perturbed variants
per sentence (see Fig. 5 for an example).

Next, we train a model on the CoNLL training
set for NER and use the resulting encoder to extract
text embeddings for both the original and perturbed
sentences. We compute the cosine similarity be-
tween each perturbed sentence and its correspond-
ing original. As shown in Fig. 3a, similarity in-
creases as training progresses, indicating that the
model maps perturbed sentences to increasingly
similar representations. This reduction in represen-
tational distinctiveness can be detrimental to text
classification sub-tasks, which rely on preserving
sentence-level differences.

Finding 2: Token Embeddings of the Same
Input Become More Homogeneous After Pre-
Finetuning for Text Classification. In text clas-
sification, fine-grained token-level distinctions are
less important, as the model focuses on capturing
the overall semantics of the input. We find that
pre-finetuning for text classification encourages the

model to produce more homogeneous token em-
beddings within each input sequence.

To quantify this effect, we compute pairwise co-
sine similarities among token embeddings within
the same sentence, averaging the results over 2,000
samples throughout pre-finetuning. As shown in
Fig. 3b, intra-sentence token similarity increases as
training progresses. This trend explains why pre-
finetuning for text classification may impair adapta-
tion to NER, which relies on preserving token-level
distinctions to classify entities.

6 Multi-Task Pre-Finetuning with
Task-Primary LoRAs (MTPF-TPL)

Multi-Task Pre-Finetuning. As discussed in
Sec. 5, pre-finetuning strategies for NER and text
classification impose conflicting requirements on
token embeddings, leading to incompatible opti-
mization directions. However, our deployment set-
ting requires a single shared encoder (see Fig. 1),
making it necessary to merge these strategies
through multi-task pre-finetuning.

Unlike traditional multi-task learning (Liu et al.,
2015; Ruder, 2017; Liu et al., 2019a), which
typically involves multiple datasets across do-
mains to improve data diversity, our individual pre-
finetuning approach already relies on large-scale,
general-purpose datasets. Instead of seeking com-
plementary benefits, our goal is to resolve the in-
compatibility between the pre-finetuning strategies
for NER and text classification to enable unified
encoder optimization.

Task-Primary LoRAs. Since NER and text clas-
sification favor different token embedding charac-
teristics, we extend the encoder with two groups
of LoRA modules. Unlike the typical use of
LoRA—where the backbone is frozen and only
the LoRA parameters are updated—we allow joint
optimization: each LoRA is updated solely with the
loss of its associated task, while the backbone en-
coder is optimized by both loss functions, serving
as shared parameters (see Fig. 2).

After multi-task pre-finetuning, the backbone en-
coder is deployed as the central model, and the task-
primary LoRAs are distributed to applications for
downstream adaptation. These LoRAs can be used
either as initialization for downstream LoRA adap-
tation or directly for inference with linear probing.
We refer to these pre-finetuning LoRA parameters
as task-primary LoRAs (TPL).

Task-primary LoRAs are inspired by multi-task
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Model Approach PCGrad NER (5 DS) TC (16 DS) Average

MiniLM

Individual − 77.1 63.9 70.5
Base model − 76.4 55.1 65.8
MTPF ✗ 76.4 63.6+8.5 70.0+4.2

MTPF ✓ 76.5+0.1 63.7+8.6 70.1+4.3

MTPF-TPL ✗ 77.1+0.8 63.9+8.8 70.5+4.7

MTPF-TPL ✓ 77.1+0.8 64.1+9.0 70.6+4.9

DistilBERT

Individual − 77.7 64.4 71.1
Base model − 76.9 60.5 68.7
MTPF ✗ 77.2+0.3 64.0+3.5 70.6+1.9

MTPF ✓ 77.2+0.3 63.9+3.4 70.6+1.9

MTPF-TPL ✗ 77.6+0.7 64.4+3.9 71.0+2.3

MTPF-TPL ✓ 77.7+0.8 64.4+3.9 71.1+2.4

Table 2: Comparison of down-
stream performance across dif-
ferent pre-finetuning strategies
and the base model. NER re-
sults represent an average over 5
datasets (DS), while text classifi-
cation (TC) results represent an
average over 16 datasets. Result
of each dataset is given in Tabs. 7
and 8. Results for individual pre-
finetuning are grayed out, as the
resulting two models are not com-
patible with our single backbone
scheme. Gain and loss are com-
pared with the base model.

(a) NER Loss vs. Train Step (b) TC Loss vs. Train Step (c) NER Downstream Perf. (d) TC Downstream Perf.

Figure 4: Comparison of applying task-primary LoRAs (TPL) to varying numbers of final layers. (a) and (b)
show pre-finetuning loss over training steps for different numbers of layers augmented with TPL. (c) and (d) present
downstream performance across both task families under varying numbers of TPL-applied layers.

learning approaches such as Cross-Stitch (Misra
et al., 2016), which trains task-specific networks
alongside a shared representation network. How-
ever, in our case, attaching task-specific net-
works or duplicating encoder layers does not meet
the system requirement of maintaining a single
backbone with modular adapters. Additionally,
Bert-and-PALs(Stickland and Murray, 2019) in-
troduces task-specific adapters into all attention
layers for multi-task learning, but their approach di-
rectly targets downstream tasks and focuses on min-
imizing parameter count. In contrast, MTPF-TPL
focuses on pre-finetuning to improve adaptability
across downstream tasks. As we will discuss later,
applying task-primary LoRAs only to the last few
layers is key to achieving this adaptability.

6.1 Results

Next, we demonstrate the effectiveness of
MTPF-TPL on two parameter-efficient models:
MiniLM (Wang et al., 2020) and DistilBERT (Sanh
et al., 2019). We compare MTPF-TPL against the
pre-trained base model, individually pre-finetuned

models, and multi-task pre-finetuning (MTPF) with-
out task-primary LoRAs. Additionally, we include
PCGrad (Yu et al., 2020), a gradient surgery method
commonly used in multi-task learning to mitigate
gradient conflicts by projecting gradients into or-
thogonal spaces. The results are presented in Tab. 2.
We observe the following: 1) MTPF without task-
primary LoRAs benefits from pre-finetuning and
outperforms the base model on downstream tasks.
However, due to task interference, its improve-
ments are smaller than those achieved by individu-
ally pre-finetuned models. 2) When equipped with
task-primary LoRAs, MTPF-TPL successfully com-
bines the strengths of both pre-finetuning strate-
gies, achieving performance comparable to indi-
vidual pre-finetuning while maintaining a single-
backbone model suitable for deployment. Addi-
tionally, as discussed in Sec. 4, pre-finetuning for
NER yields substantial gains in low-resource set-
tings (e.g., +8.4% F1 when using only 10% of the
original training data). We observe that MTPF-TPL
preserves this improvement (see App. D). 3) While
PCGrad slightly improves performance by reducing
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Model NER (5 DS) TC (16 DS) Average

Individual 77.1 63.9 70.5

Base model 76.4 55.1 65.8
PF-L (two layers) 76.3-0.1 60.2+5.1 68.3+2.5

PF-L (all layers) 76.6+0.2 62.4+7.3 69.5+3.7

MTPF-TPL 77.1+0.7 63.9+8.8 70.5+4.7

Table 3: Comparison of downstream performance be-
tween classical LoRA fine-tuning (denoted as PF-L)
and ours MTPF-TPL. NER results report the average
F1 score over 5 datasets (DS), while text classification
(TC) results report the average accuracy over 16 datasets.
Gain and Loss are measured relative to the base model.
The model architecture used is MiniLM.

gradient conflicts, it does not mitigate task interfer-
ence as effectively as task-primary LoRAs.

In Tab. 2, task-primary LoRAs are applied only
to the last two transformer layers, which we find
optimal for both MiniLM and DistilBERT in our
deployment setting. Constraining task-primary Lo-
RAs to the final layers appears crucial for adaptabil-
ity to downstream tasks, which we discuss below.

Applying Task-Primary LoRAs to the Last
Few Transformer Layers Improves Adaptability.
As shown in Fig. 4, pre-finetuning loss consistently
decreases as more transformer layers of MiniLM
are equipped with task-primary LoRAs. However,
downstream performance on NER peaks when Lo-
RAs are applied only to the last two layers. This
phenomenon is unlikely to result from overfitting,
given the large scale of our pre-finetuning dataset
(Sec. 4) and the strong downstream results of indi-
vidually pre-finetuned models (Tab. 2).

In our adaptation setup (Sec. 3), task-primary
LoRAs serve as a partial initialization for LoRA
modules (applied to all layers) that are further fine-
tuned on NER sub-tasks. In contrast, for text classi-
fication, task-primary LoRAs remain fixed, and
only the linear classifier is updated. Since the
performance degradation does not appear for text
classification, we hypothesize that once the pre-
finetuning conflict is mitigated, initializing more
transformer layers with random LoRA parame-
ters—rather than task-primary LoRAs—may im-
prove LoRA adaptation on downstream sub-tasks.

Freezing the backbone and only fine-tune Lo-
RAs. We also compare our method with classical
LoRA fine-tuning (denoted as PF-L) for different
task families, following the pipeline that LoRAs
are first pre-finetuned and then further adapted for

downstream tasks. While this strategy avoids in-
terference between task families, its performance
remains below that of individual full-parameter pre-
finetuning as shown in Tab. 3, likely due to the
limited number of trainable parameters. Applying
PF-L to all layers performs better than restricting
them to the last two (our MTPF-TPL’s setup). While
further increasing LoRA rank might close the gap
to individual pre-finetuning, this would also scale
parameter cost linearly with the number of applica-
tions—potentially dozens or hundreds on today’s
smartphones. By contrast, MTPF-TPL’s shared back-
bone approach achieves better parameter efficiency
while maintaining strong performance, making it
more suitable for on-device deployment.

7 Conclusion

In this work, we present a deployment setup for
NLP tasks on mobile platforms and explore pre-
finetuning strategies for two key task families:
named entity recognition (NER) and text classifica-
tion. We demonstrate that pre-finetuning improves
downstream performance for both task families but
also identify interference when the strategies are
combined. To address this, we propose a multi-
task pre-finetuning framework with task-primary
LoRAs that effectively integrates both approaches,
resulting in a model and modular adapters compat-
ible with our deployment requirements.

Limitations

Our study focuses on demonstrating the effective-
ness of multi-task pre-finetuning with task-primary
LoRAs in a controlled setting. While the results
show consistent improvements across diverse NER
and text classification tasks, there remain several
avenues for future exploration.

First, we conduct experiments exclusively using
English pre-trained models and English-language
datasets. This is a common first step in NLP system
development, but extending our approach to multi-
lingual settings remains an important direction for
future work.

Second, for consistency, we adopt the same task-
primary LoRA configuration (e.g., rank and num-
ber of augmented layers) across both task families.
While our findings already yield strong results un-
der this unified design, task-specific adapter con-
figurations could potentially offer further improve-
ments in downstream performance or efficiency.
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A Details of Adaptation

For NER sub-tasks, we apply LoRA to the key and
query matrices of all attention layers as well as
to the MLP layers, using a rank of 32 and an α
of 64. Since the linear classifier is randomly ini-
tialized, we first freeze the encoder and train the
classifier alone for 10 epochs to warm it up. We
then jointly fine-tune both the encoder and classi-
fier for an additional 30 epochs. This two-stage
procedure consistently yields better performance
than training without warm-up in our experiments.
We set the batch size to 64 and the learning rate to
2×10−5, using the AdamW optimizer (Loshchilov
and Hutter, 2019) with a weight decay of 0.01.

For text classification sub-tasks, we follow the
standard procedure of MTEB, performing logistic
regression on top of the text embeddings extracted
by the encoder.

B Details of Pre-Finetuning

For text classification sub-tasks, we adopt weakly
supervised contrastive learning with text pairs
as the pre-finetuning strategy. In this setting,
both the semantic similarity between anchor texts
and their positive pairs, as well as the diversity
of all text samples, are crucial for optimization.
We combine multiple datasets pre-processed
by SentenceTransformer1 to maximize se-
mantic coverage and similarity. The datasets
used include: all-nli, quora-duplicates,
stackexchange-duplicates, wikihow, xsum,
s2orc, wikianswers-duplicates, agnews,
npr, specter, simple-wiki, altlex, ccnews,
sentence-compression, flickr30k-captions,
and amazon-reviews.

We apply an in-batch negatives strategy with a
batch size of 1024 to ensure sufficient diversity
of negative pairs. Additionally, we employ a hi-
erarchical data sampling strategy, where we first
sample a dataset and then sample a batch from that
dataset. This approach consistently outperforms
global random sampling (Günther et al., 2023a,b).

1https://sbert.net/docs/sentence_
transformer/dataset_overview.html#
datasets-on-the-hugging-face-hub

Original Sentence:
During his visit to Slovenia, Kwasniewski is also
scheduled to meet Prime Minister.

Perturbed Sentences:
During his visit to Iran, Kim Yoon-man is also...
During his visit to Central African Republic, Marc
Cohen is also...
During his visit to Brno, Blaise Compaore is also...
During his visit to UK, Eisuke Sakakibara is also...

Figure 5: Example of entity replacement. Location
and person entities (highlighted) have been substituted
with random entities of the same type.

Model NER (5 DS) TC (16 DS) Average

MiniLM 76.4 55.1 65.8
all-MiniLM 74.5-1.9 68.2+13.1 71.4+5.6

RoBERTa-base 79.6 58.7 69.1
NUNER 80.3+0.7 58.1-0.6 69.2+0.1

Table 4: Comparison of downstream performance
across different open-source pre-finetuned models
and their base models. NER results report the average
F1 score over 5 datasets (DS), while text classification
(TC) results report the average accuracy over 16 datasets.
Gain and Loss are measured relative to the base model.

We use the AdamW optimizer with a learning rate
of 2× 10−5 and train for 100K iterations.

For NER pre-finetuning, we generate pseudo
labels by applying k-means clustering to token
embeddings extracted from the NuNER model. To
improve the clustering quality, we compute the
average of sub-token embeddings over a word
and run clustering on the resulting word embed-
ding. Since NuNER was originally trained to rec-
ognize 200K concepts (Bogdanov et al., 2024)
with overlaps of the concepts, we conduct a grid
search over {50, 100, 200, 500, 1000} clusters and
find that 200 yields the best downstream perfor-
mance. We similarly grid search the batch size over
{16, 32, 64, 128, 256, 512} and select 256 based on
downstream results. We adopt the same learning
rate and training iterations as used for text classifi-
cation pre-finetuning.

C Detailed Downstream Performance on
Sub-Tasks

Tabs. 5 and 6 provide detailed breakdowns of the
downstream performance reported in Tab. 1. Simi-
larly, Tabs. 7 to 10 present the breakdowns corre-
sponding to the results in Tab. 2.
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Model CoNLL OntoNotes5 MIT Restaurant BioNLP CrossNER Average

Base model 88.7 84.6 76.7 68.1 64.1 76.4
PF for NER 89.4 84.9 77.1 68.9 65.2 77.1
PF for TC 87.3 83.5 75.4 67.1 60.3 74.6

Table 5: Comparison of downstream performance of different pre-finetuning (PF) approaches and the base
model across NER sub-tasks. Evaluation metric is F1. TC stands for text classification. Model architecture is
MiniLM. The best results are bold.

Model Bank. Emo. ACF MI TS TC News Patent FPB FE Imdb Arxiv DB. TTS. YRF TCon. Avg.

Base model 58.8 29.8 72.9 54.4 46.3 69.7 74.1 25.7 61.4 57.6 58.6 33.7 80.5 47.0 46.4 65.0 55.1
PF for NER 53.4 27.9 66.2 51.8 44.3 66.6 71.9 27.1 54.6 56.3 57.3 39.5 83.5 52.5 43.6 65.5 53.9
PF for TC 79.5 40.2 69.9 64.2 43.5 63.0 73.5 36.6 72.7 59.6 85.7 63.0 84.5 67.4 53.1 66.1 63.9

Table 6: Comparison of downstream performance of different pre-finetuning (PFT) approaches and the
base model on text classification (TC) sub-tasks. Accuracy is used as the evaluation metric. The model
architecture is MiniLM. Best results are highlighted in bold. Dataset names are abbreviated as follows: Bank.:
Banking77, Emo.: Emotion, ACF: AmazonCounterfactual, MI: MassiveIntent, TS: TweetSentiment, TC: ToxicChat,
FPB: FinancialPhrasebank, FE: FrenkEn, DB: DBpedia, TTS: TweetTopicSingle, YRF: YelpReviewFull, TCon.:
ToxicConversation.

Approach PCGrad CoNLL OntoNotes5 MIT Restaurant BioNLP CrossNER Average

MTPF ✗ 88.5 84.2 76.8 67.1 65.6 76.4
MTPF ✓ 88.7 84.3 77.2 67.0 65.3 76.5
MTPF-TPL ✗ 89.1 84.6 77.4 68.1 66.3 77.1
MTPF-TPL ✓ 89.2 84.5 77.4 68.2 66.1 77.1

Table 7: Comparison of downstream performance of multi-task pre-finetuning (MTPF) with or without task-
primary LoRAs (TPL) across NER sub-tasks. Model architecture is MiniLM. Evaluation metric is F1. The best
results are bold.

Approach PCGrad Bank. Emo. ACF MI TS TC News Patent FPB FE Imdb Arxiv DB. TTS. YRF TCon. Avg.

MTPF ✗ 78.3 40.0 70.3 63.6 45.1 61.1 74.1 36.7 69.8 58.0 84.3 63.3 86.1 67.9 52.5 67.2 63.6
MTPF ✓ 78.5 39.6 69.5 64.0 45.5 62.3 73.3 36.4 71.7 58.0 85.7 63.0 86.2 66.7 53.0 66.7 63.7
MTPF-TPL ✗ 79.5 40.2 69.9 64.2 43.5 63.0 73.5 36.6 72.7 59.6 85.7 63.0 84.5 67.4 53.1 66.1 63.9
MTPF-TPL ✓ 79.4 40.2 70.1 64.3 45.0 62.1 73.9 36.5 73.0 59.3 85.5 62.6 84.9 67.2 53.4 67.6 64.1

Table 8: Comparison of downstream performance of multi-task pre-finetuning (MTPF) with and without
task-primary LoRAs (TPL) on text classification (TC) sub-tasks. Accuracy is used as the evaluation metric.
The model architecture is MiniLM. Best results are highlighted in bold. Dataset names are abbreviated as follows:
Bank.: Banking77, Emo.: Emotion, ACF: AmazonCounterfactual, MI: MassiveIntent, TS: TweetSentiment, TC:
ToxicChat, FPB: FinancialPhrasebank, FE: FrenkEn, DB: DBpedia, TTS: TweetTopicSingle, YRF: YelpReviewFull,
TCon.: ToxicConversation.

Approach PCGrad CoNLL OntoNotes5 MIT Restaurant BioNLP CrossNER Average

MTPF ✗ 88.0 84.1 76.4 68.7 68.7 77.2
MTPF ✓ 88.1 84.2 76.6 68.8 68.3 77.2
MTPF-TPL ✗ 88.6 84.2 77.0 69.0 68.9 77.6
MTPF-TPL ✓ 88.8 84.2 77.3 69.2 69.0 77.7

Table 9: Comparison of downstream performance of multi-task pre-finetuning (MTPF) with or without task-
primary LoRAs (TPL) across NER sub-tasks. Model architecture is DistilBERT. Evaluation metric is F1. The
best results are bold.

D Downstream Performance of NER
Sub-Tasks with Limited Data

NER tasks typically require costly human annota-
tion by domain experts, making it challenging to ob-
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PFT PCGrad Bank. Emo. ACF MI TS TC News Patent FPB FE Imdb Arxiv DB. TTS. YRF TCon. Avg.

MTPF ✗ 78.6 42.8 69.6 64.6 45.4 62.7 71.5 35.9 71.3 58.1 85.7 64.7 87.9 68.0 51.4 66.2 64.0
MTPF ✓ 78.5 43.5 70.3 64.4 44.9 63.0 71.2 35.5 71.5 58.0 84.9 64.4 87.8 67.5 51.4 65.8 63.9
MTPF-TPL ✗ 79.4 43.6 70.1 65.5 46.3 62.2 67.5 36.3 75.4 58.4 85.9 65.5 86.4 68.0 53.0 66.7 64.4
MTPF-TPL ✓ 79.4 44.4 70.3 65.6 46.8 61.2 67.7 36.2 75.6 58.3 86.0 65.4 86.6 67.7 52.9 66.8 64.4

Table 10: Comparison of downstream performance of multi-task pre-finetuning (MTPF) with and without
task-primary LoRAs (TPL) on text classification (TC) sub-tasks. Accuracy is used as the evaluation metric. The
model architecture is DistilBERT. Best results are highlighted in bold. Dataset names are abbreviated as follows:
Bank.: Banking77, Emo.: Emotion, ACF: AmazonCounterfactual, MI: MassiveIntent, TS: TweetSentiment, TC:
ToxicChat, FPB: FinancialPhrasebank, FE: FrenkEn, DB: DBpedia, TTS: TweetTopicSingle, YRF: YelpReviewFull,
TCon.: ToxicConversation.

tain large-scale labeled datasets in many real-world
scenarios. To assess the benefit of pre-finetuning
for NER under low-resource conditions, we evalu-
ate downstream adaptation when only a small frac-
tion of the original labeled data is available.

As shown in Tab. 11, pre-finetuning signifi-
cantly enhances downstream performance, and this
improvement becomes more pronounced as the
amount of labeled data decreases. When only 10%
of the original training data is used, pre-finetuned
MiniLM achieves an average F1 gain of +8.4%
over its base model, while pre-finetuned Distil-
BERT achieves +5.3%. These results highlight
the value of pre-finetuning in low-resource NER
scenarios, where model generalization from limited
supervision is critical.

Importantly, our proposed MTPF-TPL framework
preserves this advantage while providing a sin-
gle unified pre-finetuned model that supports both
NER and text classification. This enables efficient
deployment without sacrificing the gains of pre-
finetuning, even in data-scarce settings.

E Reproducing the Interference Between
Pre-Finetuning Strategies Using
Open-Source Models

In Sec. 5, we demonstrate the interference between
our implemented pre-finetuning strategies. Here,
we show that this is a general phenomenon ob-
servable with open-source pre-finetuned models.
Specifically, we compare NuNER (Bogdanov et al.,
2024) with its base model RoBERTa-base (Liu
et al., 2019b), and all-MiniLM2 with its base
model MiniLM (Wang et al., 2020).

As shown in Tab. 4, NuNER, pre-finetuned for
NER, exhibits reduced adaptability to text clas-
sification sub-tasks compared to RoBERTa-base.
Conversely, all-MiniLM, pre-finetuned for text em-

2https://huggingface.co/sentence-transformers/
all-MiniLM-L12-v2

bedding tasks, shows worse adaptability to NER
compared to its base model MiniLM.
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Architecture Data Portion Approach CoNLL OntoNotes5 MIT Restaurant BioNLP CrossNER Average

MiniLM

10%

Base model 66.5 71.1 29.4 45.6 23.7 47.3
PF for NER 67.3 73.8 45.2 51.4 35.6 55.7
MTPF 65.6 73.3 35.3 51.4 35.3 52.2
MTPF-TPL 67.5 74.9 47.2 51.9 37.9 55.9

20%

Base model 83.3 77.9 55.0 53.0 37.7 62.4
PF for NER 86.2 79.3 58.3 59.7 47.8 66.3
MTPF 86.1 79.1 56.4 59.0 45.8 65.3
MTPF-TPL 86.7 80.3 60.8 59.6 48.7 67.2

50%

Base model 87.3 82.6 71.6 64.7 53.9 72.0
PF for NER 89.1 83.3 73.1 66.3 58.5 74.1
MTPF 87.8 82.7 71.8 65.0 59.4 73.4
MTPF-TPL 88.3 83.3 75.0 65.4 61.2 74.6

DistilBERT

10%

Base model 65.7 72.9 27.4 50.1 38.0 50.8
PF for NER 67.5 74.0 42.8 52.2 43.7 56.1
MTPF 64.4 72.0 39.1 51.1 41.7 53.7
MTPF-TPL 69.5 74.2 39.9 52.6 42.4 55.7

20%

Base model 80.9 78.6 55.4 60.2 50.3 65.6
PF for NER 85.0 79.7 53.2 61.5 54.3 66.8
MTPF 80.9 79.4 56.9 60.7 53.4 66.3
MTPF-TPL 82.6 79.6 55.6 61.5 54.7 66.8

50%

Base model 87.0 82.6 70.6 67.1 63.3 74.1
PF for NER 87.8 83.3 72.1 67.0 64.6 75.0
MTPF 86.8 82.5 72.8 66.4 63.5 74.4
MTPF-TPL 87.3 82.6 73.0 67.0 64.7 74.8

Table 11: Comparison of downstream performance of different approaches under data scarcity across NER
sub-tasks. The evaluation metric is F1. The data portion indicates the percentage of the original training data used
for fine-tuning. The best results are shown in bold.
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