Building Data-Driven Occupation Taxonomies: A Bottom-Up Multi-Stage
Approach via Semantic Clustering and Multi-Agent Collaboration

Nan Li!, Bo Kang'?, Tijl De Bie',
'IDLab, Department of Electronics and Information Systems,
Ghent University, Belgium
2Nobl.ai

Correspondence: nan.li@ugent.be

Abstract

Creating robust occupation taxonomies, vi-
tal for applications ranging from job recom-
mendation to labor market intelligence, is
challenging. Manual curation is slow, while
existing automated methods are either not
adaptive to dynamic regional markets (top-
down) or struggle to build coherent hierarchies
from noisy data (bottom-up). We introduce
CLIMB (CLusterIng-based Multi-agent taxon-
omy Builder), a framework that fully auto-
mates the creation of high-quality, data-driven
taxonomies from raw job postings. CLIMB
uses global semantic clustering to distill core
occupations, then employs a reflection-based
multi-agent system to iteratively build a co-
herent hierarchy. On three diverse, real-world
datasets, we show that CLIMB produces tax-
onomies that are more coherent and scalable
than existing methods and successfully capture
unique regional characteristics. We release our
code and datasets at https://github.com/
aida-ugent/CLIMB.

1 Introduction

A taxonomy is a hierarchical structure that orga-
nizes information. In the labor market, a robust tax-
onomy is critical for organizing job postings, guid-
ing job seekers, and informing policy. It improves
search and guidance for job seekers, provides gov-
ernments a framework to analyze labor trends and
inform policy, and underpins corporate workforce
planning and skill gap analysis. However, because
labor markets are dynamic and regionally diverse,
there is a strong need for taxonomies that are tai-
lored to specific markets and easily updatable. The
goal of this work is to fully automate the construc-
tion of such data-driven, hierarchical taxonomies
directly from a raw corpus of job postings. While
the optimal level of granularity for a taxonomy is
application-specific, its quality can be assessed on
universal properties such as coherence, compre-

hensiveness, and efficiency, which our evaluation
framework is designed to measure.

Existing methods struggle to meet this need.
Manual curation is slow, expensive, and unscalable.
As detailed in Section 2, automated approaches are
either top-down, expanding an existing structure,
or bottom-up, building a new one from data.

Many traditional and recent LLM-based meth-
ods follow a top-down approach. These systems
are designed to expand upon a pre-existing seed,
typically a small, expert-curated taxonomy or a list
of initial terms extracted and filtered using classic
natural language processing techniques. While ef-
fective for enriching existing knowledge structures,
this reliance on a seed makes them ill-suited for
building a taxonomy from scratch in a new domain
and and fails to fully remove the need for expert
knowledge and potential for human bias.

In contrast, bottom-up approaches aim to build a
hierarchy directly from a raw corpus but face fun-
damental challenges. While LLMs used in these
methods have inherent priors, a truly bottom-up
approach ensures that the final taxonomy’s struc-
ture is dictated by the corpus itself, not by pre-
defined seeds or expert-curated lists. First, they
struggle to distill a globally consistent set of core
concepts (e.g., distinct occupations) from the data;
feeding an entire corpus to an LLM is often infea-
sible, while incremental processing sacrifices the
global perspective of the whole corpus needed to
identify concepts consistently. Second, even with a
clean set of concepts, constructing a deep and log-
ically coherent hierarchy is a complex reasoning
task where single-LLLM systems often fail, produc-
ing inconsistent groupings and flawed structures.

To address these challenges, we propose
CLIMB (CLusterIng-based Multi-agent taxonomy
Builder), a multi-stage framework that solves both
problems in sequence. To overcome the first chal-
lenge, CLIMB begins with the raw corpus and uses
semantic clustering over the entire dataset to au-
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Figure 1: High-level overview of CLIMB.

tomatically distill a globally-informed set of leaf-
node concepts. To solve the second, CLIMB em-
ploys a novel reflection-based multi-agent frame-
work for the hierarchical construction. It proceeds
level-by-level, using a “Generator” to propose par-
ent concepts and an “Evaluator” to critique them
for logical consistency. This iterative refinement
is essential for building a complex yet coherent
taxonomy. Our contributions are:

* We propose a novel system design, CLIMB, that
fully automates bottom-up taxonomy generation.
Its key innovation is a two-stage architecture
that combines (1) a global clustering sub-system
to distill concepts robustly from a raw corpus
and (2) a multi-agent, reflection-based reasoning
framework to solve the complex task of hierarchi-
cal construction. This design makes the process
objective by removing the need for expert seeds
or manual curation.

* We demonstrate that CLIMB produces tax-
onomies that are not only coherent and scalable,
but also highly adaptive. Unlike static, generic
taxonomies, CLIMB’s data-driven approach cre-
ates structures that are customized to specific
regional labor markets at a specific point in time,
capturing unique local roles and emerging trends.

* We release our code and the datasets used in this
study to the public to encourage reproducible re-
search and further innovation in this area (https:
//github.com/aida-ugent/CLIMB).

2 Related Work

The task of taxonomy generation is broadly divided
into two main methods: top-down and bottom-up.

Top-Down Approaches. A significant body of
work, from both the pre-LLM era (Shen et al., 2018;
Zhang et al., 2018; Huang et al., 2020; Shang et al.,
2020; Lee et al., 2022; Le et al., 2023) and the
recent LLM era (Zeng et al., 2024; Gunn et al.,

2024; Marchenko and Dvoichenkov, 2024; Kar-
gupta et al., 2025), operates top-down by expand-
ing a pre-existing seed taxonomy. While effective
for enriching established knowledge structures, this
reliance on a seed makes them less suitable for cre-
ating a taxonomy from scratch in a new domain.

Bottom-Up Approaches. In contrast, bottom-
up approaches aim to construct a taxonomy directly
from a corpus, aligning with CLIMB’s objective
of creating data-driven, adaptive taxonomies. Re-
cent works have explored several strategies to this
end. Some domain-specific methods require a pre-
compiled list of terms (Sas and Capiluppi, 2024;
Moraes et al., 2024), precluding full automation
from raw text. To the best of our knowledge, the
state-of-the-art method that operates in a fully au-
tomated, bottom-up, and seed-free manner is TnT-
LLM (Wan et al., 2024), which we select as our pri-
mary baseline. TnT processes data in small batches
to iteratively build its taxonomy. While scalable,
this local view (i.e., seeing only the data in the cur-
rent batch) can result in redundant concepts or a
fragmented hierarchy, especially with noisy data.
Another strategy uses a human-in-the-loop to refine
an LLM-generated draft, sacrificing full automa-
tion for quality control (Shah et al., 2023). In con-
trast, CLIMB’s fully automated solution resolves
the local-view limitation by performing global clus-
tering on the corpus, ensuring its foundation of leaf
nodes is comprehensive and consistent.

Reflection for Complex Reasoning. Once base
concepts are identified, constructing a logically
sound hierarchy is a complex reasoning task where
a single LLM struggles to ensure overall logical
coherence. In other fields require such reasoning,
such as code generation (Madaan et al., 2023; Chen
et al., 2023) or mathematical problem-solving (Yao
et al., 2023), reflection-based multi-agent frame-
works using a “generator” and “evaluator” for iter-
ative refinement have proven highly effective (An-
thropic, 2024; Kalyanpur et al., 2024; Yuan and
Xie, 2025). To our knowledge, CLIMB is the first
to apply this powerful paradigm to coherent and
robust taxonomy construction.

3 Method

Given a corpus of documents, our goal is to auto-
matically construct a hierarchical taxonomy. As
aforementioned, building a taxonomy from a raw
corpus has two challenges: (1) distilling a consis-
tent set of base concepts from a large and noisy
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corpus, and (2) constructing a coherent hierarchy
from them. CLIMB’s multi-stage pipeline (Fig-
ure 1) is designed to address these. First, the
pipeline generates leaf nodes from raw job post-
ings. This involves optional text distillation and
embedding (Section 3.1), global semantic cluster-
ing to identify occupations (Section 3.2), and then
transforming raw clusters into canonical leaf nodes
via LLM-based abstraction and normalization (Sec-
tion 3.3). Second, for hierarchical construction
(Section 3.4), a reflection-based multi-agent frame-
work iteratively builds a logically coherent taxon-
omy upwards from the leaves, level by level. Im-
plementation details are provided in Appendix C.

3.1 Job Posting Distillation & Embedding

Job postings often mix core occupational details
with irrelevant text about company culture or appli-
cation procedures. Applying a large LLM to sum-
marize an entire corpus is prohibitively slow and
expensive. We therefore introduce an optional, scal-
able distillation step: an LLM cost-effectively gen-
erates a high-quality training set for a lightweight
classifier, which then extracts relevant text seg-
ments from all postings for subsequent embedding.
The process involves the following key steps:
Data Preparation: All job descriptions first un-
dergo basic text cleaning (e.g., removing HTML
tags and extra whitespace) and are then segmented
into text chunks for relevance classification.

LILM Labeling: To create training data cost-
effectively, an LLM annotates a sample of chunks
as relevant or irrelevant to the core occupation.
Classifier Training: A lightweight binary classifier
is trained on the LLM-annotated data, enabling
scalable filtering of all job postings.

Distilled Description Generation: The classifier ex-
tracts relevant chunks from each posting to create
a “distilled” description. For robustness, if distil-
lation is not needed or yields no relevant text, the
full, preprocessed posting is used as a fallback.
Embedding: The resulting descriptions are embed-
ded using a pre-trained language model for the
subsequent clustering stage.

3.2 Semantic Clustering

The next step is to group distilled job descriptions
into fine-grained occupation clusters (leaf nodes of
a taxonomy tree). Standard clustering approaches
using generic embeddings and cosine similarity
are insufficient for this task, as they fail to capture
the nuanced human judgment of what constitutes

the “same occupation” in practice. We therefore
develop a specialized, multi-step sub-system: we
learn a custom similarity metric by training a clas-
sifier to mimic an HR expert’s assessment using
contrastive data sampling and rich feature engineer-
ing. This non-trivial approach is a key contribution
that enables the high quality of our leaf nodes. The
process involves the following steps:

Contrastive Data Sampling: To create a rich train-
ing set, we sample pairs using a coarse initial signal
from general-purpose embedding cosine similarity.
This is not a labeling step, but a strategy to deliber-
ately select a challenging mix for LLM annotation:
likely easy-positives (high similarity), likely easy-
negatives (low similarity), and likely ambiguous
hard-positives and -negatives (moderate similarity).
LLM as HR Expert: We employ a powerful,
general-purpose LLM to act as a proxy for an HR
expert, a common and proven effective strategy for
scalable data annotation(Gilardi et al., 2023; Zheng
et al., 2023), to provide ground-truth “same occupa-
tion” labels for the sampled pairs. This supervision
forces the classifier to learn from these ambiguous
pairs and develop a nuanced similarity metric that
surpasses the initial embeddings. The prompts are
available in our public repository.

Classifier Training: An XGBoost classifier is
trained on these LLM-generated labels. The fea-
ture set for a pair of job embeddings, e, and ey,
is the concatenation of (eg, €p, €4 — €p, €4 © €p),
capturing rich interaction information.

Clustering with Learned Similarity: The trained
classifier is used to compute a similarity score for
all job pairs. These scores then serve as the input
for the Affinity Propagation algorithm (selected
in early tests for its superior silhouette scores), to
group postings into distinct occupation clusters.

3.3 Leaf Node Generation

The raw clusters from the previous step are groups
of job postings, but their varied and often inconsis-
tent titles are unsuitable for a formal taxonomy.
This stage transforms these clusters into clean,
canonical occupations with clear titles and descrip-
tions, serving as the leaf nodes of the taxonomy.

LLM-based Abstraction: We prompt an LLM with
the cluster’s (sampled if too many) job postings
to generate a concise title and description for the
occupation each cluster represents, crucial for ab-
stracting a canonical concept from noisy raw text.
Normalization and Deduplication: LLM-generated
titles can be ambiguous or redundant, so we refine
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them as follows. (1) Ambiguous conjoined titles
(e.g., “Accountant and Bookkeeper”) are removed
to ensure one concept per node. (2) Standard text
cleaning is applied. (3) Semantically equivalent
nodes are merged by clustering their embeddings
with Affinity Propagation, which identifies an ex-
emplar title for each group.

This process of abstraction and normalization
ensures our leaf nodes are distinct and well-defined,
forming a robust foundation for the hierarchy.

3.4 Hierarchical Taxonomy Construction

With a solid set of leaf nodes, we build the tax-
onomy upwards. This is a complex reasoning
task: grouping concepts from specific to general
into a coherent hierarchy, similar to standard tax-
onomies. Single-pass LLM approaches are known
to fail at such complex reasoning tasks, prone to
errors that propagate and corrupt the entire tree.
To address this, we employ a novel application of
the reflection-based multi-agent paradigm to tax-
onomy construction: a deliberate, level-by-level
framework with a “Generator” and an “Evaluator”
to ensure coherence at each stage of construction.
Starting with the leaf nodes (Level 0), the hierarchy
is built using the following iterative process.
Generator: An LLM proposes parent concepts to
group the current level’s nodes. This step performs
the specific-to-general reasoning, outputting parent
titles, descriptions, and child-parent mappings.
Evaluator: To prevent error propagation, an Eval-
uator agent scrutinizes the Generator’s output for
logical consistency. It checks for common failure
modes identified in our early explorations: missing
child nodes, children assigned to multiple parents,
and hallucinated mappings to non-existent nodes.
Generate-Evaluate Cycle: If the Evaluator finds
flaws, it provides feedback to the Generator to re-
fine its output. This cycle repeats until the structure
is validated. The new parent nodes then become
the input for the next level, a process that continues
until the number of newly generated parent nodes
falls below a set threshold.

4 Experiments

To evaluate CLIMB’s performance, we use three
real-world datasets from different regions with var-
ied sizes, comparing it against two baselines using
a variety of evaluation metrics.

Datasets. We collected three datasets from ma-
jor job search websites in their respective regions:

Palestine with 2701 postings in English and Arabic,
Botswana with 4854 English postings, and USA
with 11285 English postings. For each dataset, we
randomly split the data into training and testing
sets with a ratio of 9:1. The training set is used for
generating the taxonomy, and the testing set is used
for evaluating the quality of the taxonomy. More
details are provided in Appendix A.

Baselines. We compare CLIMB against a state-
of-the-art automated method and an expert-curated
standard. TnT (Wan et al., 2024): As introduced in
Section 2, TnT is our primary baseline as the state-
of-the-art fully automated, bottom-up method. As
its original prompts create a flat structure for user
intents, we adapted them for the occupation domain.
TnT-H: To provide a stronger hierarchical compar-
ison, we created TnT-H, a hierarchical variant of
TnT. This required substantial re-architecture: a re-
cursive, multi-pass process that generates top-level
categories, assigns documents to categories, and
recursively applies TnT to each subset. We evalu-
ate this computationally expensive baseline on the
Palestine dataset. ESCO (European Commission,
2024): Built upon the international ISCO-08 (Inter-
national Labour Organization, 2008) standard, the
European Skills, Competences, Qualifications and
Occupations (ESCO) is a comprehensive, expert-
curated taxonomy designed for region-agnostic ap-
plication. As the full taxonomy is too large to fit
within the context window of the LLM annotators
used for evaluation, we use a two-level version
corresponding to its four- and five-digit codes, a
necessary simplification.

Evaluation Metrics. To evaluate the tax-
onomies scalably, we employ a panel of three
LLMs as independent annotators, a common and
cost-effective strategy for reliable annotation (Gi-
lardi et al., 2023; Zheng et al., 2023). Our
panel consists of Gemini 2.5 Flash, O4-Mini, and
DeepSeek R1 (see Appendix C for full model de-
tails). A detailed analysis of the annotator panel’s
reliability and bias is provided in Appendix E.
These annotators are tasked with labeling job post-
ings from the test set using a given taxonomy. We
then assess the quality of each taxonomy across
three key dimensions: accuracy, comprehensive-
ness, and efficiency, using standard metrics from
prior work (Shah et al., 2023; Wan et al., 2024)
applied to the LLM-generated labels:

Accuracy. High-quality taxonomies should be con-
sistent (no contradictions), clear (unambiguous def-
initions), and accurate (correct categorizations).
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Without the ground truth labels for the job postings’
occupations, we use the inter-annotator agreement
as a proxy for label accuracy. For hierarchical tax-
onomies, we also measure the hierarchical agree-
ment to provide a more detailed view. This gives us
the following two metrics. Strict Agreement: Re-
quires all annotators to assign identical occupation
labels to a job, and not choose “Other.” This strict
metric evaluates label clarity and consistent inter-
pretation. Hierarchical Agreement: A more flex-
ible metric for tree structures where agreement is
met if assigned labels share an identical parent node
at a given level. This rewards semantically close,
if not exact, predictions. We use Fleiss’ kappa
(Fleiss, 1971) to measure agreement, interpreting
values using standard ranges (Landis and Koch,
1977; McHugh, 2012): < 0.20 (slight), 0.21—-0.40
(fair), 0.41—0.60 (moderate), 0.61—0.80 (substan-
tial), 0.81—1.00 (almost perfect).
Comprehensiveness. Measured by Coverage Rate,
the percentage of jobs assigned a specific label
rather than “Other.” A high rate indicates the taxon-
omy is sufficiently comprehensive for the corpus.
Efficiency. Measured by Label Utilization Rate,
the percentage of labels used at least once during
annotation, indicating how much of the taxonomy’s
breadth is relevant.

Table 1: Comparison of taxonomy sizes (number of
nodes) against training dataset sizes. LO, L1, L2 refer
to the levels of the taxonomy, from specific to general;
‘-> indicates a non-existent level. ESCO is a dataset-
agnostic static taxonomy. TnT generates lower number
of nodes in general, and does not appear to scale with

Table 2: Taxonomy comparison across datasets (agree-
ment numbers are kappa values with interpretation sym-
bols, others are percentages). Acronyms: Agr. (Agree-
ment), Util. (average Label Utilization), Cov. (average
Coverage Rate). Kappa interpretation: *= substantial,
*%= almost perfect. T Agreement and Utilization at .2
for a fairer comparison between CLIMB and TnT where
node numbers are similar (CLIMB: 190 vs. TnT: 130).

Dataset Taxonomy Strict Agr.  Util.  Cov.
ESCO 0.46 524 9533
Palestine TnT 0.59 48.66 89.30
TnT-H 0.60 61.77 94.34
CLIMB 0.73* 54.50 98.52
ESCO 0.56 10.02 98.83
Botswana TnT 0.42 38.00 81.21
CLIMB 0.63* 44.86 97.81
ESCO 0.46 17.28 97.20
USA TnT 0.62* 82.56 79.48
CLIMB 0.54 34.58 97.34
CLIMB (L2)f 0.67* 82.28 9734

Table 3: Hierarchical agreement for CLIMB (kappa
values), with levels numbered from most specific (LO)
to most general. Kappa interpretation: *= substantial,
**= almost perfect.

Dataset Level 0 Level 1 Level 2
Palestine 0.73* 0.81%* 0.82%*
Botswana 0.63* 0.72% 0.76*
USA 0.54 0.66%* 0.67*

Table 4: Per-level comparison between CLIMB and TnT-
H on Palestine dataset. Both have 143 total nodes but dif-
ferent structures. CLIMB achieves superior agreement
at every level, with particularly strong performance at
upper levels (L1, L2). TnT-H’s higher overall utiliza-
tion is a misleading artifact of its poorly defined upper
hierarchy (only 33.33% of L2 nodes used).

the size of the training dataset. CLIMB generates tax-  Tevel Method Node Count Strict Agr. Util. (%)
onomies that scale with the size of the training dataset. L2 (T CLIMB 14 0.82%* 97.62
°P  TyTH 15 0.67%  33.33
Dataset (# Jobs) Taxonomy L2 L1 L0 Total L1 (Mid) CLIMB 32 0.81%* 92.71
- ESCO - 436 1760 2196 TnT-H 56 0.63* 55.95
TnT - - 87 87 L0 (Leaves) CLIMB 91 0.73* 72.89
Palestine (2430) TnT-H 15 56 72 143 TnT-H 72 0.60 71.76
CLIMB 14 32 91 143 Overall CLIMB 143 0.73* 54.50
Botswana (4368) TnT - - 200 200 TnT-H 143 0.60 61.77
CLIMB 29 99 277 418
TnT - - 130 130
USA (10129) CLIMB 190 341 671 1298 . . .
erated taxonomies against the data sizes used for
generating them. For each dataset, we report the
5 Results number of nodes at the levels that are used later

We present quantitative (Section 5.1) and qualita-
tive (Section 5.2) results.
5.1 Opverall Performance & Analysis

We present our main quantitative results in this
section. Table 1 compares the sizes of the gen-

for evaluation, where the total number of nodes is
the sum of the nodes at all levels. The interactive
visualizations of the trees generated by CLIMB
are online https://shorturl.at/LOkpT. More
descriptions are provided in Appendix D.

Table 2 evaluates the overall quality of the tax-
onomies using several metrics. To ensure a fair
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comparison on the USA dataset, this table includes
an additional entry comparing taxonomies of sim-
ilar size. Table 3 assesses hierarchical agreement
at different levels of the taxonomy generated by
CLIMB, numbered bottom-up (Level 0 = leaves).

Our main results demonstrate the effectiveness
of CLIMB across multiple datasets.

CLIMB generates significantly more consis-
tent and unambiguous taxonomies, leading to
higher inter-annotator agreement. As shown in Ta-
ble 2, CLIMB scores the highest in the Palestine
and Botswana datasets with substantial agreement.
While TnT appears to have a higher agreement
score on the USA dataset, this direct comparison is
misleading due to the vast taxonomy size difference
(see Table 1). For a fairer comparison, we report
CLIMB’s agreement at Level 2, where the number
of nodes (190) is much closer to TnT’s (130). As
shown in the last row for the USA dataset in Table 2,
CLIMB’s 0.67 agreement score surpasses TnT’s
0.62, demonstrating superior structure, though its
high granularity on this complex dataset reduces
leaf-level clarity (Table 3).

The hierarchy produced by CLIMB is logi-
cally structured and semantically coherent. As
shown in Table 3, agreement scores consistently
increase as we ascend the hierarchy from more spe-
cific to broader categories, reaching almost perfect
agreement for the Palestine dataset. This trend con-
firms that the generated structure is semantically
coherent, as annotators tend to agree on broader
concepts even when they diverge on finer-grained
distinctions.

CLIMB’s multi-agent framework produces
superior hierarchical quality compared to re-
cursive generation approaches. To provide a
stronger hierarchical comparison, we created TnT-
H, a hierarchical variant of TnT requiring substan-
tial re-architecture. As shown in Table 2, while
TnT-H’s overall agreement (0.60) is an improve-
ment over flat TnT (0.59), it remains significantly
lower than CLIMB’s 0.73. The per-level analy-
sis in Table 4 reveals the key insight: CLIMB
achieves superior agreement at every single level
of the hierarchy. This demonstrates that building
a high-quality hierarchy is a complex reasoning
task requiring more than repeated concept genera-
tion, but demands the specialized reflection-based
framework that CLIMB provides. TnT-H’s slightly
higher overall utilization (61.77% vs. 54.50%) is a
misleading artifact: it stems from a poorly defined
upper hierarchy where only 33.33% of top-level

nodes are actually used, compared to CLIMB’s
efficient 97.62%.

CLIMB excels at producing a taxonomy that
is both comprehensive and efficient, striking a
superior balance between coverage and utilization.
In contrast, both baselines struggle with trading-off
between these metrics. TnT achieves high label
utilization only at the cost of comprehensiveness,
failing to classify over 20% of jobs in the USA
dataset. Conversely, ESCO provides high coverage
but suffers from extremely low utilization, indi-
cating a bloated structure. CLIMB, however, de-
livers strong performance on both fronts. On the
USA dataset, its leaf nodes provide excellent cover-
age (97.34%). At a comparable size (L2), CLIMB
achieves a similarly high utilization rate (82.28%
vs. 82.56%) while achieving superior coverage.

CLIMB generates taxonomies whose sizes
scale logically with the size and complexity of the
input corpus. As shown in Table 1, the taxonomy
generated by CLIMB for the large USA dataset is
substantially larger than for the smaller Botswana
and Palestine datasets, reflecting the greater diver-
sity of occupations. In contrast, the TnT baseline
exhibits inconsistent scaling behavior, producing
a smaller taxonomy for the largest dataset (130
nodes for USA) than for the mid-sized one (200
for Botswana). This suggests that CLIMB is more
robust and sensitive to the underlying occupational
diversity of the corpus, whereas TnT may fail to
capture the full spectrum of occupations in larger,
more complex datasets.

5.2 Qualitative Analysis

Some unique structures can be found from the
generated taxonomies for the USA, Palestine, and
Botswana datasets, respectively. The qualita-
tive analysis demonstrates CLIMB is indeed data-
driven, and highlights CLIMB’s ability to create
taxonomies that reflect the unique socio-economic
characteristics of each region, an advantage over
any generic occupation taxonomy.

The taxonomy from the Palestine dataset (Fig-
ure 2(a)) reveals the prominence of humanitarian
work, reflecting the region’s socio-political context.
The generated hierarchy dedicates one of its six
top-level sectors to “Development, Humanitarian,
and Community Program Management,” and re-
lated jobs appear across most other branches. This
cross-cutting presence allows CLIMB to capture
specialized roles like Monitoring, Evaluation, Ac-
countability, and Learning (MEAL) Specialist and
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Corporate Administration and - . Monitoring, Evaluation, Accountability,
—> R EEE Humanitarian Access and Security Officer
Operational Support and Learning(MEAL) Specialists
Financial Strategy, Data, and Development and Humanitarian Program Business and Economic Development
Information Technology Leadership & Thematic Expertise Specialists
Palestine Development, Humanitarian, and Specialized Social, Community, and Humanitarian and Development
Community program Management Protection Services Program Management & Support
Marketing, Sales, and Stakeholder Public Health and Essential Services
—> Public Health Program Specialist
Engagement Development
SupplyChain, Engineering, and Engineering, Construction and Industrial Water, Sanitation, and Hygiene
Technical Operations Operations (WASH) Specialists
Specialized Direct Service and Client Clinical and Diagnostic Healthcare Agricultural Development and
Engagement Professionals Operations Professionals
Business, Management, and Manufacturing, Processing, and Diamond Processing, Grading, and Diamond Processing and Valuation
Foundational Professional Roles Machine Operation Specialists Valuation Professional
Botswana Technology, Engineering, _Science, N Skilled Tradeg, Manufagturing, and Geology and Min§ra| Exploration Geologist Mining Exploration
and Industrial Operations Industrial Operations Professionals
Public Service, Education, Creative Lol Hospitality, Culinary,_and Personal Travel, Tourism, and Tour Guiding Safari / Tour Guide
Arts, and Personal Care Care Services
Business Management & General Education, Training & Learning K-12 Education Leadership & K-12 and Adult General Education
Operations Services Classroom Instruction Instruction
USA Technology, Data & Digital Solutions Hospitality, Fooq Service & K-12 Student & Operational Support K-12 Student Health and Safety
Recreation Services Support

Education, Arts, Culture & Hospitality

Arts, Culture & Language Services Il Elveztien Lesitaiillsh }

K-12 Student Behavior Management
Faculty & Research

and Cultural Development

Figure 2: (a) A snippet from the Palestine taxonomy, showcasing how CLIMB identifies specialized humanitarian
roles (e.g., MEAL Specialist) reflecting the local context. (b) A snippet from the Botswana taxonomy, showcasing
how CLIMB reflects key economic drivers with roles in the diamond and tourism industries. (c) A snippet from the
USA taxonomy, showing how CLIMB captures the specific structure of the American education system (K-12 vs.
Higher Education). Dotted lines represent omitted intermediate nodes for clarity.

Water, Sanitation, and Hygiene (WASH) Special-
ist. The discovery of such niche, region-specific
roles that would not appear in generic taxonomies
is direct evidence of CLIMB’s truly bottom-up,
data-driven nature.

The taxonomy for the Botswana dataset (Fig-
ure 2(b)) mirrors the country’s key economic
drivers. It captures the granularity of its corner-
stone diamond industry with specific roles like
Diamond Processing, Grading, and Valuation. It
also identifies occupations in the booming tourism
sector, such as Safari Guide, which leverages the
nation’s natural beauty and wildlife.

For the USA dataset (Figure 2(c)), the CLIMB-
generated taxonomy accurately models the Amer-
ican education system, distinctly structured into
K-12 and higher education sectors. This level of
regional specificity is absent in international stan-
dards like ESCO, demonstrating CLIMB’s capacity
to capture nuanced local labor market structures.

6 Conclusion

In this work, we introduced CLIMB, a novel frame-
work that automatically builds hierarchical occu-
pation taxonomies directly from raw job postings.

Our approach addresses the need for up-to-date
taxonomies that fit specific regional job markets.
It works from the bottom up, using semantic clus-
tering to discover occupations and a multi-agent
system to build a coherent hierarchy, all without
needing seed terms or manual intervention.

Our experiments on three diverse, real-world
datasets show that CLIMB outperforms existing
methods, producing taxonomies that are demon-
strably clearer, more coherent, and achieve a better
balance of coverage and efficiency. Furthermore,
our qualitative analysis confirms that the resulting
taxonomies capture unique, regional labor market
characteristics that generic models miss.

While our implementation is tailored to job post-
ings, we believe the core principles of the CLIMB
framework are domain-agnostic. Its two-stage
methodology, distilling concepts from a noisy cor-
pus and then organizing them with a reasoning
engine, could be adapted for creating taxonomies
in other domains, such as scientific literature or
product catalogs. This offers a promising avenue
for future research into automated knowledge orga-
nization.
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Limitations

Our study has several limitations that provide av-
enues for future work. First, while our evaluation
includes direct validation against the expert-curated
ESCO taxonomy and demonstrates CLIMB’s supe-
rior fit for specific regional labor markets, a formal
evaluation with domain specialists for each spe-
cific region would provide additional validation.
Our methodology also relied on LLMs as proxy
HR experts for data annotation and as indepen-
dent annotators for evaluation. While we used a
diverse panel of powerful models to mitigate risks
and conducted a detailed annotator analysis (see
Appendix E), their judgments may still contain bi-
ases or errors that do not perfectly reflect human
expertise. Therefore, a large-scale validation study
with human domain experts for both the generated
training data and the final taxonomy quality is a
critical next step for future work. We acknowledge
the potential risk of circular validation when using
LLMs for both creation and evaluation. We miti-
gated this through three key strategies: (1) using
distinct models for distinct roles (e.g., GPT-40-mini
for training data, Gemini Pro for generation, and
a completely independent panel of Gemini Flash,
0O4-Mini, and DeepSeek R1 for evaluation), (2) en-
suring fundamentally different cognitive tasks at
each stage (binary similarity judgments vs. global
hierarchical reasoning vs. multi-class classifica-
tion), and (3) measuring consensus across a diverse
evaluation panel rather than relying on a single
model, where high inter-annotator agreement in-
dicates objective clarity that transcends individual
model biases.

Second, our use of Affinity Propagation for
clustering, while effective on our datasets, has
quadratic time complexity that may challenge scal-
ability on much larger corpora; future work could
explore alternatives like HDBSCAN.

Third, while we created TnT-H as a hierarchical
variant of TnT for a stronger comparison on the
Palestine dataset, applying this computationally
expensive approach to all datasets was beyond our
resource constraints. Future work could extend this
comparison to additional datasets.

Finally, the performance of CLIMB is inherently
tied to the capabilities of the LLMs used. This
includes the potential for semantic failures during
hierarchy construction, where agents might create
illogical groupings. Future advancements in LLM
reasoning will likely improve taxonomy quality.
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A Job posting datasets construction

The three real-world datasets used in our experi-
ments were constructed as follows:

 Palestine Dataset: Contains 2,701 job postings
from https://www. jobs.ps/, a major job por-
tal in Palestine. The data spans from September
2024 to February 2025.

* Botswana Dataset: Contains 4,854 job postings
from https://jobsbotswana.info/, a leading
job board in Botswana. The data covers the pe-
riod from August 2023 to June 2025.

* USA Dataset: Contains 11,285 job postings
from https://www.indeed.com/, with the lo-
cation restricted to the United States. Data was
collected between October 2023 and November
2023.

B Dataset Characteristics and Challenges

This section provides concrete examples from our
datasets to illustrate the key challenges in the job-
postings domain that CLIMB is designed to over-
come. The following examples showcase the com-
plexities of real-world job data that necessitate our
proposed methodology.

High Noise-to-Signal Ratio Job postings are fre-
quently cluttered with non-essential information,
such as company boilerplate, benefits, and applica-
tion instructions, which can obscure the core occu-
pational details. As shown in Table 5, the descrip-
tion for a “Bus Driver” position is dominated by
administrative details rather than the actual duties
and qualifications. This high noise-to-signal ratio
makes it difficult to extract meaningful informa-
tion and justifies our initial distillation step, which
filters out irrelevant text to focus on the essential
aspects of the job.

Synonymy and Ambiguous Titles The same oc-
cupation is often described using a variety of syn-
onymous or ambiguous titles. For instance, as il-
lustrated in Figure 3, roles like “Administrative
Assistant,” “Administrative Support,” and “Admin-
istrative Assistant III” may refer to very similar
jobs, yet their titles differ. This ambiguity makes it
challenging to group similar occupations based on
job titles alone and motivates our use of semantic
clustering, which relies on the underlying mean-
ing of job descriptions rather than superficial title
variations.

Niche, Region-Specific Roles Labor markets
contain many specialized roles that are specific
to a particular region or industry and are often
absent from standardized, top-down taxonomies.
Figure 4 highlights one such example, the “Wa-
ter, Sanitation and Hygiene (WASH) Officer,” a
role prevalent in the international development sec-
tor. The discovery of such niche roles underscores
the value of CLIMB’s bottom-up approach, which
can adaptively identify and categorize emerging or
region-specific occupations from the data itself.

Multilingual Content Job posting datasets can
contain a mix of languages, adding another layer
of complexity. The Palestine dataset, for example,
includes job postings in both English and Arabic,
as shown in Figure 5. Processing such multilin-
gual content requires models that can understand
and compare job descriptions across different lan-
guages, which guided our choice of multilingual
embedding and language models throughout the
CLIMB pipeline.

C Implementation Details

This section provides a detailed breakdown of each
stage in the CLIMB pipeline, complementing the
descriptions in Section 3.

C.1 Job Posting Distillation & Embedding

The goal of this initial stage is to efficiently ex-
tract core occupational information from job post-
ings, which are often verbose and contain irrelevant
text (e.g., company boilerplate, application instruc-
tions). Applying a large language model (LLM) to
summarize every posting in a large corpus would be
prohibitively slow and expensive. To address this
scalably, we adopt a two-step approach: first, we
use a cost-effective LLM to generate a high-quality
labeled dataset, and second, we train a lightweight
yet effective classifier to perform the distillation on
the entire corpus. This process ensures that the sub-
sequent clustering stage operates on clean, relevant
data.

» Data Preparation: Job descriptions first undergo
basic cleaning to remove HTML tags and excess
whitespace. They are then segmented into text
chunks by paragraphs (split by new lines)

¢ LLM-based Labeling for Training Data: To
create training data for the distillation classi-
fier, we use gpt-4o0-mini to annotate a sam-
ple of the text chunks. Each chunk is la-
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Table 5: An Example of Highly Noisy Job Posting.

Job Title Job Posting

Bus Driver Benefits: One year signing bonus of $1000, health insurance, NYS pension,
paid holidays, paid time off, and flexible work hours.
Training Provided (CDL license with P&S Endorsement)
Job Attachment
Itinerant Location District wide
Salary: From 22.50
Salary: To 22.50
Start Date ASAP
Additional Job Information: Salary listed is the minimum starting rate for
the position. Compensation may be commensurate with experience. Must posses
or be willing to obtain a valid Commercial Driver’s License - Class B with
Passenger (P) and (S) endorsements, airbrakes by the State of New York.
Contact Person’s Name: Finune 0. Shaibi
Contact Person’s Title: Director of Human Resources
Contact Person’s Phone: 716-250-1413
Contact Person’s Email: jgalbo@sweethomeschools.org

Administrative Assistant (]

Lincoln Property Company through Linkedin

Washingten, DC Administrative Assistant
Lobbing Firm & | Washington, DC 20005 | $70,000 - $80,000 a year
Receptionist / Office Assistant a
Apply now O c
Parker Poe Adams & Bernstein LLP
‘Washington, DC 20005 (Downtown area)
Healthinsurance  Visioninsurance  Dental insurance

Disability insurance

Full job description

Senior Staff Assistant (] Administrative Assistant (Full-Time)

Children's National Hospital Industry: Lobbying Firm
Washingten, DC 20010 (Cathelic University area)

Location: Washington, DC (in-office)

Administrative Assistant Il (] Schedule: Monday - Friday from 8:30am - 5:30pm

Aon About the company: This opening is for the District of Columbia branch of a fast-growing, mid-size

Washington, DC 20006 (Downtown area) lobbying firm with multi-state reach. Additional information will be provided during interviews.
Tuitionreimbursement  Employee stock purchase plan

About the position: We are looking for a highly organized and efficient Administrative Assistant to

add to our growing team. This forward-facing position will handle a wide variety of office

administration tasks with a generous degree of autonomy and responsibility.

AD&Dinsurance  401(k) Healthinsurance Paid time off

Admin Support/Mail & File Mgmt. (Onsite) O We think you'll succeed in this role if you:

Fidelity Partners

« Have a high attention to detail and always check your work
Arlington, VA « Experience in the legislative or lobbying industry
Travelreimbursement  Healthinsurance  Paid time off « Take initiative and don't wait for direction when you see an issue
Visioninsurance  Dentalinsurance  Paid holidays s Enjoy working in a fast-paced environment where there is always something to do
s Are comfortable with a high degree of autonomy but are still a team player when needed
s Areproud to contribute to company success through critical support tasks
Admin Support/Receptionist (]
Essential Tasks of the Administrative Assistant
Fidelity Partners
Arlington, VA s Provide administrative support to Lobbyists/Partners

Travel reimbursement  Healthinsurance  Paid time off s Answer multi-line phone system and direct calls or take messages as appropriate

Figure 3: Synonymy and Ambiguous Titles for Administrative Support Occupations.

beled as either relevant or irrelevant to defin- data to automate the relevance-filtering process
ing the core occupation. The prompt guided for the entire corpus.

;he LIE‘M t.oblcéerigfy text segﬁf‘:tl‘lts derCﬂy — Data Split: The LLM-labeled dataset of text
escribing JOb Culies, Tesponsibiuties, and re- chunks was split into training (90%) and test-

quired qualifications, while ignoring other con- ing (10%) sets. The training set was further di-

tent.  The fu'll prompt de'talls are available vided into training (90%) and validation (10%)
at https://github.com/aida-ugent/CLIMB/ e .
subsets from training the classifier.

src/annotate_posting_segments.py. . .
P §-s¢8 Py — Model Architecture: The classifier is an

* Distillation Classifier Training: A lightweight XLMRobertaForSequenceClassification
binary classifier is trained on the LLM-annotated model initialized with BAAI/bge-m3 weights,
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* WASH Assistant - Information Management
(IM)

Action Against Hunger AAH @

Job Description

SaveJob  Email Print  Report

Action Against Hunger (AAH) is a humanitarian, non-governmental, non-political, non-denominational and

non-profit making organization working in the Palestinian Territory since 2002.

Action Against Hunger is recruiting in the Gaza Strip a

‘WASH Assistant - IM

For a duration of 6 months with possibility of extension

GENERAL OBJECTIVES:

The WASH Assistant for Information Management (IM) is responsible for ensuring the efficient collection,

management, and reporting of data to support evidence-based decision-making. He/she will act as a key liaison

between field operations and the wider team, contributing to the overall effectiveness and accountability of

WASH programs.

KEY ACTIVITIES

= 2 Position Specific Objectives and Tasks

» Objective 1: Manage and report on project data to ensure timely and effective monitoring.

« Conduct data collection and registration of IDPs as relevant.
« Compile and analyze WASH data to produce regular reports, dashboards, and infographics.
» Generate timely and accurate reports on program progress and key performance indicators

(KPIs) for internal and external stakeholders.

the cluster or donors.

Participate in preparing the data required for weekly updates and monthly reports.
Assist the Program Manager in preparing the data needed for all required reports, whether for

Participate in updating the necessary data to track beneficiary achievements according to

Figure 4: An Example of Region-Specific Roles: Water, Sanitation and Hygiene (WASH) Officer.

featuring a classification head to output the
binary prediction.

— Training and Performance: The model was
trained for 1 epoch with a learning rate of 2e-
5 and 100 warmup steps, using the AdamW
optimizer. On the USA dataset, it achieved a
test accuracy of 93.58%, precision of 93.18%,
recall of 95.98%, and an F1-score of 94.56%,
demonstrating its effectiveness in identifying
relevant content.

* Distilled Description Generation: After train-
ing, the classifier is applied to all text chunks
in the corpus. For each job posting, the chunks
classified as relevant are concatenated to form a
“distilled” description.

» Fallback Mechanism: For robustness, if the dis-
tillation process results in no relevant text for a

given posting (an infrequent event that occurred
for only 9 jobs in the USA dataset), the full, pre-
processed job description is used as a fallback to
ensure no data is lost.

* Embedding for Clustering: Finally, the result-
ing distilled (or full) descriptions are embedded
using the Qwen3-Embedding-8B model. This
produces the final vector representations that
serve as the input for the Semantic Clustering
stage.

C.2 Semantic Clustering

This stage groups job postings into fine-grained
clusters representing distinct occupations. The core
idea is to train a custom similarity model that learns
to mimic a human’s nuanced judgment of what con-
stitutes the “same occupation,” rather than relying
on generic cosine similarity, which often falls short.
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Job Title Location

Translator (Arabic/English)
Samaritan’s Purse

Site Management Cluster IM Support Officer

5l iakesalall ualnal

Emergency Specialist Consultant
CTG Global

s lelall 8 paluill - laleo/ cpealns

Jak¥l s 45 SOS Children's Villages

Security Officer
Secours Islamigue France (SIF;

Head of Mission support
MSF-France Doctors Without Borders

wilao 8/ albgo
asislasalall e luall olall 3LV PFI

Health Promotion Community Engagement Manager
MSF-France Doctors Without Borders

8/ cuaulo
Jalally slall ale ) $loy senaz

Savelob Email Print Report

3D printing Engineer
Joalil) s pall ao) o maz ©

e

H
E
A
L
T
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Job Description
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Figure 5: Multilingual Content in the Palestine Dataset.

This learned similarity is then used to drive a clus-
tering algorithm.

* Contrastive Data Sampling: To train the simi-
larity model, we first create a challenging set of
job pairs. For each job in a dataset, we compute
its cosine similarity with all other jobs using their
embeddings. Based on this, we sample pairs to
create a balanced mix of examples:

— Likely Easy Positives: Two strongly similar
jobs (from nearest neighbors ranked 1-20).

— Likely Ambiguous Hard-Negatives or Hard-
Positives: One job with moderate similarity
(from neighbors ranked 21-100).

— Likely Easy Negatives: One job with low sim-
ilarity (from the rest of the corpus).

This strategy deliberately includes ambiguous
(hard-negative or hard-positive) pairs to teach the
model a more nuanced understanding. For the
USA dataset, this process resulted in approxi-
mately 40,000 pairs for training.

« LLM as HR Expert: The sampled pairs
are then annotated by gpt-4o-mini, which
acts as a proxy for an HR expert. It labels
each pair as “same occupation” or “different
occupation” from the practical perspective of a
job seeker. The full prompt is available at https:
//github.com/aida-ugent/CLIMB/src/
same_occupation_job_pair_sampling.py.

* Similarity Classifier Training: An XGBoost
classifier is trained on the LLM-annotated pairs
to predict the probability that two jobs belong to
the same occupation.

— Features: For a pair of job embeddings, e, and
ey, the input feature vector is the concatenation
of (€q, €p, eq — €p, €4 © €p), Where © denotes
the Hadamard (element-wise) product. This
feature engineering captures rich interaction
information between the job descriptions.

— Hyperparameters: Key hyperparameters
for the XGBoost model include a learn-
ing rate (eta) of 0.1, a max_depth of 8§,
and a subsample ratio of 0.8. To account
for class imbalance in the training data,
scale_pos_weight was set to approximately
1.67. The model was trained with a maximum
of 2000 boosting rounds, using early stopping
with a patience of 50 rounds.

— Training and Model Selection: The dataset
of labeled job pairs was split into training
(90%) and testing (10%) sets. This setup was
used to evaluate different embedding models
for representing the jobs, including BGE-m3,
Qwen3-Embedding-0.6B, Qwen3-Embedding-
4B, and Qwen3-Embedding-8B. The Qwen3-
Embedding-8B model was ultimately selected
as it yielded the best classification performance
on the test set.
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* Similarity Matrix Construction: After train-
ing, the XGBoost classifier is used to compute a
pairwise similarity score for all jobs in the train-
ing set. To ensure the similarity matrix is sym-
metric (i.e., sim(A, B) = sim(B, A)), we de-
fine the final similarity between two jobs as the
average of the two predictions: (score(A, B) +
score(B, A))/2.

* Clustering Algorithm Selection: We explored
several clustering algorithms, including Agglom-
erative Clustering, a custom greedy approach,
and Affinity Propagation. Affinity Propagation
was selected as it consistently yielded the best
performance, as measured by the silhouette score
on the generated clusters.

* Final Clustering: The Affinity Propagation al-
gorithm is used to cluster the job postings based
on the symmetrized similarity matrix. We used
the default damping factor of 0.5 and set the pref-
erence hyperparameter to the median of the input
similarities, which allows the algorithm to deter-
mine the number of clusters automatically.

C.3 Leaf Node Generation

This stage transforms the raw job posting clusters
from the previous step into canonical, well-defined
leaf nodes, each with a clear title and description,
which serve as the foundation of the taxonomy.
This involves two main sub-stages: abstracting a
canonical occupation from each cluster’s raw text
and then refining the full set of generated occupa-
tions to ensure consistency and remove redundancy.

* LLM-based Abstraction: The goal of this step
is to synthesize the content of each job cluster
into a single, representative occupation.

— Model and Input: For each cluster, we pro-
vide a sample of its raw job descriptions
to the gemini-2.5-flash-preview-05-20
model. Using a sample is necessary to manage
the context window limits for clusters contain-
ing a large number of postings.

— Prompting: The LLM is prompted to act as an
HR expert and generate a concise, generic title
and a comprehensive description that canoni-
cally represents the occupation for the given
job descriptions. The full prompt is avail-
able at https://github.com/aida-ugent/
CLIMB/src/prompts.py.

¢ Normalization and Deduplication: The raw
LLM-generated titles can be inconsistent or se-
mantically redundant (e.g., “Software Engineer”
vs. “Software Developer”). To create a clean set
of leaf nodes, we perform a three-step refinement
process:

— Filtering: Nodes with conjoined titles (e.g.,
“Accountant + Bookkeeper™) are programmati-
cally removed by detecting the “+” separator.
These titles were intentionally generated by
the LLM for clusters spanning multiple dis-
tinct occupations but are filtered out as they
violate the principle of a node representing a
single, distinct concept.

— Cleaning: Standard text normalization is ap-
plied to all titles for consistency. This includes
converting text to lowercase, removing punctu-
ation and stopwords, and performing lemmati-
zation.

— Deduplication: To merge semantically equiv-
alent nodes, we cluster them based on their
meaning.

i. Embedding: The cleaned title and the
full description of each node are em-
bedded using the Qwen3-Embedding-8B
model.

ii. Feature Representation: A final vector
for each node is created by concatenat-
ing its title embedding and description
embedding. To emphasize the title’s im-
portance while retaining contextual in-
formation from the description, the title
embedding is weighted at 80% and the
description embedding at 20%.

iii. Clustering: Affinity Propagation is ap-
plied to the cosine similarity matrix of
these combined embeddings. The algo-
rithm was configured with a damping fac-
tor of 0.7, and the preference was set to
0.95.

iv. Canonicalization: For each resulting
group of semantically similar nodes, the
“exemplar” identified by Affinity Propa-
gation is chosen as the single canonical
representative, and the other nodes in the
group are merged. This step ensures each
distinct occupation is represented by only
one node in the final set.
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C.4 Hierarchical Taxonomy Construction

This final stage constructs the taxonomy by build-
ing a hierarchy upwards from the canonical leaf
nodes generated in the previous step. Construct-
ing a deep and logically coherent hierarchy is a
complex reasoning task. Our early explorations re-
vealed that single-pass LLLM approaches are prone
to critical errors, such as inconsistent groupings
or flawed parent-child relationships, which corrupt
the entire structure. To address this, we designed a
deliberate, level-by-level process using a reflection-
based multi-agent framework. This ensures logical
coherence at each step of the construction. The
process is governed by two agents, a “Generator”
and an “Evaluator,” operating in an iterative cycle.

* Framework and Input: The process begins with
the set of canonical leaf nodes (Level 0), which
are formatted as a JSON list of objects, each
with a “title” and “description”. The multi-agent
framework iteratively processes this list to build
the hierarchy one level at a time.

* Generator Agent:

— Model: gemini-2.5-pro-preview-05-06.
Specific generation hyperparameters (e.g., tem-
perature) are detailed in the codebase, avail-
able at https://github.com/aida-ugent/
CLIMB/src/tree_multiagent.py.

— Task: At each level k, the Generator’s task is

to take the set of nodes from that level and pro-
pose a set of parent concepts for the next level,
k + 1. This involves performing specific-to-
general abstraction to group the input concepts
into broader parent categories.

— Prompting and Output: The agent uses
a detailed prompt instructing it to return a
JSON object containing the list of new par-
ent nodes. For each parent, it must pro-
vide a concise “title”, a comprehensive “de-
scription”, and a list of the child nodes from
level k that it subsumes. The prompt explic-
itly requires strict adherence to this JSON
schema to ensure the output is machine-

Evaluator is a deterministic, rule-based agent.
It programmatically scrutinizes the Generator’s
output to ensure its logical coherence before it
is accepted as a valid level in the hierarchy. It
performs several critical checks:

— Completeness: All child nodes from level &
must be mapped to a parent in level k + 1.

— Exclusivity: No child node can be assigned to
more than one parent, enforcing a strict tree
structure.

— Validity: There are no “hallucinated” map-
pings to child nodes that did not exist in the
input.

— Constraints: The number of generated parent
nodes must be within a pre-defined range (see
below).

Iterative Generate-Evaluate Cycle: The con-
struction proceeds in a loop. If the Evaluator
finds flaws in the Generator’s output, its feed-
back is incorporated into the prompt for the next
generation attempt. This cycle repeats until the
output is fully validated. Once a level is vali-
dated, its newly generated parent nodes become
the input for constructing the subsequent level.
This process continues until the taxonomy con-
verges to a small set of top-level categories, with
the final hierarchy stored in a JSON file.

Grouping and Termination Constraints: To
guide the hierarchical construction, the process
is bounded by the following constraints:

— Dynamic Grouping: The number of parent
nodes generated at each level is dynamic to
adapt to the data’s complexity.

— Termination: The entire process terminates
when either of two conditions is met: (1) the
number of generated parent nodes at a new
level is less than a threshold of 10, or (2) the
number of nodes to be clustered in the current
level is less than or equal to 1. This prevents
the creation of overly granular or trivial top-
level categories.

readable. It also includes a mechanism for C.5 Evaluation

receiving feedback from the Evaluator, allow-
ing it to correct errors from previous attempts.
The complete prompt templates are avail-
able at https://github.com/aida-ugent/
CLIMB/src/tree_multiagent.py.

To evaluate the quality of the generated taxonomies
scalably and cost-effectively, we used a panel of
three distinct LLMs as independent annotators.
Each annotator was tasked with labeling every job

posting in the test set according to a given taxon-
* Evaluator Agent: Unlike the Generator, the = omy. This process is detailed below:
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* Annotator Panel: The panel consisted of
three models from different providers to
ensure a diversity of perspectives: o4-mini,
gemini-2.5-flash-preview-04-17, and
deepseek/deepseek-r1-0528.

* Annotation Task and Prompting: For each
job posting, an LLM was provided with the
full job description and a string representation
of one of the taxonomies (CLIMB, TnT, or
ESCO). The prompt instructed the LLM to act
as a job classification expert and adhere to
several rules: (1) assign the most granular la-
bel possible, (2) use parent nodes for vague
postings, (3) use multiple labels only for jobs
that genuinely span distinct roles, and (4) use
an “Other” category if no suitable label exists.
The prompt also strictly enforced a JSON out-
put format for programmatic parsing. The full
prompt templates are available in the codebase
at https://github.com/aida-ugent/CLIMB/
src/taxonomy_evaluation.py.

¢ Execution and Parsing: API calls were made
with a temperature of 0.0 to ensure determinis-
tic outputs. The final assigned labels for each
job were then extracted from the returned JSON
object to be used for calculating the evaluation
metrics described in the main text.

D Taxonomy Trees

The taxonomies generated by CLIMB for each
dataset have the following hierarchical structures:

* Palestine Dataset: A 4-level taxonomy.
The number of nodes per level, from the
most general (top) to the most specific
(bottom), is 6, 14, 32, and O9I. The
interactive visualization of the taxonomy
is online https://github.com/aida-ugent/
CLIMB/file/demo/palestine.html.

* Botswana Dataset: A 5-level taxonomy. The
number of nodes per level, from most general
to most specific, is 3, 10, 29, 99, and 277.
The interactive visualization of the taxonomy
is online https://github.com/aida-ugent/
CLIMB/file/demo/botswana.html.

* USA Dataset: A 6-level taxonomy. The num-
ber of nodes per level, from most general to
most specific, is 8, 23, 65, 190, 341, and 671.
The interactive visualization of the taxonomy

is online https://github.com/aida-ugent/
CLIMB/file/demo/usa.html.

E LLM Annotator Analysis

This section provides a detailed characterization of
our three-model evaluation panel used for taxon-
omy annotation. We analyze (1) quantitative met-
rics of annotator bias including positional bias and
label diversity, (2) pairwise inter-model agreement
to assess panel consistency, and (3) the generation
hyperparameters employed.

E.1 Evaluation Panel Configuration

Our annotation pipeline employed a three-model
ensemble consisting of:

* DeepSeek-R1-0528: A reasoning-focused
model with chain-of-thought capabilities,

* Gemini-2.5-Flash-Preview-04-17: Google’s
latest multimodal model,

* O4-Mini: A compact yet capable model opti-
mized for classification tasks.

All models were configured with temperature
= 0.0 to ensure deterministic and reproducible an-
notations. Each model independently annotated
job descriptions across three taxonomies (ESCO,
FLAT, TREE) on three geographic datasets (USA,
Palestine, Botswana), totaling approximately 1,200
annotations per model per taxonomy.

E.2 Annotator Bias Analysis

We assess two critical dimensions of annotator qual-
ity: label diversity (measuring whether models ex-
ploit the full taxonomy) and positional bias (mea-
suring preference for labels based on their position
in the taxonomy list).

E.2.1 Bias Metrics: USA Dataset

Table 6 presents comprehensive bias metrics for the
USA dataset, our largest evaluation set with ~1,160
annotations per model.

Key findings: All three models demonstrate
high label diversity, with normalized entropy con-
sistently above 0.85 across all taxonomies. No-
tably, on the fine-grained ESCO taxonomy, mod-
els achieved entropy scores above 0.90, indicating
near-uniform exploitation of the label space. Posi-
tional bias remains well below the random baseline
of 0.25 for all models, with most values between
0.11-0.30, suggesting minimal preference for early-
listed candidates.
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Table 6: Annotator bias metrics on USA dataset across three taxonomies. Normalized entropy quantifies label
diversity (1.0 = perfectly uniform). Primacy bias measures preference for early-listed labels (0.25 = random
baseline). Combined bias score synthesizes both metrics (higher = less biased).

Taxonomy Model Annot. Unique Norm. Primacy Position Combined
Count Labels Entropy Bias Entropy Bias Score
DeepSeek-R1 1160 404 0914 0.146 0.915 0.781
ESCO Gemini-2.5-Flash 1084 397 0.928 0.304 0.928 0.645
0O4-Mini 1153 337 0.906 0.190 0.906 0.734
DeepSeek-R1 942 112 0.879 0.165 0.879 0.734
FLAT Gemini-2.5-Flash 865 102 0.867 0.109 0.867 0.773
0O4-Mini 971 108 0.852 0.160 0.852 0.716
DeepSeek-R1 1165 374 0.918 0.350 0918 0.596
TREE Gemini-2.5-Flash 1089 448 0.950 0.210 0.950 0.751
0O4-Mini 1148 425 0.935 0.266 0.935 0.687

E.2.2 Label Distribution Characteristics

Table 7 shows the top-5 most frequently assigned
labels for each model on the USA dataset, revealing
annotation patterns.

Even the most frequently assigned label (“Ad-
ministrative assistant”) accounts for only 3.5-5.5%
of annotations, confirming that no single label dom-
inates model predictions.

E.3 Inter-Model Agreement Analysis

We assess pairwise agreement between models us-
ing four complementary metrics:

* Exact Agreement: Fraction of items where
both models assign identical label sets

* Loosened Agreement: Fraction of items with
any label overlap (accommodates multi-label
partial matches)

* Jaccard Similarity: Average Jaccard index
across all item pairs

* Partial Overlap Rate: Fraction of items with
non-empty label intersection

E.3.1 Cross-Dataset Agreement Summary

Table 8 presents agreement metrics averaged across
all three datasets (USA, Palestine, Botswana) and
all three taxonomies.

Key findings: The Gemini—O4-Mini pair ex-
hibits the strongest agreement (loosened agreement
=0.661), while DeepSeek—Gemini shows the low-
est (0.583). All pairs demonstrate moderate to sub-
stantial agreement, with exact match rates between
56—64%. The modest gap between exact and loos-
ened agreement (average improvement of 2.2 per-
centage points) indicates that most agreements are

exact matches rather than partial overlaps, reflect-
ing consistent classification behavior.

E.3.2 Taxonomy-Specific Agreement Patterns

Table 9 breaks down agreement by taxonomy
across all datasets.

Key findings: Agreement varies systematically
with taxonomy structure. The FLAT taxonomy
achieves the highest agreement (DeepSeek—O4-
Mini: 0.685 loosened), while ESCO shows the low-
est (DeepSeek—Gemini: 0.489), consistent with the
increased difficulty of achieving consensus in larger
label spaces. The hierarchical TREE taxonomy
shows intermediate agreement (0.623-0.741), with
Gemini—O4-Mini achieving particularly strong con-
sensus (0.741).

E.3.3 Dataset-Specific Agreement: USA

Table 10 presents detailed agreement metrics for
the USA dataset, our primary evaluation bench-
mark.

On the FLAT taxonomy, Gemini—O4-Mini
achieve 78.2% loosened agreement, suggesting
strong consensus for this compact label space.
Even on the challenging ESCO taxonomy, models
reach 46-56% exact agreement, well above chance
(~0.25% random baseline for 400 labels).

E.3.4 Jensen-Shannon Divergence Analysis

Table 11 presents Jensen-Shannon divergence
(JSD) between model label distributions, measur-
ing distributional similarity.

Key findings: JSD values range from 0.171
(FLAT) to 0.429 (ESCO), indicating moderate dis-
tributional alignment. The FLAT taxonomy shows
remarkably low divergence (0.17-0.21), while
ESCO shows higher values (0.37-0.43), consistent
with the greater labeling ambiguity in fine-grained
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Table 7: Top-5 most frequently assigned labels by each model (USA dataset, ESCO taxonomy). Even the most
common labels represent <6% of annotations, demonstrating high diversity.

Model Rank Label Frequency (%)
1 Administrative assistant 5.5%
2 Security guard 2.1%
DeepSeek-R1 3 Policy officer 1.9%
4 Human resources officer 1.5%
5 Department manager 1.4%
1 Administrative assistant 3.5%
2 Education managers 2.4%
Gemini-2.5-Flash 3 Executive assistant 2.1%
4 Security guard 1.9%
5 Medical administrative assistant 1.3%
1 Administrative assistant 5.4%
2 Office clerk 3.1%
04-Mini 3 Security guard 2.0%
4 Sales assistant 1.8%
5 Education managers 1.7%

Table 8: Overall pairwise inter-model agreement averaged across three taxonomies (ESCO, FLAT, TREE) and
three datasets (USA, Palestine, Botswana). Mean = standard deviation reported. Higher values indicate stronger
agreement.

Model Pair Exact Loosened Jaccard Partial Tax. Items
Agree. Agree. Sim. Overlap

Gemini <> O4-Mini 0.641 £0.055 0.661 +£0.056 0.651 +0.056 0.661 & 0.056 3 4,976
DeepSeek <+ O4-Mini  0.606 £ 0.061  0.626 £0.066  0.616 £0.063 0.626 £ 0.066 3 5,313
DeepSeek <> Gemini 0.557 £0.060  0.583 £0.067  0.570 £ 0.063 0.583 £ 0.067 3 4,946

Table 9: Inter-model agreement by taxonomy, averaged across three geographic datasets. FLAT taxonomy (112
labels) shows highest agreement; ESCO taxonomy (404 labels) shows lowest, as expected given the larger label
space.

Taxonomy Model Pair Datasets Exact Loosened Jaccard Partial Items
DeepSeek <+ Gemini 3 0.472 0.489 0.480 0.489 1,787
ESCO DeepSeek <> O4-Mini 3 0.519 0.533 0.526 0.533 1,902
Gemini <> O4-Mini 3 0.597 0.616 0.606 0.616 1,782
DeepSeek <» Gemini 3 0.593 0.637 0.614 0.637 1,344
FLAT DeepSeek <> O4-Mini 3 0.646 0.685 0.665 0.685 1,521
Gemini <> O4-Mini 3 0.606 0.627 0.617 0.627 1,394
DeepSeek <> Gemini 3 0.607 0.623 0.615 0.623 1,815
TREE DeepSeek <+ O4-Mini 3 0.653 0.660 0.656 0.660 1,890
Gemini <> O4-Mini 3 0.719 0.741 0.729 0.741 1,800

Table 10: Pairwise inter-model agreement on USA dataset across three taxonomies. Common items indicates the
number of job descriptions annotated by both models in each pair.

Taxonomy Model Pair Common Exact Loosened Jaccard Partial
Items Agree. Agree. Sim. Overlap
DeepSeek <+ Gemini 1,081 0.449 0.463 0.456 0.463
ESCO DeepSeek <+ O4-Mini 1,150 0.479 0.483 0.481 0.483
Gemini <> O4-Mini 1,075 0.546 0.558 0.552 0.558
DeepSeek <+ Gemini 796 0.690 0.724 0.706 0.724
FLAT DeepSeek <+ O4-Mini 887 0.692 0.720 0.706 0.720
Gemini <> O4-Mini 830 0.760 0.782 0.771 0.782
DeepSeek <+ Gemini 1,089 0.495 0.511 0.503 0.511
TREE DeepSeek <> O4-Mini 1,148 0.582 0.582 0.582 0.582
Gemini <> O4-Mini 1,076 0.644 0.664 0.654 0.664
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Table 11: Jensen-Shannon divergence (JSD) between  Each model processed identical prompts contain-

model label distributions on USA dataset. JSD € [0, 1]: ing the job description, taxonomy definitions, and
0 = identical distributions, 1 = completely different. . . .
standardized instructions.

Lower values indicate more similar annotation patterns.

Taxonomy Model Pair JSD
Gemini <> O4-Mini 0.371
ESCO DeepSeek <+ O4-Mini  0.397

DeepSeek <+ Gemini 0.429

DeepSeek <+ O4-Mini  0.171
FLAT Gemini <> O4-Mini 0.195
DeepSeek <+ Gemini 0.207

Gemini <> O4-Mini 0.324
TREE DeepSeek <+ O4-Mini  0.352
DeepSeek <+ Gemini 0.402

taxonomies. Across all taxonomies, Gemini and
O4-Mini exhibit the lowest divergence, suggesting
they employ similar annotation strategies.

E.4 Summary and Implications

Our analysis demonstrates that all three models
serve as high-quality annotators with:

1. High label diversity: Normalized entropy >
0.85 across all configurations, with models
utilizing 100-450 unique labels per taxonomy

2. Low positional bias: Primacy bias consis-
tently below the 0.25 random baseline, indi-
cating position-invariant evaluation

3. Moderate to substantial inter-model agree-
ment: Pairwise agreement ranging from 0.58—
0.74 (averaged across taxonomies), with par-
ticularly strong consensus on coarse-grained
taxonomies

4. Consistent distributional patterns: Jensen-
Shannon divergences of 0.17-0.43, demon-
strating convergent annotation strategies

These metrics collectively validate our three-
model ensemble as a robust evaluation panel, ex-
hibiting both individual quality (low bias, high
diversity) and collective consistency (strong pair-
wise agreement). The systematic variation in agree-
ment across taxonomies (FLAT > TREE > ESCO)
aligns with theoretical expectations: coarser tax-
onomies admit less ambiguity and thus higher con-
sensus.

E.5 Generation Hyperparameters

All annotations were generated using deterministic
sampling with temperature = 0.0 to ensure repro-
ducibility. No top-p or top-k filtering was applied.
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