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Abstract

Large language models usually suffer from
multiple-file coding scenarios where strong
inter-file dependencies manifest, typically
demonstrated in SWE-bench. To mitigate this
issue, we propose Think-Search-Patch (TSP),
a retrieval-augmented reasoning framework for
repository-level code repair. At the Think stage,
our system breaks down a coding task and cre-
ates clear search query. Next, at the Search
stage, it retrieves relevant code snippets using
models like ES. At the final Patch stage, it gen-
erates standardized patches based on the key
snippets. In addition the proposed framework,
we enhance system reliability through a two-
stage training process. At the first stage, the
system undergoes supervised fine-tuning (SFT)
on our TSP dataset. At the subsequent stage,
we employ rejection sampling with correction
to generate preference pairs for Direct Pref-
erence Optimization (DPO) training, thereby
reducing errors in the intermediate phases. Ex-
perimental results demonstrate that TSP frame-
work enhances retrieval accuracy and repair
success on SWE-bench Lite, even surpassing
models with a larger size in managing exten-
sive code contexts and successfully addressing
bugs spanning across multiple files. All data
and code available at https://github.com/
tjunlp-1lab/TSP-framework.

1 Introduction

Large language models (LLMs) have demonstrated
significant capabilities in code generation, achiev-
ing strong performance on single-file scenario
benchmarks, such as code completion in Hu-
manEval (Chen et al., 2021) and MBPP (Austin
et al., 2021). However, code-specific LLMs, ex-
hibit inadequate performance in multi-file scenar-
ios, which are prevalent in real-world software de-
velopment and characterized by high complexity
and intricate cross-file dependencies.

*Corresponding author.

The SWE-bench (Jimenez et al., 2024) accu-
rately captures this challenge. It constructs test
cases based on code snippets and issue descriptions
from real open source projects, covering various re-
pair tasks ranging from basic syntax errors to com-
plex logical flaws. This benchmark has two main
features, which collectively make it hard for mod-
els to handle multi-file repair tasks. Task complex-
ity: Tasks demand multi-dimensional capabilities
simultaneously, e.g. code semantic parsing, flaw lo-
calization, and precise patch generation. Context
scale: Test samples provide an average context
of hundreds of lines of code. Within such a vast
context, models struggle to effectively filter out ir-
relevant information. Consequently, crucial code
snippets relevant to the issue may be obscured by an
overwhelming volume of unrelated code, thereby
severely hindering accurate flaw localization.

To address the aforementioned challenges, we
propose a Think-Search-Patch (TSP) framework.
Our framework adopts a three-stage process and
incorporates a two-stage training strategy, enabling
it to autonomously analyze issues, identify root
causes, and retrieve necessary code snippets before
ultimately completing the repair. This approach
mitigates the issue of context overload and en-
hances code repair performance at the repository
level. Our framework involves the following steps:
Think stage guides the model to decompose the
problem into three sequential steps: (i) issue analy-
sis, (i1) task decomposition, and (iii) search query
construction. At this stage, semantic analysis is
utilized to generate precise search queries. Search
stage employs the ES (Wang et al., 2022) model to
search the repository, retrieving semantically rel-
evant code snippets based on similarity metrics.
Patch stage focuses on the retrieved key code snip-
pets, performing code localization and code editing
to generate well-formatted patch, thus completing
the overall Think-Search-Patch process. The dia-
gram of our framework is illustrated in Figure 1.

1555

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1555-1566
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/tjunlp-lab/TSP-framework
https://github.com/tjunlp-lab/TSP-framework

ﬂn Think Stage

<think>

% Problem Statement

Issue when passing empty lists/

arrays to WCS transformations Issue Analysis: ..

Task Decomposition: ...

Build Search Query: ...
Repo —_

astropy

astropy/wcs/wes.py: WCS

fil tabl
contlg able astropy/wcs/wcs.py: _array_converter

utils setup.py astropy/wcs/wces.py: _return_list_of_arrays

wcs pyproject.toml

dp Search Stage

</think> —_

dp Patch Stage

<information>
| docl: astropy/wcs/wes.py
Class: WCS

Q

Use Search Tool

H;cz. astropy/wcs/wcs.py
astropy Function: _array_converter
</information

wes
<think>

wes.py Code Location and Exiting

&) Class: wes <Jthink>
) Function: wes_world2pix def _array_converter(self, func, sky, *args,
. ra_dec_order=False)

Q Function: _array_converter
def _return_single_array(xy, origin): IEC IEEH

&, Function: _p4_pix2foc

Figure 1: Overview of the framework for Think-Search-Patch.

To systematically enhance model capabilities
throughout our three-stage process, we design a
two-stage training strategy. The first stage focuses
on process learning, where supervised fine-tuning
(SFT) is performed on TSP dataset. This phase
establishes fundamental capabilities in adhering to
task specifications and constructing the core pro-
cess. Subsequently, the second stage implements
preference alignment optimization: We utilize the
model trained at stage 1 to perform rollout, gener-
ating a batch of data. Then, we use GPT-40 as an
LLM-judge to invoke to assess and amend the qual-
ity of these data. Corrected samples serve as posi-
tive examples, while uncorrected erroneous outputs
constitute negative examples. These preference
pairs then facilitate Direct Preference Optimiza-
tion (Rafailov et al., 2023) training. Through this
two-stage training paradigm, we trained a series of
models to verify the feasibility of the TSP frame-
work, which effectively increased the proportion
of key code recall, while achieving repair success
rates that markedly outperform RAG methods.

In summary, our contributions are as follows:

1. We propose the Think-Search-Patch (TSP)
framework. To effectively train the reason-
ing process of TSP, we built the TSP dataset,
comprising 60K samples specifically designed
to optimize collaborative reasoning across its
three stages.

2. We designed a fine-grained indexing construc-
tion strategy that retrieves code at the Class
and Function levels, effectively addressing the
redundancy issues associated with traditional
file-level code retrieval.

3. On the SWE-bench Lite benchmark, models
trained based on the TSP framework demon-
strate superior performance among models

of similar scale, thereby validating the effec-
tiveness of our framework and its technical
strategies in code repair tasks.

2 Related Work

Recent developments in code-specific LLMs have
significantly advanced code generation capabilities
(Guo et al., 2023). Closed-source models, such as
GPT-4.5', Claude-4? excel in coding tasks, while
open-source models, including DeepSeek-Coder
(Guo et al., 2024) and Qwen-Coder (Hui et al.,
2024), offer competitive performance at smaller
scales. Specialized LLMs address specific engi-
neering challenges, and many studies focus on im-
proving program generation (Liu et al., 2024, 2023;
Lin et al., 2024; Zheng et al., 2023; Yang et al.,
2025b). Despite this, effectively using LLMs to
address complex code generation remains a chal-
lenge. Two primary paradigms are currently har-
nessing the potential of LLMs: agent-based frame-
works (Wang et al., 2024; Ma et al., 2024; Yang
et al., 2024; Zhang and Xiong, 2025; Leng et al.,
2025; Li et al., 2025), which facilitate iterative in-
teractions with tools and environments for decision
making, and pipeline-based approaches (Wei et al.,
2025; Xie et al., 2025), which follow predefined
sequences of steps. However, Agent-based frame-
works facilitate iterative interactions with tools and
environments for decision-making. This strategy
incurs significant resource consumption, as it re-
quires guiding the SWE-Agent to invoke appropri-
ate tools, typically involving multiple rounds. The
pipeline strategy, on the other hand, places greater
emphasis on the inherent coding abilities, which
are more dependent on the size of models. Our TSP
framework belongs to the pipeline-based approach,

1https: //openai.com/index/
introducing-gpt-4-5/
2https://www.anthropic.com/news/claude-4
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Method Token Consumption
RAG 16933.77
TSP framework 3724.56

Table 1: Comparison of recall code tokens consumption
and recall code tokens between RAG and TSP frame-
work on SWE-bench Lite.

which emphasizes the rationality of task decompo-
sition and the efficiency of search tool integration,
enabling 7B-scale and 14B-scale models to possess
certain repository-level code repair capabilities.

3 Think-Search-Patch

In this section, we elaborate our Think-Search-
Patch framework and TSP dataset. Section 3.1
presents the dataset structure and index construc-
tion, while Section 3.2 details the first stage of
the two-stage training approach: SFT for problem-
solving. Section 3.3 then elaborates on the second
stage, which enhances the problem-solving ability
of the entire process through DPO.

3.1 TSP Dataset

Data structure. We extend the rigorous filtering
logic of the SWE-Fixer dataset (Xie et al., 2025)
to construct our TSP dataset. Our filtering strat-
egy primarily involves removing two types of in-
efficient samples. The first type is issues contain-
ing non-textual information, for which we deleted
problems including image links, external document
links, or other content that cannot be interpreted by
the model, to ensure the textual self-consistency of
the issue descriptions. This is because the model
cannot directly process the semantic information
contained in images or links, which may lead to
deviations in defect localization. The second type
is issues with vague descriptions, for which we
filtered out problems lacking specific defect lo-
calization or references to code entities, as vague
descriptions usually cannot guide the model to lo-
cate specific code units, resulting in ineffective
retrieval and repair. We adopted the practice of
using the annotated reasoning chain of issue anal-
ysis, task decomposition, and code localization in
the SWE-Fixer dataset as the core reasoning pro-
cess. To accommodate retrieval-augmented scenar-
ios, we embed a search module after task decom-
position, utilizing Qwen-Max (Yang et al., 2025a)
to generate search query and retrieve relevant code
snippetss, thereby establishing the Think-Search-

Patch workflow. To address the high overhead of
full indexing, the target code snippets are directly
extracted from annotated Oracle files, preserving
SWE-Fixer’s advantage in precise code localiza-
tion. Furthermore, we establish a closed-loop veri-
fication system: 5% of the data is randomly sam-
pled to build an ES vector index that simulates
real-world environments, with the top-2 recall rate
quantifying search query quality, achieving up to
80% average accuracy. Through failure case anal-
ysis focusing on problem description deficiencies,
this feedback optimizes the data cleaning process,
ultimately forming a closed loop: 1) data cleaning,
2) search query construction, 3) Oracle extraction,
4) code localization verification, and 5) filter opti-
mization. The pipeline fully inherits SWE-Fixer’s
strengths in reasoning coherence and localization
precision, while enabling adaptive upgrades for
real repository through the search query mecha-
nism. All the prompt instructions used for building
search query can be found in Appendix A.

Index construction. During the index construc-
tion phase of the SWE-bench framework, we ad-
dress context bloat induced by file-level retrieval
by proposing an Abstract Syntax Tree (AST)-
based approach. As shown in Figure 2, this ap-
proach utilizes precise locator identifiers formatted
as path/to/file.py:Class or path/to/file.py:Function.
This methodology enables fine-grained indexing
through a structured technical pipeline. Based on
Python’s ast module, the code file is parsed to gen-
erate an AST. By traversing the AST nodes, we
extract Class and Function nodes, enriched them
with metadata such as file path, name, and line
number, and assigned unique identifiers to each
node. Finally, the nodes are transformed into struc-
tured indexing units. Experimental results indi-
cate that this approach reduces the average recalled
context length by 78%, as shown in Table 1, ef-
fectively filtering out irrelevant code noise. Our
indexes serve two key purposes: during the DPO
training phase, they dynamically construct prefer-
ence datasets; during the evaluation phase, they
are integrated with the TSP framework to support
inference and address issues.

3.2 Process Foundation Training

At Stage 1, we establish closed-loop task process-
ing through standardized training. This phase uti-
lizes SFT on TSP dataset. At the think phase, we
base issue analysis on identifying the key require-
ments and objectives for solving the issue, and then
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Figure 2: The construction process of the AST syntax
tree.

decompose the issue into manageable subtasks. At
the search phase, based on the analysis results, we
generate a search query to locate the class or func-
tion in the target code snippets. At the patch phase,
we utilize the retrieved results to perform code loca-
tion and editing and subsequently generate a patch
that conforms to the required format.

To ensure consistency with the reasoning pro-
cess, we adopt a staged training strategy based
on data partitioning, which is divided into the fol-
lowing two stages. (1) The first stage focuses
on training the model’s ability to generate search
queries. At this stage, the model generates pre-
cise search query solely based on the issue, thus
specifically cultivating its capability to map issue
features to retrieval strategies. (2) emphasize train-
ing the model’s ability to generate patches based
on retrieved code snippets. The input for this stage
consists of a combination of Issue Analysis, the re-
trieval process, and retrieved information, requiring
the model to generate patches accordingly. This
approach ensures that in real reasoning scenarios,
the model is capable of integrating the retrieved
results to complete closed-loop processing.

3.3 Preference Optimization Alignment

At stage 2 of preference optimization alignment
training, we enhance index utilization by query-
ing issue version information and employing an
index reusability strategy for data from the same
repository and version. Specifically, we first fil-
ter out data of the same version within a reposi-
tory to avoid redundant index construction, thereby
directly reusing existing indexes. Based on this
mechanism, we sample nearly 4,000 entries and
established almost 200 indexes for data from the
same repository and version, thereby achieving effi-
cient integration of the training data. Subsequently,
we simulate a realistic retrieval scenario using a

dynamic retrieved approach, allowing the model to
generate a complete Think-Search-Patch process
output for each issue. These samples contain vari-
ous intermediate errors that occur naturally in the
model’s generation process, thus providing typical
negative examples for subsequent optimization.

At the data filtering phase, an LLM-judge is in-
troduced to conduct quality screening. Correctness
is evaluated along three dimensions: (1) search
query dimension, which assesses whether the re-
called results include code snippets relevant to
the issue, thereby ensuring the accuracy of search
query; (2) problem analysis logic dimension,
which requires the model to maintain logical consis-
tency throughout the process in order to avoid hap-
hazard fixes; (3) code location dimension, which
enforces precise identification of files, classes, or
functions, and line numbers. This allows for pin-
pointing of the dependency impact domain and
minimizes the scope of modifications, thereby pre-
venting interference with unrelated code areas. Ul-
timately, structured corrections are applied to non-
compliant samples by preserving reasonable com-
ponents of issue analysis, generating standardized
reference outputs for the identified deficiencies,
and forming revised positive sample cases.

During stage 1 optimization, we have observed
a significant improvement in the model’s ability to
generate queries. However, practical evaluations
have revealed that, despite the enhanced search
query quality, the retrieved results based on Class
and Function are far more concise than the file-level
retrieved results. However, it remains difficult for
the model to accurately identify the required code
positions, resulting in suboptimal performance in
the patch stage. To address this issue, we imple-
ment a targeted optimization strategy by recon-
structing a dataset specifically for the patch stage.
This part aims to precisely locate issue-relevant
code snippets within the retrieved results and is
used to reinforce the model’s ability to generate
accurate code locations and patches. Through data-
level targeted optimization, we effectively compen-
sate for the shortcomings in the retrieval and local-
ization process during stage 1, thereby establishing
a comprehensive TSP framework.

Based on the preference data pairs constructed
using the aforementioned mechanism, we train the
model using the DPO algorithm. This algorithm
guides the model to learn the correct reasoning
process by maximizing the conditional probabil-
ity of positive examples relative to negative ones.
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Specifically, during the retrieval phase, the DPO al-
gorithm focuses on reducing the probability of gen-
erating erroneous queries, thereby enhancing query
accuracy. During the patch phase, it focuses on
improving the model’s ability to accurately locate
relevant recalled code and generate patches that ad-
dress the identified issues. In this manner, the DPO
algorithm effectively optimizes the model’s perfor-
mance in the search and patch phases, ultimately
enhancing the overall capability of our framework.

4 Experiment

We conducted extensive experiments and in-depth
analyses to evaluate the proposed entire framework,
including evaluation results based on SWE-bench
Lite, search query construction results, and the ef-
fects of our two-stage training.

4.1 Experiment Setup

In a hardware environment equipped with 16
NVIDIA H800 GPUs, to verify the effectiveness
of the TSP framework, we selected multiple mod-
els, such as Qwen2.5-Coder-7B-Instruct, Qwen2.5-
Coder-14B-Instruct (Hui et al., 2024), deepseek-
coder-6.7b-instruct (Guo et al., 2024), Mistral-7B-
Instruct-v0.3 (Jiang et al., 2023), etc., and imple-
mented a two-stage training process. Specifically,
we first conducted supervised fine-tuning (SFT)
on the TSP dataset, followed by alignment with
Direct Preference Optimization (DPO) using pref-
erence pairs. We employed the Verl framework
(Sheng et al., 2025) for SFT training and the Open-
RLHF framework (Hu et al., 2024) for DPO train-
ing. Additionally, we implemented a retrieved to-
ken loss masking mechanism. Although standard
SFT and DPO typically compute loss across the en-
tire unfolded sequence, the incorporation of exter-
nally retrieved code snippets in our TSP framework
makes applying the same optimization to retrieved
tokens potentially problematic, as it may induce un-
intended learning dynamics. To address this, we de-
signed a specialized loss masking mechanism that
explicitly excludes retrieved code snippets from
policy gradient computations.

For the evaluation phase, we adopted SWE-
bench Lite, a streamlined subset of the authoritative
SWE-bench comprising 300 optimized represen-
tative instances. The final assessment framework
employed a dual-dimensional validation mecha-
nism. We strictly adhered to the official evalua-
tion protocol of SWE-bench to verify whether the

generated patches passed all test cases related to
the issue. This standard is extremely rigorous, as
it demands perfect remedying of all defects, po-
tentially overlooking incremental improvements in
partial fixes or semantic understanding. To address
this, we introduced LLM-judge as a key supple-
mentary evaluation dimension. Our LLM-judge
supplements evaluation with three metrics: context
relevance (accuracy of search queries), location ac-
curacy (correctness of edit placements, including
golden patch modifications), and repair effective-
ness (resolution of underlying issues rather than
superficial fixes).

To validate the consistency between LLM-judge
and human evaluators, we selected 100 samples
generated by TSP-Qwen2.5-Coder-7B from the
SWE-bench Lite evaluation, invited five graduate
students with backgrounds in software engineer-
ing and code repair, and used GPT-4o0 as the large
language model evaluator. Both groups of evalua-
tors independently scored the samples based on the
three dimensions defined in the prompts—context
relevance, position correctness, and core fix correct-
ness. Detailed evaluation comparisons are provided
in Appendix B. Additionally, since the TSP frame-
work requires invoking retrieval during inference,
we built indexes for each entity in the evaluation
process. All prompt instructions used for scoring
can be found in Appendix C.

4.2 Main Result

As shown in Table 2, the experimental results
demonstrate that our Think-Search-Patch (TSP)
framework exhibits significant structural paradigm
advantages on SWE-bench Lite. First, during
the search process, this framework, by retriev-
ing code snippets at the class and function lev-
els, comprehensively outperforms the traditional
retrieval-augmented generation (RAG) methods
that rely on file-level retrieval. In the rigorous unit
tests on SWE-bench Lite, TSP-Qwen2.5-Coder-
7B achieves a repair pass rate of 5.0%, and TSP-
Qwen2.5-Coder-14B reaches a pass rate of 8.33%,
while GPT-4 (1106) with the standard RAG pro-
cess only has a pass rate of 2.67%. Moreover, com-
pared with models of similar scale, the models
trained via the TSP framework have significantly
higher repair efficiency than SWE-Llama. This
indicates that our finer-grained retrieval approach
effectively addresses the persistent issue of long-
code context interference, fully demonstrating that
our finer-grained retrieval method successfully re-
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Method Model LLM-judge score Pass rate
RAG (Jimenez et al., 2024) SWE-Llama-7B 27.5 1.3
RAG (Jimenez et al., 2024) SWE-Llama-13B 30.1 1
RAG (Jimenez et al., 2024) GPT 4 (1106) - 2.67
RAG (Jimenez et al., 2024) Claude 3 Opus - 4.33
RAG (Jimenez et al., 2024) Qwen2.5-Coder-7B-Instruct 22.4 0
RAG (Jimenez et al., 2024) Qwen2.5-Coder-14B-Instruct 30.1 0.33
RAG (Jimenez et al., 2024) deepseek-coder-6.7b-instruct 20.5 0
RAG (Jimenez et al., 2024) Mistral-7B-Instruct-v0.3 17.6 0
Think-Search-Patch TSP-Qwen2.5-Coder-7B 48.1 5
Think-Search-Patch TSP-Qwen2.5-Coder-14B 55.6 8.33
Think-Search-Patch TSP-deepseek-coder-6.7b 40.1 4.33
Think-Search-Patch TSP-Mistral-7B 40.5 3.33

Table 2: Performance comparison of different methods. LLM-judge score indicates model performance (0-100

scale), repair pass rate denotes task completion accuracy.

solves the challenge of long-code context interfer-
ence. We also analyzed the reasons why models
such as Qwen2.5-coder-7B-instruct and deepseek-
coder-6.7b-instruct, which were not trained with
the TSP framework, performed poorly. The main
reasons are their insufficient search query genera-
tion capabilities and the lack of targeted training
in the patch generation phase. This results in the
models’ inability to construct fine-grained retrieval
queries, leading to a low recall rate of key code. In
the entire pipeline, generating appropriate search
queries is crucial because it directly determines
whether problem-related code can be retrieved. Ad-
ditionally, the absence of specialized training in the
patch generation phase leads to insufficient code
localization and modification capabilities.

The empirical study on the LLM-judge scor-
ing system further reveals the core value of
the two-stage training paradigm: TSP-Qwen2.5-
Coder-7B achieves an overall score of 48.1, sig-
nificantly surpassing Qwen2.5-Coder-7B-Instruct;
TSP-Qwen2.5-Coder-14B even reaches a score
of 55.6, greatly outperforming the corresponding
model under RAG, and such a contrast is also re-
flected in the performance of other models. This
structural advantage stems from a dual synergistic
training mechanism: during the process founda-
tion training phase, TSP framework models sys-
tematically establish a deep cognitive pattern for
the Think-Search-Patch framework, enabling them
to accurately grasp the rules of problem decom-
position and the norms for generating retrieval
instructions; subsequently, in the preference op-
timization alignment phase, through contrastive

Model Search ACC
Qwen2.5-Coder-7B-Instruct 24.0
Qwen2.5-Coder-14B-Instruct 28.7
deepseek-coder-6.7b-instruct 25.1
Mistral-7B-Instruct-v0.3 19.5
TSP-Qwen2.5-Coder-7B 50.7
TSP-Qwen2.5-Coder-14B 64.8
TSP-deepseek-coder-6.7b 40.1
TSP-Mistral-7B 38.6

Table 3: Search accuracy comparison across models.
Metrics reflect the precision of context retrieval in re-
spective frameworks.

learning guided by LLM-judge corrections, the key
ability — extracting problem-relevant effective con-
tent from retrieved code snippets for repair — is
specifically enhanced. This result verifies the irre-
placeability of the hierarchical training design in
improving model performance.

These findings collectively confirm that our
framework, leveraging class and function-level re-
trieval, addresses the contextual redundancy inher-
ent in file-based retrieval of RAG methods, thereby
enhancing the model’s capability to precisely locate
issue-relevant code. By decomposing the complex
problems in SWE-bench into issue analysis, retriev-
ing relevant code snippets, and performing targeted
repairs, the performance of the 7B-scale and 14B-
scale models can be effectively enhanced. This
demonstrates that our framework rectifies the core
flaws of RAG methods by eliminating redundant
file-level code while establishing the previously
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Figure 3: ablation study to validate the effectiveness of
the DPO training.

missing scientific reasoning framework. A case
study of our framework is included in the Appendix
D.

4.3 Quality of Search Query

The quality of the generated search query plays a
decisive role in the success of the task: an accurate
search query can directly retrieve the code snip-
pets related to the issue, thereby enabling model
to perform comprehensive debugging on the target
code snippets. To evaluate the retrieval capabilities
of the models, we used the retrieved rate of key
code snippets as metric to assess several models.
Specifically, by extracting the function or class en-
tity that needs modification from the golden patch,
we verify whether the retrieved results encompass
the relevant context code snippets for the target
entity, thereby achieving an objective quantitative
evaluation of the search query generation quality.

As shown in Table 3, TSP-Qwen2.5-Coder-14B
demonstrates superior performance with a retrieval
accuracy of 64.8%, outperforming our baseline
model Qwen2.5-coder-14B-instruct (28.7% accu-
racy). In contrast, SWE-Llama fails completely
with an accuracy of 0.0%. This failure is attributed
to SWE-Llama’s excessive focus on patch gener-
ation during training, which leads to severe over-
fitting in the retrieval phase. Conversely, our pro-
posed two-stage training framework effectively en-
hances the model’s ability to construct high-quality
search query, thereby achieving exceptional perfor-
mance in real-world retrieval tasks.

4.4 Ablation Study

We designed a rigorous ablation study to vali-
date the effectiveness of the DPO training mech-
anism. The experiment evaluated performance
on the SWE-bench Lite benchmark by comparing
models that underwent only the first-stage SFT,

completed DPO training, and those with position-
enhanced data removed during the second-stage
training. Key evaluation metrics included the LLM-
judge score and patch pass rate.

As shown in Figure 3, by comparing the train-
ing results of Qwen2.5-coder-7B-instruct after SFT
and DPO, the ablation results confirmed that the
performance of our Think-Search-Patch framework
was significantly enhanced through a two-stage col-
laborative optimization approach: TSP-Qwen?2.5-
Coder-7B-dpo achieved a 5% patch pass rate and
an LLM-judge score of 48.1 on SWE-bench Lite,
outperforming TSP-Qwen2.5-Coder-7B-sft in both
evaluation metrics. This notable advantage is at-
tributed to the alignment of DPO training with hu-
man preference data, which effectively reinforces
the model’s end-to-end reasoning ability from is-
sue analysis to code modification. Further analy-
sis showed that TSP-Qwen2.5-Coder-7B-dpo with-
out position data systematically declines in per-
formance, validating that the targeted construction
of position-enhanced data plays a crucial role in
improving the spatial localization capability of re-
trieved results; we believe the absence of this mod-
ule directly undermines the model’s precision in
identifying the correct location for code modifica-
tions.

5 Conclusion

We have presented the Think-Search-Patch (TSP)
framework to address strong cross-file dependen-
cies in multi-file coding, enhancing code repair
accuracy. Using a fine-grained index at the class
and function levels instead of file-level retrieval re-
duces redundancy and improves retrieval. Our TSP-
coder models are trained in two stages, SFT on the
TSP dataset and DPO on correction pairs. Experi-
mental results show that TSP-Qwen2.5-Coder-14B
achieves an 8.33% patch pass rate and an LLM-
judge score of 55.6 on SWE-bench Lite. This not
only outperforming larger general models within
the RAG framework that relies on file-level re-
trieval, but also demonstrates the effectiveness and
practical value of our TSP framework in code repair
tasks.
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ments.

Limitations

Although our approach outperforms the RAG
method, it still falls short compared to agent-based
and pipeline methods, primarily due to the lim-
itation in model parameter scale which restricts
complex reasoning abilities and makes it difficult
to handle complex, cross-document repair tasks
that require hierarchical inference. Future work
may draw on the dynamic decision-making mech-
anism of agents to enable the model to adaptively
adjust the Think-Search-Patch process based on
task complexity.
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A Prompt for building search queries

This is the prompt we use in SWE-Fixer’s reasoning dataset to call Qwen-max and construct search

queries.

Search Query Construction Prompt

Based on the provided issue: {issue}, and combined with the analysis of this problem: {reason-
ing_process}, complete the following tasks:

<task>

1. Reasoning for constructing search queries: Within <think></think>:
- Analyze how to reasonably construct the search query based on the provided content
- Align with the original analysis; avoid excessive repetition

2. Generate search query: Within <search></search>:

- Identify classes corresponding to the issue’s resolution context

- Output based on the issue and analysis as: path/file.py:Class_name or function_name. If no
reliable path exists, output only the filename.

- Output as a Python list
</task>

Final deliverables:
- Reasoning for constructing the search query in <think></think>
- Search query within <search></search>

Table 4: Search Query Construction Prompt.

B The consistency between LLM-judge and human evaluator

We used the Pearson correlation coefficient to quantify the agreement between the evaluators. The results
demonstrate a high level of consistency between the LLM-judge and human evaluators.

Metric LLM-judge Score Human Score Pearson Correlation Coefficient
Context Relevance (20%) 11.29 11.92 86.78%
Position Correctness (40%) 21.89 17.62 83.09%
Core Fix Correctness (40%) 14.79 10.97 78.36%
Total 48.07 40.51 83.01%

Table 5: The consistency between LLM-judge and human evaluator on SWE-bench Lite.
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C Prompt of LLM-judge for scoring

We present an example of a prompt for GPT-40 as an LLM-judge. Specifically, we require GPT-40 to
score from three dimensions, namely Context Relevance, Position Correctness, and Core Fix Correctness.
Table 6 shows an example of a prompt in LaTeX format.

As an SWE-bench task evaluation expert, you need to evaluate the model output based on the
following materials:

1. issue: Bug description reported by the user

2. golden patch: Correct code repair solution

3. model output: Response generated by the model (including thinking process, search query,
recall information, and model patch)

Scoring Dimensions and Weights:

1. Context Relevance (20%)
- Check whether the search query accurately recalls the code context related to the issue

2. Position Correctness (40%)
- Determine whether the model patch includes the modification content in the golden patch

3. Core Fix Correctness (40%)
- Check whether the model patch solves the core problem of the issue

Finally, put the score in <reward></reward>.
Issue: {issue}

Golden Patch: {golden_patch}
Model Output: {model_output}

Table 6: The SWE-bench Task Evaluation Prompt.

D Case Study

The repair process of the TSP framework for the django-12453 case proceeds as follows: First, it parses
the problem description (when accessing UserAdmin via to_field, the link to PasswordResetForm
returns a 404 error) and enters the Think stage: here, it identifies the root cause as flawed URL generation
logic for the password reset link, decomposing the task into “locating the code responsible for URL
generation”. Next, in the Search stage, leveraging fine-grained indexing at the class and function
levels, it precisely retrieves the code of the __init__ method in the UserChangeForm class within
django/contrib/auth/forms.py (this method formats the help_text of the password field, which
embeds URL concatenation logic). Finally, in the Patch stage, analyzing the code logic reveals that the
original format string (”. ./password/") in help_text causes an invalid URL path. By modifying it to
"../../{self.instance.pk}/password/" (constructing an absolute path using the instance’s primary
key) and generating a diff patch, the framework completes the repair, resolving the link redirection issue
under cross-file dependencies.
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instant id: django-12453

problem statement: Accessing UserAdmin via to_field leads to link to PasswordResetForm being broken (404)
Description (last modified by Simon Kern) Accessing the UserAdmin via another model’s Admin that has a
reference to User (with to_field set, e.g., to_field=iiuid)...

<think>Issue Analysis: The issue at hand involves a broken link to the PasswordResetForm when accessing the
UserAdmin via a to_field in Django. Specifically, the URL generated for the password reset link is incorrect,
leading to a 404 error...

Task Decomposition: To resolve this issue, we need to: 1. Identify the Code Responsible for URL Generation:
Locate where the password reset link is being constructed in the ‘UserChangeForm’ class...

Build Search query: The relevant file is identified as ‘django/contrib/auth/forms.py’, where the ‘UserChangeForm’
class resides. This class contains the ‘__init__’ method where the ‘password.help_text’ is modified... </think>

<search>django/contrib/auth/forms.py:UserChangeForm </search>

<information>

doc1: django/contrib/auth/forms.py

Class: UserChangeForm

147 class UserChangeForm(forms.ModelForm):

148 password = ReadOnlyPasswordHashField(
label=_(’Password’),

help_text=_(’Raw passwords are not stored...’))
149
150 class Meta:
151 model = User
152 fields = ’__all__’
153 field_classes = {’username’: UsernameField}
154
155 def __init__(self, xargs, *xkwargs):
156 super().__init__(*args, *xkwargs)
157 password = self.fields.get(’password’)
158 if password:
159 password.help_text = password.help_text.format(’../password/’)
160 user_permissions = self.fields.get(’user_permissions’)
</information>
<think>

##Code Localization and Editing

#it# Step 1: Identify the Code Responsible for URL Generation

- File Path: django/contrib/auth/forms.py

- Relevant Code: The UserChangeForm class, specifically the __init__ method, where the password field’s help
text is being formatted with a URL.

- Code Snippet:

156 super().__init__(*args, *xkwargs)

157 password = self.fields.get("password”)
</think>

<patch>

diff —-git a/django/contrib/auth/forms.py b/django/contrib/auth/forms.py
— a/django/contrib/auth/forms.py
+++ b/django/contrib/auth/forms.py
@@ -156,7 +156,7 @@ def __init__(self, xargs, *xkwargs):
super().__init__(*args, *xkwargs)
password = self.fields.get("password")
if password:
- password.help_text = password.help_text.format("../password/")
+ password.help_text =
password.help_text.format(f"../../{self.instance.pk}/password/")
user_permissions = self.fields.get("user_permissions"”)
if user_permissions:
user_permissions.queryset =
user_permissions.queryset.select_related("”content_type"”)
</patch>

Table 7: Issue descriptions and analysis for Django UserAdmin problems.
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