Encouraging Good Processes Without the Need for Good Answers:
Reinforcement Learning for LLM Agent Planning

Zhiwei Li'; Yong Hu', Wenqing Wang'-**
I WeChat, Tencent Inc., China
2 School of Software & Microelectronics, Peking University, Beijing

zhiweili. jay@foxmail.com,

Abstract

The functionality of Large Language Model
(LLM) agents is primarily determined by two
capabilities: action planning and answer sum-
marization. The former, action planning, is the
core capability that dictates an agent’s perfor-
mance. However, prevailing training paradigms
employ end-to-end, multi-objective optimiza-
tion that jointly trains both capabilities. This
paradigm faces two critical challenges: im-
balanced optimization objective allocation and
scarcity of verifiable data, making it difficult to
enhance the agent’s planning capability. To ad-
dress these challenges, we propose Reinforce-
ment Learning with Tool-use Rewards (RLTR),
a novel framework that decouples the training
process to enable a focused, single-objective
optimization of the planning module. Cru-
cially, RLTR introduces a reward signal based
on tool-use completeness to directly evaluate
the quality of tool invocation sequences. This
method offers a more direct and reliable train-
ing signal than assessing the final response con-
tent, thereby obviating the need for verifiable
data. Our experiments demonstrate that RLTR
achieves an 8%—12% improvement in planning
performance compared to end-to-end baselines.
Moreover, this enhanced planning capability, in
turn, translates to a 5%—6% increase in the final
response quality of the overall agent system.

1 Introduction

Large Language Models (LLMs) have achieved sig-
nificant advancements in natural language process-
ing, including code generation (Wang and Chen,
2023), question answering (Shailendra et al., 2024),
and reasoning (Wei et al., 2022). These break-
throughs have spurred interest in developing agents
based on LLMs (Cheng et al., 2024; Shen, 2024). A
typical agent workflow consists of two main stages:
the planning stage, in which tool calls are made to
gather information, and the summary stage, where

* Work was done when the authors were interning at
WeChat Al, Tencent Inc., China.

rightyonghu@tencent.com, wangwenqing@stu.pku.edu.cn

Real-World [E] & &:\
Queries - I:> I:>
Verifiable  Manual Accurate
(~1%)  Annotation Reward
5L =< o = K
Unverifiable  Apswer Inaccurate
AData_ _(:99%) Reward Model | Reward

B. Training K
L .||I Gradient

l (1) Competition l
(Query[ Actlon Jobs] Ansyer ) [Credlt]

(2) Credit Asstgnment Difficulty

Figure 1: Two main challenges in end-to-end agent train-
ing for industry scenarios: (A) Lack of effective rewards
for predominant data; (B) Optimization competition and
difficulties in credit assignment.

the collected information is synthesized to generate
the final response (Wang et al., 2024). Between
the two, the planning stage is crucial in the agent
system. The accuracy of the agent’s final output
heavily depends on the comprehensive information
collected through complete tool calls.

Currently, the dominant end-to-end reinforce-
ment learning (RL) paradigm for agents in LLMs
performs multi-objective optimization for both the
planning and summary policies. It uses the final
summary’s answer as the reward to update both
policies simultaneously (Yang et al., 2025; GLM
et al., 2024). Integrated optimization effectively
enables end-to-end LLMs to provide comprehen-
sive agent capabilities. However, tightly coupled
multi-objective RL optimization presents data and
training challenges when fine-tuning for industrial
business scenarios, as outlined below:

Challenge 1: Lack of Effective Rewards for Pre-
dominant Data. As illustrated in Figure 1(A), cur-
rent advanced end-to-end agent RL methods (Jin
et al., 2025; Feng et al., 2025; Li et al., 2025a) rely
on training data with verifiable answers to compute
accurate rewards. However, in real-world scenar-
ios, such data is scarce and requires costly manual

1654

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1654-1666
November 4-9, 2025 ©2025 Association for Computational Linguistics



annotation (Wu et al., 2025). For the vast majority
of non-verifiable data, a reward model based on the
final answer is typically used to validate the out-
put (Yang et al., 2025; Guo et al., 2025), which is
prone to reward hacking (Gao et al., 2024), leading
to inaccurate rewards. As a result, most data lacks
effective RL optimization methods.

Challenge 2: Competing Objectives and Credit
Assignment Difficulty. As depicted in Figure 1(B),
the gradients for the planning and summary mod-
ules are often in opposition, making it non-trivial
to balance their respective objectives. This issue is
further exacerbated in RL, where the reward struc-
ture is tightly coupled: the evaluation of the final
summary determines the reward for the entire tra-
jectory, which in turn guides the end-to-end policy
update. Such a mechanism results in difficult credit
assignment (Nguyen et al., 2018), whereby correct
actions within the trajectory may be unduly penal-
ized for errors originating in the final response. Ul-
timately, this impedes the optimization of planning
capabilities.

The challenges arise from multi-objective opti-
mization that aims to improve both planning and
summarization. To address this, we focus solely
on optimizing the agent’s core planning compo-
nent (Planner), simplifying the task into a single-
objective optimization and mitigating issues re-
lated to competing objectives and credit assignment
(Challenge 2). To tackle this focused optimization
problem, we propose the Reinforcement Learning
with Tool-use Rewards (RLTR) framework. We
initialize the Planner using knowledge distillation
and rejection sampling, then replace the complex
final-answer correctness reward with the simpler,
more reliable tool-use completeness reward. This
reward focuses solely on the action sequence, elim-
inating the need for final answer verification and
addressing data scarcity issues (Challenge 1). The
Planner is subsequently optimized using these com-
pleteness rewards within a multi-turn RL environ-
ment. The optimized Planner is modular and can
be paired with any LLM as a summarizer to form
a complete agent. Experimental results show that
an Planner trained via RLTR improves action per-
formance by 8%—12% compared to its end-to-end
trained counterpart. Without training a dedicated
summary component, this enhancement in the plan-
ning stage still leads to a 5%—-6% improvement in
the agent’s end-to-end response performance.

Our contributions can be summarized as follows:

* We analyze the challenges inherent in ap-
plying end-to-end optimization for agents in
industrial scenarios, and propose a targeted
single-objective paradigm that focuses on op-
timizing the agent’s core planning component.

* We design a novel reward function based on
tool-use completeness, which provides a high-
fidelity score for action quality and effectively
addresses the challenge of insufficient reward
signals in reinforcement learning for the ma-
jority of data in industrial scenarios.

* Our approach enables stable and effective
training of the Planner during both the su-
pervised fine-tuning (SFT) and reinforcement
learning (RL) phases, yielding an 8%—12%
improvement in planning performance. We
further demonstrate that enhancing the agent’s
planning capability benefits the overall sys-
tem, translating into a 5%—6% average in-
crease in end-to-end response accuracy.

2 Problem Formulation

We define the multi-objective optimization for an
end-to-end agent and the single-objective optimiza-
tion focusing on actions. In both cases, the task is
modeled as a sequential decision process, where a
single interaction for a given query is represented
as a trajectory 7 = (so,ag, ..., s, ar), with T
being the termination step. The state includes the
query ¢ and the history of tool interactions Hy, and
the action space consists of K tools from 7 and
the terminal action ANSWER.

The optimization objective for the end-to-end
agent 7, employs the final answer reward function
R, and integrates planning with summary genera-
tion, and is defined as follows:

T, = arg max Err Re(me(ar),y")

Our approach optimizes the Planner policy
using an action planning score function 2. Once
the Planner is sufficiently optimized and outputs the
planning trajectory, the Summarizer 75 generates
the final end-to-end response . The overall process
is formally defined as follows:

*_

m, = argmax K-, [R(7)],
Tp
y = ms(7), where 7 ~ 7. ey

1655



Industry Data

Verifiable Unverlﬁable @

-_———-——

O

-

Final Answer Summarizer Actions & Observations

Optimize

B

Generate
Planner

1
1
Tramable:
: ! Thmk: Missing specific days, How many days until the next
N Frozen : (QV incomplete call. A Query e e
_——— Reomp=0 )
Distillation &Teacher LLM Act 1 | [Search] Next Summer Olympics date
= RgectSamQhr_tg """"" o Act 1»{Obs 1 @ - 2028 Los Angeles Summer V
(O e}
1 - Estimation
! Act 2 | [Code] Days until July 14, 2028.
Act 1 Act2
Q!@ Comp. — :
-------------------- Checker Code: from datetime import datetime
Obs 2 | print((datetime(2028,7,14)-
e ' @ datetime.now()).days) Result: 1118
b Y \/ o Act 1 Ans END Reward
SFT
m @ deacde .
@ Think: Obtained td I — IHObS IHACtZHObS 2]-" @
. ink: ained exact days, |, ' Eval
Com
1 p.
i ;ompl:t;e call. - ‘®P[Act 1H0bs 1H H ]-b‘ Checker
Planner comp= 1 | N e e e e = - -
Rollout
A. Cold Start B. Tool-Use Completeness Calculation C. Multi-Turn RL

Figure 2: Our RL with Tool-use Rewards (RLTR) framework. Initially, we perform (A) knowledge distillation and
rejection sampling to cold-start the Planner. In (B), we compute the tool-use completeness reward for the Planner’s
action sequence using an existing LLM. Finally, in (C), we optimize the Planner’s tool use through multi-turn
reinforcement learning. The complete training template corresponding to the example in (C) can be found in

Appendix A.1. “Comp.” denotes “Completeness.”

3 Framework

We begin by performing cold-start initialization of
the Planner using knowledge distillation and re-
jection sampling. Subsequently, we introduce the
calculation of tool-use completeness, which serves
as the primary reward signal, and employ multi-
turn reinforcement learning to optimize the Plan-
ner. Finally, we utilize a LLM as a Summarizer,
which receives the Planner’s plan and the corre-
sponding information to generate the final end-to-
end response.

3.1 Cold Start

As shown in Figure 2(A), we utilize a state-of-the-
art LLM as the teacher model to perform knowl-
edge distillation (Gou et al., 2021) for cold-starting
the Planner. Initially, we sample multiple agent
action trajectories from the teacher LLM by provid-
ing agent simulation commands and questions as
input. Subsequently, we apply rejection sampling
using the same teacher model to select the trajecto-
ries, retaining the best-of-n as the training data. We
use the question as input and the teacher LLM’s
action trajectories as output to perform supervised
fine-tuning (SFT) of the Planner for cold-starting,
thereby enhancing the model’s ability to handle the

latest planning task formats.

3.2 Tool-Use Completeness Calculation

For most industrial data with unverifiable outcomes,
validation requires assessing both action sufficiency
and summary accuracy, complicating reward reli-
ability. Figuring out if something can be done is
easier; ensuring it’s done correctly is harder. By
shifting the reward focus to the Planner, we de-
couple these factors and directly evaluate action
sequence integrity, enabling simpler and more ef-
fective agent assessment (see Section 4.6). To for-
malize this, we introduce a completeness-checking
function v : S — {0,1}, where v(s) indicates
whether the action sequence at state s is complete
(1) or incomplete (0). This function is implemented
using a verification LLM (Comp. Checker) with a
check instruction, as detailed in Appendix B. The
invocation completeness is computed by averaging
the results over N samples, as follows:

1 N
Rcomp = N Z '71(7')
=1

3.3 Multi-Turn Reinforcement Learning

2

We first compute the overall tool-use reward, de-
noted as Ryi. Initially, we verify whether the

1656



agent’s trajectory format is correct. If the format
is incorrect, we immediately assign a reward of
—1; otherwise, we proceed to calculate the tool-
use completeness reward Rcopmp. Additionally, we
incorporate rule-based rewards to stabilize train-
ing, including a negative repetition reward R,.cpeat
to discourage redundant tool calls, and a negative
reward R.,..r as a penalty for incorrect tool us-
age. These negative rewards are aggregated as
Ryyie = Rpepeat + Rerror- The total reward is
defined as follows:
{—1, if trajectory format is invalid,
Riotar = .
Reomp + Ryyie, otherwise.
3)
Then, we employ this tool-use reward function
for scoring. During multi-turn template construc-
tion, we mask the tool-use results to exclude them
from the loss computation. This prevents gradi-
ent signal dilution and ensures that the agent re-
mains focused on optimizing tool invocation be-
havior. The detailed template construction process
is provided in Appendix A.1. We further refine the
Planner’s optimization objective (Equation 1) to
the standard RL formulation:

*_

T, = arg H#E)LX EzN'D,awwp(~|z;7—) [R(z,a)]

—BDxL [mg(alz; T)|mres(alz; T))

C))

where x denotes data sampled from distribution
D, a indicates tool-use actions sampled from the
policy, 5 controls the KL regularization strength,
and ¢ is the reference model. We optimize this
objective through an online RL process. First, the
current policy model 7, generates a batch of tool-
use trajectories, which are then evaluated using
the action reward function R. Second, the reward
signal is used to compute value estimates, and these
estimates then guide policy updates to increase the
likelihood of high-reward behaviors. Consequently,
this “Generate-Evaluate-Optimize” loop is repeated
until policy convergence. The complete algorithm
is detailed in Appendix A.2.

Finally, we construct the complete agent pipeline.
Either a trained or untrained LLM can be used
as the Summarizer m;. The input query is first
passed to the optimized Planner 7, which uses
tools to collect information and form a trajectory
7 ~ m,,. This trajectory is subsequently input into
the Summarizer, which generates the final response:

y = ms(T).

4 Experiments

Similar to DeepResearch !, our environment inte-
grates both a search tool for information retrieval
and a code tool for computational tasks, with de-
tailed tool descriptions provided in Appendix C.1.

4.1 Datasets

The datasets we use include both in-house industry
datasets for training and testing, and open-source
datasets as additional test sets.

Industry Dataset We have collected an industry-
level Chinese agent dataset supporting training on
both search and code tools. The dataset includes
approximately 4k training samples and 0.5k test
samples, with the test set categorized into normal
and hard levels, providing a rigorous challenge for
assessing action performance on difficult queries.
Open-source Dataset Since our focus is on
Chinese scenarios, we utilize the ChineseSim-
pleQA (He et al., 2024) open-source Chinese QA
dataset for additional performance evaluation. To
rigorously assess the agent’s capabilities, we ex-
clude samples that can be correctly answered by
DeepSeek-R1 (Guo et al., 2025) or Qwen3-235B-
A22B (Yang et al., 2025) without tool invocation.
This filtering results in a challenging test set of 855
samples that require tool invocation for accurate
resolution.

4.2 Baselines

We selected the leading LLMs in the agent field,
Qwen3-235B-A22B and DeepSeek-R1, for testing
and comparison. We also included commonly used
end-to-end agent optimization approaches. One is
supervised fine-tuning of both actions and answers
(E2E SFT). The other is reinforcement learning,
where the final answer serves as the reward (E2E
RL), as in Qwen3 (Yang et al., 2025). To ensure a
fair comparison, all models were trained and tested
within the same interaction environment (see Ap-
pendix C) and on the same dataset.

4.3 Experiment Setup

Training In the SFT stage, the end-to-end agent in-
corporates the answer into the trajectory, while the
decoupled agent independently fine-tunes the Plan-
ner using only actions. In the RL stage, we follow
RLAIF (Lee et al.) and use the original Qwen3-
30B-A3B (Yang et al., 2025) as the scoring model
to calculate rewards. E2E RL computes the reward

"https://openai.com/index/introducing-deep-research/

1657



Industry Open-

Normal Hard source

Model PO Method Com. Hel. Rel. Com. Hel. Rel. Match
Qwen3-235B X DIRECT 672 715 727 505 474 464 458
DeepSeek-R1 X DIRECT 68.8 712 76.0 497 575 515 495
b 4 DIRECT 449 419 467 224 304 325 298
X E2E SFT 563 592 624 30.1 353 37.7 371
Qwen3-1.7B ¢ SFT 60.1 613 645 353 386 414 394
b 4 E2E RL 624 635 656 375 414 452 400
v RLTR(Ours) 70.2 684 726 454 484 494 45.6
b 4 DIRECT 51.5 538 652 353 363 374 353
X E2E SFT 66.0 654 702 404 455 448 414
Qwen3-8B v SFT 672 70.1 713 464 484 514 444
b 4 E2E RL 69.6 712 767 444 474 535 452
v RLTR(Ours) 82.7 76.7 809 545 61.6 656 51.6

Table 1: Performance of different models using various optimization methods. “PO” denotes optimization of the
Planner only, not the end-to-end agent (including both planning and summary). “DIRECT” indicates directly using
the original LLMs for tool calls and answers. The values represent percentages, with the “%” symbol omitted.
Bolded values indicate the optimal performance for the 1.7B and 8B models.

based on the correctness of the final response us-
ing answer verification instructions (Appendix B),
while RLTR uses tool-completeness verification
instructions (Appendix B) to calculate the reward
for the Planner’s tool completeness. Further imple-
mentation details are provided in Appendix A.3.

Evaluation Planning evaluation focuses solely on
the action sequence itself. For final response eval-
uation, we consider two settings: (1) for the end-
to-end agent, the final response state is selected as
the answer; (2) for the Planner, the original Qwen3-
1.7B and Qwen3-8B models serve as summarizers,
receiving all actions and observations generated by
the Planner as input, and their output is used as the
answer for evaluation. All metrics are computed
using the Qwen3-235B-A22B model.

4.4 Metrics

Planning Metric Tool-use completeness (Com.),
as defined in Equation 2, is employed as the evalu-
ation metric for planning.

Final Response Metrics For open-source data with
ground-truth answers, we use the matching accu-
racy (Match) between the ground-truth answers and
the agent-generated responses to evaluate the qual-
ity of the final response. For industry data lacking
standard answers, we use common metrics such as
helpfulness (Hel.) and relevance (Rel.) (Guo et al.,
2023) to assess the final response.

4.5 Main Results
A. B.
18 —e— End-to-End SFT —e— End-to-End RL
16 Planner SFT 2.2 RLTR
! "
! 2.0
1.4 g
'_
@1.2 | o 1.8
3
10 C16 P
g P
0.8] t T1a) P N, “
061 Tt lanbatatep pussariegetue, 120, ] Lo *8/
0 200 400 600 800 0 10 20 30 40 50 60

Step Step

Figure 3: (A) Loss trends and (B) average number of
turns for the end-to-end agent and Planner during the
SFT and RL training stages.

Planning Performance Results As shown in Ta-
ble 1(Industry), the Planner demonstrates superior
planning optimization performance compared to
the end-to-end agent in both the SFT and RL stages
for the 1.7B and 8B models, with the primary tool-
use completeness metric exhibiting an average im-
provement of approximately 8%—12%. This im-
provement is particularly pronounced on the hard
subset, underscoring the critical importance of tar-
geted planning capability optimization for address-
ing complex problems. This improvement can be
further explained by the loss and average number
of turns observed during the training process. As
shown in Figure 3(A), during the SFT phase, the
Planner achieves faster convergence and lower loss

1658



than the end-to-end agent, reflecting more effective
gradient optimization of the planning process. In
the RL phase (Figure 3(B)), the Planner with RLTR
more effectively activates the LLM:s to utilize tools,
while end-to-end RL fails to do so. This advan-
tage arises from RLTR’s precise reward attribution
to Planner actions, whereas end-to-end RL, con-
strained by final answer rewards, struggles with
effective credit assignment.

Final Response Performance Results As shown
in Table 1, the Planner outperforms the end-to-end
agent in final response performance in both the SFT
and RL stages across various models, with an aver-
age improvement of approximately 5%-6%. This
suggests that the enhanced planning performance
of the Planner contributes to the overall improve-
ment of the complete agent. Specifically, Planner
optimization enables more effective tool use and
comprehensive information gathering, thereby im-
proving Summarizer accuracy even without dedi-
cated summarization training.

Method Industry Open-
Normal Hard source
E2E PPO 69.6 44 4 45.2
GRPO 76.4 49.3 47.4
REINFORCE++ 82.1 52.5 50.3
PPO 82.7 54.5 51.6

Table 2: Performance of Qwen3-8B trained with differ-
ent RL algorithms using our RLTR framework.

Different RL Algorithms Results As shown in
Table 2, all three RL algorithms, PPO (Schulman
et al., 2017), GRPO (Shao et al., 2024), and RE-
INFORCE++ (Hu et al., 2025), that leverage our
RLTR framework, yield consistent performance
improvements compared to end-to-end RL using
PPO, thereby demonstrating the robustness of our
framework. The primary training metrics for each
algorithm are reported in detail in Appendix A.4.

4.6 Experiment on Reward Function

To evaluate the accuracy of our tool-use complete-
ness reward function, we sampled 925 cold-start
Planner trajectories and their corresponding final
answers, generated by the original Qwen3-8B as
the Summarizer, and manually annotated them for
correctness. These samples were then evaluated by
Qwen3-235B-A22B using both the conventional fi-
nal answer-based reward and our proposed tool-use
completeness reward. The results were compared

for alignment with human annotations.

ACC F1
65.30 76.17
74.59 84.64

Reward
Answer
Tool-Use Comp.

Table 3: Classification results on manually labeled sam-
ples using different reward functions. We convert the
output values of the reward function {0, 1} into pre-
dicted labels to compute classification metrics.

As shown in Table 3, our tool-use completeness
reward surpasses the answer reward in both accu-
racy and F1 score, indicating that it provides more
reliable sample evaluation and leads to more stable
and effective training.

4.7 Comparison with Joint Optimization
Paradigm

To further investigate the impact of our single-
objective paradigm, we conducted an additional
experiment comparing our RLTR framework with
a joint optimization approach.

Specifically, we trained an end-to-end agent us-
ing a combined reward function defined as

Rjoint = )\Rtool + (1 - A)Rﬁnala

where Ry, denotes the proposed tool-use com-
pleteness reward and Rgp,) represents the conven-
tional final-answer-based reward. The weighting
coefficient A was tuned to optimize validation per-
formance.

Method Industry Open-source
E2E RL 69.6 45.2
Joint Optimization 75.8 47.6
RLTR (ours) 82.7 51.6

Table 4: Comparison between End-to-End RL, joint
optimization (A = 0.5), and our single-objective RLTR
framework.

The comparative results are presented in Table 4.
We observe that the joint optimization approach
yields improvements over the baseline end-to-end
RL but still falls short of our RLTR framework
on both benchmarks. Although joint optimization
alleviates certain limitations of end-to-end RL, it
remains inferior to RLTR due to two primary fac-
tors: reward overlap—the final-answer reward al-
ready encapsulates aspects of planning and tool
use, rendering its combination with the tool-use

1659



reward redundant; and weighting sensitivity—the
strong correlation between the two rewards makes
it challenging to strike an appropriate balance, of-
ten destabilizing training and leading to suboptimal
convergence.

5 Related Works

The development of LLM-based agents has ad-
vanced rapidly, enabling complex task automation
through interactions with external tools and envi-
ronments. We review key related works, focusing
first on the two main paradigms for building LLM
agents: prompt-based and fine-tuning-based ap-
proaches. We then examine the emerging field of
agentic reinforcement learning, which addresses
the limitations of earlier methods, and discuss cur-
rent RL strategies and challenges—such as reward
hacking—that our approach seeks to overcome.

5.1 LLM Agents

LLM-based agents can be broadly categorized
into prompt-based and fine-tuning-based ap-
proaches (Luo et al., 2025; Huang et al., 2024).
Prompt-based agents rely on in-context learning to
guide the LLM in following tool-use paradigms and
interacting with the environment (Shen et al., 2023;
Hong et al.; Suzgun and Kalai, 2024). For example,
ReAct improves agent performance by prompting
the model to first reason and then perform tool
calls (Yao et al., 2023). However, prompt-based
methods are heavily dependent on the capabilities
of the underlying base model and are difficult to
adapt to specific scenarios. In contrast, fine-tuning-
based approaches enhance agent capabilities by
updating the LLM’s parameters (Li et al., 2023;
Qiao et al., 2024; Ruan et al., 2023). Imitation
learning is a common method for rapidly improv-
ing agent performance; for instance, ToolAlpaca
enhances tool-use ability through supervised fine-
tuning (SFT) on high-quality tool-use data (Tang
et al., 2023). However, imitation learning often
struggles to generalize to out-of-distribution (OOD)
queries, which has led to increasing interest in re-
inforcement learning for agent training.

5.2 Agentic Reinforcement Learning

Reinforcement learning (RL) (Kaelbling et al.,
1996) optimizes agents by enabling them to inter-
act with the environment and using the obtained re-
wards as gradient signals. AgentPRM (Choudhury,
2025) introduces a process-level reward model that

scores entire trajectories to guide agent optimiza-
tion. However, such reward models are susceptible
to reward hacking, making it challenging to pro-
vide reliable and effective supervision. Inspired by
DeepSeek-R1 (Guo et al., 2025), recent work has
shifted focus to using verifiable rewards for agent
training (Song et al., 2025; Chen et al., 2025; Wang
et al., 2025a). For example, Search-R1 (Jin et al.,
2025) assigns rewards based on the correctness of
the final answer to optimize the search trajectory.
RAGEN (Wang et al., 2025b) further extends this
idea by leveraging multi-turn interactions, where
the final output is verified and used as reward feed-
back. This enables self-evolving training and fa-
cilitates more effective reasoning. ToRL (Li et al.,
2025b) enables agents to autonomously utilize com-
putational tools through reinforcement learning, al-
lowing the model to explore and discover optimal
tool-use strategies.

However, in industrial settings, verifiable ques-
tions constitute only a small fraction of real-world
queries, which significantly limits the applica-
bility of such methods. Therefore, mainstream
LLMs, such as DeepSeek-R1 (Guo et al., 2025)
and Qwen3 (Yang et al., 2025), still employ gen-
eral reinforcement learning, where a scoring model
is used to assign rewards to the final answers. Nev-
ertheless, reward models are prone to reward hack-
ing (Fu et al., 2025; Liu et al., 2024), resulting
in inaccurate rewards. Our approach focuses on
assigning rewards based solely on the planning pro-
cess itself, rather than the final answer, thereby
mitigating this issue.

6 Conclusion

In this paper, we address the key challenges of
unreliable rewards and optimization difficulties in
end-to-end agent training. We introduced the Rein-
forcement Learning with Tool-use Rewards (RLTR)
framework, which decouples the problem by focus-
ing on a single-objective optimization of the agent’s
planning component. By leveraging a novel and
more reliable reward signal based on tool-use com-
pleteness, our approach circumvents the need for
verifiable final answers. Our experiments show that
RLTR leads to more stable training and improves
action performance by 8%—12%. This enhance-
ment directly translates to a 5%—6% increase in the
accuracy of the agent’s final responses. Our work
offers a novel perspective for agent optimization in
industrial applications.

1660



Limitations

Since our deployment scenario is primarily in Chi-
nese, we did not conduct experiments in other ma-
jor languages such as English or French. Addi-
tionally, this work mainly focuses on the optimiza-
tion of agent planning. Therefore, we employed
an untrained LLM as the Summarizer and did not
specifically investigate optimization strategies for
the Summarizer component. In future work, we
plan to construct agent datasets that include more
languages to enhance the effectiveness of our ap-
proach across different linguistic contexts. We also
intend to explore methods for optimizing the Sum-
marizer to further improve the overall performance
of the agent system.

References

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou,
Chenzheng Zhu, Haofen Wang, Jeff Z Pan, Wen
Zhang, Huajun Chen, Fan Yang, et al. 2025. Learn-
ing to reason with search for llms via reinforcement
learning. arXiv preprint arXiv:2503.19470.

Yuheng Cheng, Ceyao Zhang, Zhengwen Zhang, Xi-
angrui Meng, Sirui Hong, Wenhao Li, Zihao Wang,
Zekai Wang, Feng Yin, Junhua Zhao, et al. 2024. Ex-
ploring large language model based intelligent agents:
Definitions, methods, and prospects. arXiv preprint
arXiv:2401.03428.

Sanjiban Choudhury. 2025. Process reward models
for llm agents: Practical framework and directions.
arXiv preprint arXiv:2502.10325.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang,
Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin
Chi, and Wanjun Zhong. 2025. Retool: Reinforce-
ment learning for strategic tool use in llms. arXiv
preprint arXiv:2504.11536.

Jiayi Fu, Xuandong Zhao, Chengyuan Yao, Heng Wang,
Qi Han, and Yanghua Xiao. 2025. Reward shaping
to mitigate reward hacking in rlhf. arXiv preprint
arXiv:2502.18770.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu,
Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang, and
Yi Wu. 2024. On designing effective rl reward
at training time for llm reasoning. arXiv preprint
arXiv:2410.15115.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen-
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family
of large language models from glm-130b to glm-4 all
tools. arXiv preprint arXiv:2406.12793.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and
Dacheng Tao. 2021. Knowledge distillation: A

survey. International Journal of Computer Vision,

129(6):1789-1819.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan
Shi, Linhao Yu, Yan Liu, Jiaxuan Li, Bojian Xiong,
Deyi Xiong, et al. 2023. Evaluating large language
models: A comprehensive survey. arXiv preprint
arXiv:2310.19736.

Yancheng He, Shilong Li, Jiaheng Liu, Yingshui Tan,
Weixun Wang, Hui Huang, Xingyuan Bu, Hangyu
Guo, Chengwei Hu, Boren Zheng, et al. 2024.
Chinese simpleqa: A chinese factuality evalua-
tion for large language models. arXiv preprint
arXiv:2411.07140.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.
Metagpt: Meta programming for a multi-agent col-
laborative framework. In The Twelfth International
Conference on Learning Representations.

Jian Hu, Jason Klein Liu, and Wei Shen. 2025. Rein-
force++: An efficient rlhf algorithm with robustness
to both prompt and reward models.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei
Wang, Hao Wang, Defu Lian, Yasheng Wang, Ruim-
ing Tang, and Enhong Chen. 2024. Understanding
the planning of llm agents: A survey. arXiv preprint
arXiv:2402.02716.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon,
Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. 2025. Search-rl: Training llms to reason and
leverage search engines with reinforcement learning.
arXiv preprint arXiv:2503.09516.

Leslie Pack Kaelbling, Michael L Littman, and An-
drew W Moore. 1996. Reinforcement learning: A
survey. Journal of artificial intelligence research,
4:237-285.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas
Mesnard, Johan Ferret, Kellie Ren Lu, Colton Bishop,
Ethan Hall, Victor Carbune, Abhinav Rastogi, et al.
Rlaif vs. rlhf: Scaling reinforcement learning from
human feedback with ai feedback. In Forty-first In-
ternational Conference on Machine Learning.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. Api-bank: A comprehensive
benchmark for tool-augmented llms. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 3102-3116.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. 2025a.
Torl: Scaling tool-integrated rl.

1661


http://arxiv.org/abs/2501.03262
http://arxiv.org/abs/2501.03262
http://arxiv.org/abs/2501.03262
http://arxiv.org/abs/2503.23383

Xuefeng Li, Haoyang Zou, and Pengfei Liu. 2025b.
Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383.

Tiangi Liu, Wei Xiong, Jie Ren, Lichang Chen, Junru
Wu, Rishabh Joshi, Yang Gao, Jiaming Shen, Zhen
Qin, Tianhe Yu, et al. 2024. Rrm: Robust reward
model training mitigates reward hacking. arXiv
preprint arXiv:2409.13156.

Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Jun-
wei Yang, Yiyang Gu, Bohan Wu, Binqgi Chen, Ziyue
Qiao, Qingqing Long, et al. 2025. Large language
model agent: A survey on methodology, applications
and challenges. arXiv preprint arXiv:2503.21460.

Duc Thien Nguyen, Akshat Kumar, and Hoong Chuin
Lau. 2018. Credit assignment for collective multi-
agent rl with global rewards. Advances in neural
information processing systems, 31.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Jiang, Chengfei Lv, and
Huajun Chen. 2024. Autoact: Automatic agent learn-
ing from scratch for qa via self-planning. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 3003-3021.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu,
Tianpeng Bao, Guoqing Du, Shiwei Shi, Hangyu
Mao, Ziyue Li, Xingyu Zeng, et al. 2023. Tptu: large
language model-based ai agents for task planning and
tool usage. arXiv preprint arXiv:2308.03427.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Pasi Shailendra, Rudra Chandra Ghosh, Rajdeep Kumar,
and Nitin Sharma. 2024. Survey of large language
models for answering questions across various fields.
In 2024 10th International Conference on Advanced
Computing and Communication Systems (ICACCS),
volume 1, pages 520-527. IEEE.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends
in hugging face. Advances in Neural Information
Processing Systems, 36:38154-38180.

Zhuocheng Shen. 2024. Llm with tools: A survey.
arXiv preprint arXiv:2409.18807.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin
Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin
Lin, and Chuan Wu. 2024. Hybridflow: A flexible
and efficient rlhf framework. arXiv preprint arXiv:
2409.19256.

Huatong Song, Jinhao Jiang, Yingqgian Min, Jie Chen,
Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji-
Rong Wen. 2025. Rl-searcher: Incentivizing the
search capability in llms via reinforcement learning.
arXiv preprint arXiv:2503.05592.

Mirac Suzgun and Adam Tauman Kalai. 2024.
Meta-prompting:  Enhancing language models
with task-agnostic scaffolding.  arXiv preprint
arXiv:2401.12954.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. arXiv preprint
arXiv:2306.05301.

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen,
Jiahao Qiu, Shijue Huang, Bowen Jin, Mengdi Wang,
Kam-Fai Wong, and Heng Ji. 2025a. Otc: Optimal
tool calls via reinforcement learning. arXiv e-prints,
pages arXiv—2504.

Jianxun Wang and Yixiang Chen. 2023. A review on
code generation with llms: Application and evalu-
ation. In 2023 IEEE International Conference on
Medical Artificial Intelligence (MedAl), pages 284—
289. IEEE.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao
Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang,
Xu Chen, Yankai Lin, et al. 2024. A survey on large
language model based autonomous agents. Frontiers
of Computer Science, 18(6):186345.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue
Zhang, Linjie Li, Zhengyuan Yang, Xing Jin, Kefan
Yu, Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb,
Yiping Lu, Kyunghyun Cho, Jiajun Wu, Li Fei-Fei,
Lijuan Wang, Yejin Choi, and Manling Li. 2025b.
Ragen: Understanding self-evolution in 1lm agents
via multi-turn reinforcement learning.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin,
Liwen Zhang, Zhengwei Tao, Dingchu Zhang, Zekun
Xi, Yong Jiang, Pengjun Xie, et al. 2025. Webdancer:
Towards autonomous information seeking agency.
arXiv preprint arXiv:2505.22648.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Ly, et al. 2025. Qwen3
technical report. arXiv preprint arXiv:2505.09388.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

1662


http://arxiv.org/abs/2504.20073
http://arxiv.org/abs/2504.20073

A Training
A.1 Training Template

As shown in Figure 4, we utilize the native infer-
ence and tool-use templates from Qwen. For the
Planner, we focus training exclusively on the action
component and the reasoning phase just before the
final answer. We mask the loss from non-answer
parts, allowing the Planner to concentrate on opti-
mizing tool calls, thereby stabilizing the training
process.

A.2 Training Algorithm

As shown in Algorithm 1, our RL framework sup-
ports three common RL algorithms: PPO (Schul-
man et al., 2017), GRPO (Shao et al., 2024), and
REINFORCE++ (Hu et al., 2025). All three algo-
rithms utilize the tool-use completeness we pro-
posed as the primary action reward metric. The
process follows a generate-evaluate-optimize cycle
until the Planner’s policy converges.

A.3 Implementation Details

In the cold-start phase, we utilize Qwen3-
32B (Yang et al., 2025) as the teacher LLM for
knowledge distillation. We adopt verl (Sheng et al.,
2024) as our reinforcement learning framework
and apply its recommended hyperparameters for
PPO, GRPO, and REINFORCE++. All RL training
experiments are conducted on 2 x 8 H20 GPUs.

A.4 RL Training Metric

As shown in Figure 5, both the tool calling reward
and the total reward exhibit an upward trend as
the number of RL training steps increases, while
the calling error penalty gradually decreases. Si-
multaneously, the number of calls and the response
length also increase, indicating that the Planner pro-
gressively improves its tool calling completeness
and thereby acquires more comprehensive informa-
tion. Additionally, we observed that, compared to
PPO and REINFORCE++, GRPO did not demon-
strate significant growth in either the number of
calls or the response length. This phenomenon can
be attributed to the unique Group Normalization
mechanism employed by GRPO. Specifically, the
normalization mechanism in GRPO shifts the opti-
mization objective toward achieving the relatively
highest score among multiple responses generated
from the same prompt. As a result, the direct corre-
lation between response length and the final reward
signal is reduced, meaning the model no longer

Algorithm 1: Multi-Turn Reinforcement
Learning for Planner Optimization

Input: Initial Planner policy m,, Reference
policy ¢, Data distribution D, Set
of tools 7, KL-divergence weight /3.

Output: Optimized Planner policy ;.

1 Initialize Planner parameters 6,
2 while not converged do
/* Phase 1: Generate

Trajectories */

3 Sample a batch of queries {z;}2 ; from
D

4 Generate a batch of tool-use trajectories

{r}B | where 7; ~ 7, (+|zi;T)

/* Phase 2: Evaluate and Compute

Rewards */
5 for each trajectory T; in the batch do
6 if trajectory format of 7; is invalid
then
7 Rtotal,i +— -1
8 end
9 else
// Calculate completeness

reward using a

verification LLM
10 Rcomp,i — % Zjvzl i (Tz)

// Calculate rule-based

penalties

1 Rrepeat,i — = ZZ:Z H(at =
at—l)
12 Rerror,i — —u Z?:l ]I(at ¢
A7)

13 Rrule,i <~ Rrepeat,i + Rerror,i
14 Rtotal,i < Rcomp,i + Rrule,i
15 end
16 end

/* Phase 3: Optimize Policy */

17 Update the Planner’s parameters 0, by
optimizing the objective:
18 arg maxy, Eenp a~r, [Riotal (2, a)] —

BDxku, (mp(alz; T) || mrer(ala; T))

19 end

*
20 return 7, < m,

1663



<[im_start|>user

How many days until the next Summer Olympics?<|im_end|>

<|im_start[>assistant

<think>\n I need to search for information about the next Summer Olympics date to get accurate results. \n</think>
<tool call>\n{"name":"search","arguments": {"query":"Next Summer Olympics date"} }\n</tool call><|im_end|>
<|im_start[>user

<tool_response>\n [ {\"event\":\"Next Summer Olympics\",\"name\":\"2028 Los Angeles Olympics\",\"dates\":\"July 14 to July 30,
2028\",\"host_city\":\"Los Angeles, USA\",\"hosting_history\":\"Third time hosting (previously in 1932 and
1984)\",\"announcement\":\"Awarded by the IOC on September 13, 2017\"}] \n</tool response><|im_end|>

<|im_start[>assistant

<think>\n Now I know that the next Summer Olympics will be the 2028 Los Angeles Olympics, which will take place from July
14 to July 30. I need to use code tools to accurately calculate the number of days from now until July 14, 2028.\n</think>

99,99 R

<tool_call>\n {“name”:”code”,”arguments”: {“‘query”:”Days until July 14, 2028.”} }\n</tool_call><|im_end|>
<|im_start>user

(IR

<tool response>\n{“script”: “from datetime import datetime\nprint((datetime(2028,7,14)-datetime.now()).days)”, result’’:
“1118”}\n</tool_response><|im_end|>

<|im_start[>assistant

<think>\n I got the information about the next Summer Olympics, and I calculated the number of days from now to the next
Summer Olympics. Now I can sort out the answers and answer them. \n</think>

<answer><|im_end[>

Figure 4: Our RLTR training template. The labels in the blue sections are masked during training to prevent
loss calculation, ensuring training stability. Unlike full-agent training, the Planner terminates upon outputting to
“<answer>" and does not generate subsequent responses.

score/total_score/mean score/call_reward/mean score/bad_call_penalty/mean
— GRPO — REINFORCE++ = PPO — GRPO — REINFORCE++ — PPO — GRPO — REINFORCE++ = PPO
0.78
0.76
0.74
0.72

0.7

0.68

score/format_score/mean turns/mean response_length/mean
— GRPO — REINFORCE+ — PPO — GRPO — REINFORCE+ — PPO — GRPO — REINFORCE++ — PPO

22 2400
2 2200
18 2000
1800
16
1600
L4 1400
1.2 Step 1200 Step
10 20 30 40 0 60 10 20 30 40 50 60

Figure 5: Trends of main metrics for PPO, REINFORCE++, and GRPO algorithms during general reinforcement
learning on Qwen3-8B.

1664



A. Tool-Use Completeness
You are an agent expert, committed to fully meeting
query needs through precise tool combinations. When

the tool returns unsatisfactory results, you must adjust
the parameters and try a new call again. Ultimately, the
output should be 0, indicating a missing invocation,
and 1, indicating completeness.

Tool List: {tools}

# input

query: {query}
&gent_action: {trajection} j
B. Answer Helpfulness
You are an agent expert. Determine whether the agent’s

summary is actually helpful to the query. Output 0
means no help, output 1 means help.

Tool List: {tools}

# input

query: {query}

agent action: {trajection}

agent response: {summary}

C. Answer Relevance
You are an agent expert. Determine whether the

agent’summary is related to the query. Output 0 for
irrelevant, output 1 for relevant.

Tool List: {tools}

# input

query: {query}

agent_action: {trajection}

agent_response: {summary} )

K—[ D. Answer Correctness ]ﬁ
You are an agent expert. Determine whether the agent’s
summary is correct. Output 0 for incorrect, output 1 for
correct.
Tool List: {tools}
# input
query: {query}
agent_action: {trajection}
agent_response: {summary} J

Figure 6: (A) tool-use completeness, (B) answer helpful-
ness, (C) answer relevance, and (D) answer correctness
evaluation prompts.

needs to rely on increasing the number of calls for
optimization. Instead, it focuses on refining the
tool calling parameters to initiate more accurate
calls, leading to a more gradual increase in both
response length and the number of calls.

B Prompt
C Agent Environment

C.1 Tools

* Search A real-time search tool using the So-
gou API 2, tailored for Chinese language sce-
narios.

* Code A tool that converts natural language

Zhttps://data.open.sogou.com/

instructions into Python code and executes it
within a secure sandbox.

D Case Study

Tool-Use Completeness Reward is More Accu-
rate than Final Answer Correctness Reward. As
shown in Figure 7 (A), the task is to calculate the
temperature difference between Beijing and Shang-
hai. To solve this, the agent must use a search tool
to retrieve weather data for both cities and then
employ a code tool to compute the temperature
difference. When the reward is based solely on
the correctness of the final answer, the agent is in-
correctly given a positive reward, as it appears to
have answered the question correctly. However, the
weather data for Shanghai is fabricated by the agent.
In contrast, the tool-use completeness reward suc-
cessfully identifies the missing steps—specifically,
searching for Shanghai’s weather data and calcu-
lating the final temperature difference—and thus
assigns the correct negative reward for the incom-
plete trajectory.

Optimized Planner Can Improve Summarizer
Performance. As shown in Figure 7 (B), for a
complex factual query, the unoptimized Planner
fails to make complete tool calls, resulting in insuf-
ficient information for the Summarizer to generate
an accurate summary, and ultimately leads to an in-
correct response. In contrast, the optimized Planner
initiates further searches when information is in-
complete, eventually obtaining accurate data. This
enables the Summarizer to organize the answer
based on reliable information, thereby producing a
correct response.

1665



( 1. query: Temperature difference between Beijing and Shanghai

2. function: <think>Need to first obtain Beijing weather data</think>
{"name":"search","arguments": {"query":"Beijing weather"}}
3. observation: [{“title”:“Beijing Weather Forecast”,“temperature”:“16 ~ 29°C”,*“weather”:“Sunny”},...]
4. summary : <think>Currently have Beijing weather data (16~29°C sunny), Shanghai weather data is typically
24~32°C cloudy</think> The minimum temperature difference is +8°C (Shanghai 24°C minus Beijing 16°C),
K maximum temperature difference is -3°C (Beijing 29°C minus Shanghai 32°C).
( . .
Final answer evaluation: <think>The agent Tool-use completel_less evaluation: <t}_11nk>Current
correctly answered the question, therefore judged as state lacks Shanghai weather data, requires further API
correct.</think> 1 (Incorrect reward) o calls, therefore judged as incomplete.</think> 0 a0
\_ (Correct reward)

A. Different Reward Functions' Judgment Process on an Erroneous Agent Trajectory

B. Planning Optimization Enhancing Summarizer Performance

(query: Who is the author of the poetry collection ) fquery: Who is th? author of the poetry collection \

'Moments So Quiet'? "Moments So Quiet"?

function: <think>Need to identify the author of function: <think>Need to query the author

‘Moments So Quiet” poetry collection</think> mfgrrwatm@ of "I'\'/lomerxtf So . o
"name":"search","arguments": {"query":"'"Moments So Quiet"</think>{"name":"search","arguments": {"quer

Quiet' poetry collection author"}} y":"poetry collection 'Moments So Quiet' author"} }

observation: [ {"title":"'So Quiet': Wonderful Stories observation: [{"passage":"Ho Leng Seng, a Macau

Linger in the Cracks of Human poet, authored poetry collections including 'Moments

Nature","passage":"Introduction 'So Quiet' is a collection So Quiet' and 'Angels by Nam Van Lake™},...]

of novellas by writer Wang Zongkun... Author: Wang function: <think>Need to verify the author's identity

Zongkun, a contracted writer of Shandong Writers and work

Association"},...] information</think>{"name":"search","arguments": {"

summary: <think>Based on search results, the author is query":"Ho Leng Seng poetry collection 'Moments So

Wang Zongkun, a contracted writer of Shandong Writers Quiet"'} }

Association</think> The author of the poetry collection observation: [ {“passage™:“Ho Leng Seng, real name

‘Moments So Quiet’ is Wang Zongkun. oo Wrong Zheng Guowei, winner of Macau Literary Awards,

published ‘Moments So Quiet’ in 20147},...]
Unoptimized Planner summary : <think>Confirmed by combining both

search results</think>The author of the poetry
collection "Moments So Quiet" is Macau poet Ho

Leng Seng (real name Zheng Guowei) ) Right
I Optimized Planner |

Figure 7: Examples illustrating the evaluation of different reward criteria and the impact of Planner optimization on
summary generation.

1666



