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Abstract

Repairing and maintaining car parts are crucial
tasks in the automotive industry, requiring a me-
chanic to have all relevant technical documents
available. However, retrieving the right docu-
ments from a huge database heavily depends
on domain expertise and is time-consuming
and error-prone. By labeling available docu-
ments according to the components they relate
to, concise and accurate information can be
retrieved efficiently. However, this is a chal-
lenging task as the relevance of a document
to a particular component strongly depends on
the context and the expertise of the domain
specialist. Moreover, component terminology
varies widely between different manufacturers.
We address these challenges by utilizing Large
Language Models (LLMs) to enrich and unify
a component database via web mining, extract-
ing relevant keywords, and leveraging hybrid
search and LLM-based re-ranking to select the
most relevant component for a document. We
systematically evaluate our method using vari-
ous LLMs on an expert-annotated dataset and
demonstrate that it outperforms the baselines,
which rely solely on LLM prompting.

1 Introduction

For documenting repair and maintenance processes,
the automotive industry relies on a vast amount of
technical documents reflecting the increased tech-
nical depth of modern automotive products. These
documents contain detailed information about au-
tomotive components, ranging from mechanical
parts to complex electronic systems. However, as
the volume and complexity of technical documents
continue to grow, efficiently retrieving and iden-
tifying those relevant to a specific component in
need of repair has become a significant challenge
for engineers and technical personnel. In addi-
tion, each car manufacturer uses different terminol-
ogy to describe various components (Robert Bosch
GmbH, 2022). For example, some manufacturers

Figure 1: Our method enables technical documents from
the automotive domain to be searchable, thus providing
the right documents to a car mechanic.

use the term powertrain, to refer to the engine
transmission, and driveshafts, while others may
use drivetrain1 to indicate everything beyond
the engine.

Traditionally, mechanics manually browse
lengthy documents to locate necessary component
information, a process that is time-consuming and
unreliable. This inefficiency not only delays devel-
opment and maintenance cycles but also increases
the risk of overlooking critical details. On the other
hand, diverse terminology used by different au-
tomakers often leads to confusion and ambiguity
(Zellmer et al., 2024). To address these issues, la-
beling all documents with their most relevant com-
ponents before providing them to the mechanics
becomes a reasonable strategy. This significantly
reduces the search space, thereby improving effi-
ciency and enabling the retrieval of more accurate
and concise documents. Zhu (2025) also demon-
strates that automating the labeling of technical
documents is critically important within the auto-
motive industry.

With recent advances of LLMs (Chang et al.,
2024; Zhang et al., 2025) in various natural lan-
guage processing (NLP) tasks–such as text under-
standing (Sun et al., 2023; Zheng et al., 2025), text
generation (Wu et al., 2025), information extrac-

1https://en.wikipedia.org/wiki/Powertrain
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tion (Xie et al., 2023; Kang and Shin, 2025) and
text labeling (Alaofi et al., 2024; Thomas et al.,
2024)–LLMs have demonstrated specialized lin-
guistic knowledge in narrow domains, thanks to
extensive training data. As a result, LLMs are an
excellent tool for labeling automotive documents.
However, although LLMs are capable of handling
significantly larger context windows recently, it is
often not feasible to feed all components along with
the document to an LLM and prompt it to pick the
most relevant components, especially when thou-
sands of components are being used.

This paper presents a solution for a real-world
automotive use case: automatically extracting and
identifying automotive components from technical
documents. The goal is to provide accurate, con-
cise, and contextually relevant component informa-
tion to assist mechanics during diagnostic or repair
activities (as shown in Figure 1). To address exist-
ing challenges, we utilize LLMs to enrich the com-
ponent database via web mining and index them
into a search database. Given a technical document,
our method relies on LLMs to extract relevant key-
words, then performs hybrid search followed by
semantic and LLM-based re-ranking to select the
single most relevant component. We evaluate the
method on an expert-annotated dataset, achieving
promising results and outperforming pure LLM-
based prompting approaches. Our main contribu-
tions are as follows.

• We address a novel and practical problem
within the automotive industry. While doc-
ument labeling is a well-studied task, its appli-
cation to the automotive domain, particularly
in handling thousands of automotive compo-
nents, remains underexplored.

• We systematically designed our method to
scale to large amounts of documents and com-
ponents, overcoming the limitations of off-the-
shelf LLMs by integrating LLMs with hybrid
search, advanced prompting, and semantic re-
ranking.

• We evaluated our method using various LLMs
on an expert-annotated dataset and demon-
strated that it outperforms the baselines, which
rely solely on LLM prompting.

2 Related work

LLMs on NLP Extraction Tasks. With the de-
velopment of LLMs (Chang et al., 2024; Zhang

et al., 2025), many NLP downstream tasks, in-
cluding information extraction and document la-
beling, can now be solved through prompt engi-
neering techniques, eliminating the need for task-
specific training or fine-tuning. In particular, Xie
et al. (2023) explored the performance of Chat-
GPT on the zero-shot named entity recognition
task. Wei et al. (2024) conducted an empirical
study on various complex IE tasks, decomposed
them into multiple simpler sub-tasks and used a
multi-turn prompting strategy to obtain the final
results. Martínez-Cruz et al. (2024) demonstrated
the superiority of ChatGPT over state-of-the-art
models for the key-phrase generation on various
public datasets in diverse domains and for vari-
ous document lengths. Another work (Kang and
Shin, 2025) also investigated four prompting strate-
gies for the keyphrase extraction and experimented
on six benchmark datasets, demonstrated that the
prompting-based solution was more effective than
the traditional approach for this task.

Document Labeling. For text or document label-
ing tasks, the work of Alaofi et al. (2024) demon-
strated that LLMs can assign relevant labels to texts
with accuracy comparable to human judgments,
especially when using larger and more expensive
models. However, these models are prone to false
positives due to the presence of query terms in pas-
sages, even when the actual content is irrelevant.
The research by Thomas et al. (2024) investigated
the application of LLMs to directly generate high-
quality relevance labels from actual searcher inter-
actions. This approach demonstrated concrete ad-
vantages, including notable enhancements in search
ranker performance. However, with respect to spe-
cific domains such as automotive, to the best of
our knowledge, our study is the first to address the
real-world application of document labeling, par-
ticularly in the context of mechanical engineering
tasks involving car components.

3 Methodology

In our setting, we define that a component is
considered relevant to a document if the docu-
ment is necessary and useful for mechanics dur-
ing fixing or maintaining the component. Let
C = {c1, c2, . . . , cn} denote a predefined set of
automotive components, where n ≥ 7000. Given
an input document d, constituted by an HTML file
containing the technical content and metadata m in
XML format, the objective is to identify the subset
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Figure 2: Our pipeline for automotive document labeling.

of components c∗ ⊆ C for which the content of d
is most relevant.

Due to the large number of target labels and
domain-specific data, we propose a multi-step
framework consisting of LLM-based keyword ex-
traction and generation, hybrid search over all au-
tomotive components and re-ranking to retrieve
the relevant components for a document. Figure 2
depicts details of our method.

3.1 Automotive Component Data Enrichment

Labeling automotive components across different
document sources is challenging for several rea-
sons: the lack of detailed definitions for the ter-
minology used, the dependence on context and
the variations in terminology between different
car brands. For instance, Data Bus Diagnostic
Interface is used in some original equipment
manufacturer (OEMs) documents while others use
Gateway, which is a synonym. Manually defining
or collecting this information with human experts
is difficult and resource-intensive. To address these
challenges, we design a two-step approach to en-
rich the information of automotive component data
in our database, which includes description genera-
tion and meta-data collection.

Description Generation. The goal of this step is
to generate a unified description for each automo-
tive component. To avoid LLM-hallucination, we
utilize Bing-Search2 to retrieve relevant informa-
tion from the internet with a specific search query
for each component c (e.g. what is c?). This en-
ables the system to capture diverse terminology and
richer semantic context, improving the accuracy of
component retrieval and labeling across different
manufacturers. From retrieved web pages/files, an
LLM is used to generate the description Descci

2https://www.bing.com

for the component ci. For example, a descrip-
tion of Gateway is: “A gateway in automotive
systems manages communication between differ-
ent networks within the vehicle, ensuring data is
correctly routed and translated between various
electronic control units (ECUs)”.

Meta-data Collection. Along with the descrip-
tions, meta-data is collected via the web search.
The meta-data includes system types and a syn-
onym list, instance collections or alternative termi-
nology for components used in the automotive in-
dustry. This information could enhance the search
of similar/relevant components (e.g. instances of
Gateway could be network gateway, data bus
interface, ECU gateway, etc.). After generating
and collecting additional data, we design a com-
ponent data index that includs all relevant infor-
mation, such as component names, descriptions,
instance collections and system types, along with
their textual embeddings (for name and description)
generated by an embedding agent. Given a docu-
ment, the data index is used to search for relevant
components.

3.2 Automotive Document Labeling
Given an automotive document, we first extract
important keywords, map these keywords to stan-
dardized components, and then rank the these com-
ponents based on the relevance to the input data.

Keyword Extraction. The goal of this step is
to extract the most relevant keywords that appear
in the technical documents. Our system takes a
pair of files as input: the technical document (in
HTML format) and its metadata (in an XML file).
The metadata includes information such as title, car
brand (e.g. BMW, Audi), document category (e.g.
Diagram, General information), and directory path
(e.g. Installation → Engine → Injection System →
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Switch on Clutch Pedal). We extract the content
and metadata information to provide as input to a
LLM for keyword extraction:

T = Extract(d,m),

K = LLM
(
Prompt(T )

)
,

(1)

where d and m represent the technical document
(.html) and its associated metadata (.xml). K rep-
resents the single most relevant keyword to the
context of document d. The Prompt is designed
in JSON format (Xia et al., 2024) with the role
playing template (Wang et al., 2024). Based on the
extracted keyword K, we use an LLM to generate
a descriptive text DescK . This information will be
used for searching similar components from the
database.

Hybrid Search. Given the most relevant ex-
tracted keyword and its description, we apply a
hybrid search technique combining keyword search
and semantic search over the component embed-
ding and keyword description embedding.

Score(K, ci) = γ · Simkw (K, ci)

+ δ · Simsem (E (DescK) , E (Descci)) (2)

CtopK = Top-k {ci ∈ C by Score(K, ci)} , (3)

where Simkw denotes the keyword-based simi-
larity function, Simsem denotes the semantic-based
similarity function, γ and δ are weighting coeffi-
cients for each search mode, and E(·) is a general
embedding generator for descriptions. The Top-k
function is retrieving the k components with the
highest scores.

LLM-based Re-ranker. The hybrid search re-
turns CtopK candidate components. However, due
to a lack of context or difference in terminology,
the correct component might not be at the highest
rank. To address this, we employ a verification step,
an LLM-based re-ranker, which re-ranks these can-
didates based on the document content. The LLM-
reranker assigns a relevance score to each compo-
nent candidate by utilizing expert-designed crite-
ria reflected in the prompt. For example, “is the
document really useful to fix the component?” or

“mentioning the component in the document does
not reflect the meaning of usefulness in terms of
mechanical engineering tasks”. The final ranking
of the most relevant components c∗ is thus defined
as:

c∗ = LLM_ReRanker
(
CtopK,Prompt(T )

)
. (4)

Table 1: The statistic of evaluation dataset.

Information Value
Number of documents 110
N.o components appearing in title 35
N.o components appearing in metadata 45
N.o document categories 25
N.o automotive brands 3

Figure 3: Length distribution of our evaluation dataset.

Large Language Model Backbone. The pro-
posed system leverages both: closed-source LLMs
such as GPT-4o, GPT-4.1 (Hurst et al., 2024) and
open-source LLMs such as Llama (Grattafiori et al.,
2024) or DeepSeek (DeepSeek-AI et al., 2025) as
backbone components for various stages. These
models provide the semantic understanding neces-
sary for enhancing retrieval accuracy and overall
system performance. They are considered based
on task complexity, model availability, and com-
putational cost, ensuring that the system remains
scalable, adaptable, and efficient across both closed
and open deployment environments.

4 Experiments

To evaluate our method, we conducted experiments
on a dataset of 110 technical documents, where
the most relevant component for each was collab-
oratively annotated by three mechanical experts.
The whole set of available labels comprised ∼7K
component names. Additional statistics about the
dataset can be found in the Table 1 and Figure 3.

In this work, we adopt Hit@K as the primary
evaluation metric, which quantifies the proportion
of documents where the correct component is re-
trieved within the top K predictions. Let D be the
set of evaluation documents. For each document
d ∈ D, let ŷ(K)

d = [c1, c2, . . . , cK ] denote the top
K predicted components, and let yd denote the
ground-truth most relevant component.

Hit@K =
1

|D|
∑

d∈D

⊮
[
∃ci ∈ ŷ

(K)
d : ci = yd

]
, (5)
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Table 2: Performance comparison of different approaches and models (best results in bold). Extract-Only retrieves
only a single component. For traditional IR-based baseline, we achieved a Hit@1 of 19.09%, Hit@2 of 27.27%,

Hit@3 of 31.82%, and Hit@5 of 40.91%.

Approach Llama-3-70B DeepSeek-V3 GPT 4.1 GPT 4o
Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5

Extract-Only 30.30 - - 37.27 - - 47.27 - - 22.72 - -
Extract-Reflect 31.81 37.27 37.27 40.00 45.54 52.72 46.36 68.18 70.81 25.45 37.27 40.00
Extract-Reflect-Sort 35.27 37.45 37.27 38.18 50.90 54.54 45.45 65.45 66.36 43.63 64.18 65.09
Retrieve-then-Extract 40.32 42.68 47.45 42.86 52.15 58.96 47.27 64.90 66.36 46.36 65.45 66.52
Our approach 42.14 48.36 52.96 44.25 51.48 60.64 47.27 64.55 66.36 48.36 63.63 69.27

where ⊮[·] is the indicator function.

4.1 Implementation Details
We access the LLMs via the provided API, us-
ing consistent parameters to ensure reproducibility.
The temperature was set to 0 to eliminate random-
ness, and the maximum completion length was
limited to 2500 tokens. A fixed seed value of 42
was used to maintain deterministic behavior across
runs. Each configuration was executed three times,
and the results were averaged to reduce potential
variance. The values of γ and δ in the hybrid search
component are both set to 0.5. For score aggrega-
tion, we employ the Reciprocal Rank Fusion (RRF)
algorithm in the Azure Search configuration.

4.2 Baselines
We compare the performance of our method against
several baselines:

• Standard IR-based baseline: A traditional
IR-based method that encodes the document
title, content summary, and metadata. We em-
ploy a hybrid search strategy that combines
BM25 with dense embeddings to retrieve re-
sults from the component database.

• Extract-Only: a straightforward approach
where the complete set of components to-
gether with the respective document data is
given as input to an LLM and prompt engi-
neering is used to task the LLM to predict the
single most relevant component.

• Extract-Reflect: this approach supplements
the previous approach with a reflection step
that provides the initially extracted compo-
nents together with the document data to an
LLM to potentially correct the initial output
and to expand it to Top-K components.

• Extract-Reflect-Sort: in this approach, in
addition to the previous reflection step, an

LLM is tasked to re-rank the Top-K candi-
dates based on the content of the document.

• Retrieve-then-Extract: before applying the
Extract-Reflect-Sort approach, hybrid search
is leveraged to reduce the complete list to
Top-K components using the document title
and content. We report the best performance
among K ∈ {30, 50, 100, 200}.

4.3 Results and Discussion

Table 2 shows the performance of our approach
compared to the baselines using different language
models. We observe that our approach achieves the
highest Hit@1 values independently of the LLM
model, specifically with the highest Hit@1 value
of 48.36% using GPT 4o. This demonstrates the
robustness and effectiveness of our method across
different LLMs. Among four language models
used in the experiments, the GPT-family models
consistently achieve higher performance than the
two open-source models, DeepSeek-V3 and Llama-
3-70B. Furthermore, we observe that adding re-
flection and sorting steps as well as reducing the
initial set of components via search beforehand
can already improve the performance significantly,
compared to prompting an LLM only once with the
complete set of components. However, the baseline
approaches that include the complete component
list in a single prompt depend on this set not being
prohibitively large, while our approach does not
have this limitation. In this regard, the Retrieve-
then-Extract approach can be viewed as an interme-
diary between the purely prompt-based approaches
and our approach based on hybrid search.

4.4 Analysis of Error Types

To better understand the strengths and weaknesses
of our approach, we conducted a detailed error
analysis on the results based on feedback from
domain experts. We then categorized the false top-
1 predictions into three different error types (as
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Table 3: Experimental results of varying input information in our system.

Input Information GPT 4.1 GPT 4o
Hit@1 Hit@3 Hit@5 Hit@1 Hit@3 Hit@5

Only Title 37.27 50.00 52.73 34.55 49.09 54.55
Only Content 43.64 55.45 59.08 47.27 58.18 62.73
Content + Metadata 46.36 60.91 65.45 47.27 59.08 65.45
Title + Content + Metadata 47.27 64.55 66.36 48.36 63.63 69.27
Summary + Metadata 47.27 64.55 66.36 50.00 65.45 70.00
Title + Summary + Metadata 48.73 66.36 66.91 52.82 67.27 70.91

Table 4: Comparison inference costs across GPT models, including content summarization.

GPT version Hit@K Execution Cost Total CostHit@1 Hit@3 Hit@5 Input Output
GPT 4.1-mini 45.18 62.73 65.17 ∼ 0.32$ ∼ 0.20$ ∼ 0.52$
GPT 4.1 48.73 66.36 66.91 ∼ 1.61$ ∼ 0.99$ ∼ 2.60$
GPT 4o-mini 42.73 63.64 65.45 ∼ 0.12$ ∼ 0.07$ ∼ 0.19$
GPT 4o 52.82 67.27 70.91 ∼ 2.01$ ∼ 1.25$ ∼ 3.26$

Match but Lower-Ranked Close match No match
0
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10
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20

25
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Figure 4: Error Category Distribution.

shown in Figure 4).

Match but Lower-Ranked where the top-1 pre-
diction does not precisely match the ground truth
due to a difference in semantic scope, but we pre-
dict the correct component within a lower rank.
This error type accounts for 36.5 % of our false
top-1 predictions. We observed that the top-1
predictions often identified component groups,
whereas the ground truth referred to semantically
related terms, such as sub-parts or super-types, of
those predictions. For instance, if the prediction
was Cooling system and the ground truth was
Coolant circuit, the experts commented that
these are quite similar, as Coolant circuit is
a sub-part of the Cooling system. Moreover,
we found that some prediction components (e.g.
Transmission) are more generic than the ground
truth (e.g. Manual transmission).

Close Match which holds the highest proportion
among the three identified error types. This er-
ror is counted when the predicted component is

very similar, or a slightly more generic term that’s
still considered acceptable by the experts. This
error type accounted for 46.2 % of our false Top-
1 predictions. This can be explained by the fact
that the definition of components embedded within
the knowledge base of the language model differs
from definitions in knowledge of domain experts,
particularly it also depends on the car brands and
manufacturers. The availability of expert-defined
automotive component definitions could lead to
improved performance in this specific situation.

No Match predicted component neither matches
nor is similar to the ground truth. We found that
most incorrect predictions in this category related
to general components like Assembly frame or
Connector, whereas our system tended to predict
more specific components. However, the error rate
for this category is not high, accounting for only
about 17.3% among the three identified error cate-
gories.

5 Ablation Study

We conducted a series of ablation studies to eval-
uate how different input configurations and pro-
cessing strategies influence our system. First, we
analyze the impact of varying the amount of doc-
ument data provided to our system. Subsequently,
we compare the the effect of LLM size on the per-
formance and inference cost of two GPT models.

Effect of Document Input. To understand the
impact of context information used for prediction,
we conducted an ablation study varying the nature
of the input. As a default, we used all available
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data (document title, content and metadata) for our
main experiment in Sec. 4. Here, we present results
based on using only subsets of this data as well as
only using a summary of the document content.
As can be seen in Table 3, using more document
data usually improves the overall performance for
both GPT-models. However, when the document
content is already summarized in a pre-processing
step, this can enhance the performance even further,
especially in the case of GPT-4o. This is likely
due to the fact that the most relevant component
is usually the core topic of the document such that
summarization can help to reduce the amount of
redundant information.

Effect of LLM Size on Inference Costs. To in-
vestigate the trade-offs between the performance
and computation costs, we evaluated our system
on LLMs of different size. Table 4 shows the per-
formance as well as input and output costs3 and
approximate total costs of four LLMs. It can be
observed that GPT-4o outperforms other models in
Hit@1 score but with 1.5x higher costs than GPT-
4.1 and ∼17x higher costs than the mini version.
On average, labeling one document costs ∼$0.029
using our approach with the GPT-4o model.

Effect of Expert Assessment on Ontology Ambi-
guities. Beyond the initial 110 documents in the
test set mentioned above, we extended the evalua-
tion in close collaboration with domain experts to a
larger set of 348 additional documents from the au-
tomotive domain. In this extended evaluation, our
labels were manually verified by experts rather than
being compared to a fixed pre-annotated ground
truth. This setup allowed experts to account for on-
tological ambiguity during the validation process,
which likely contributed to improved performance.
The evaluation results on the 348 documents are
summarized in Table 5.

These results indicate that our approach per-
forms reasonably well when judged by domain ex-
perts, and the consistency across different Hit@K
levels demonstrates its robustness. Overall, the
human expert evaluation confirms both the practi-
cality and the promise of our method in real-world
applications.

3https://azure.microsoft.com/en-
us/pricing/details/cognitive-services/openai-service/

Table 5: Evaluation results on labeled documents by
domain experts.

Metric Count Percentage
Total documents 348 —
Hit@1 206 59.20%
Hit@2 215 61.78%
Hit@3 218 62.64%
Hit@4 222 63.79%
Hit@5 222 63.79%

6 Conclusion

We present a system to address a practical docu-
ment labeling problem in the automotive domain.
Our approach leverages LLMs to enrich the la-
bel targets (i.e. components) and ensures unified
terminology definitions across car manufacturers.
By performing hybrid search with LLM-based re-
ranking, the method significantly improves the ac-
curacy of labeling the most relevant components
for automotive documents.

7 Limitations

Although achieving promising results, the limita-
tions of the current method come from the con-
straints on LLM model availability, data availabil-
ity and scalability. Due to data security protocols,
our investigation is restricted to commercially avail-
able GPT-family models and only two open-source
models in our cloud service. The evaluation dataset
is also relatively small, primarily due to the neces-
sity of specialized automotive domain expertise to
construct accurate ground-truth labels. To scale the
current pipeline, e.g. on millions of documents, it is
essential to reduce the number of requests to LLMs.
Prioritizing on the labeling accuracy to generate
a high-quality training dataset that can be used to
train an open-source LLM is our current strategy.

8 Ethics statement

We acknowledge and respect the importance of
intellectual property rights while utilizing search
engines such as Bing. We are committed to ensur-
ing that all content accessed and referenced adheres
to copyright laws and ethical standards. Further-
more, we want to assure our users that we do not
store any personal data during our search activi-
ties. Our commitment to data security means that
we prioritize the privacy and confidentiality of all
users.
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