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Abstract

Multi-agent systems built on language models
have shown strong performance on collabora-
tive reasoning tasks. However, existing eval-
uations focus only on the correctness of the
final output, overlooking how inefficient com-
munication and poor coordination contribute to
redundant reasoning and higher computational
costs. We introduce GEMMAS, a graph-based
evaluation framework that analyzes the inter-
nal collaboration process by modeling agent
interactions as a directed acyclic graph. To
capture collaboration quality, we propose two
process-level metrics: Information Diversity
Score (IDS) to measure semantic variation in
inter-agent messages, and Unnecessary Path
Ratio (UPR) to quantify redundant reasoning
paths. We evaluate GEMMAS across five
benchmarks and highlight results on GSMS8K,
where systems with only a 2.1% difference
in accuracy differ by 12.8% in IDS and 80%
in UPR, revealing substantial variation in in-
ternal collaboration. These findings demon-
strate that outcome-only metrics are insuffi-
cient for evaluating multi-agent performance
and highlight the importance of process-level
diagnostics in designing more interpretable and
resource-efficient collaborative Al systems.

1 Introduction

Large language models (LLMs) such as GPT-
4 (Achiam et al., 2023), Llama (Touvron et al.,
2023), and Qwen (Bai et al., 2023) demonstrate
emergent reasoning capabilities and achieve state-
of-the-art performance across a variety of NLP
tasks. As multi-agent LLM systems become more
prevalent (Shen et al., 2023; Chen et al., 2023),
their evaluation remains narrowly focused on the
correctness of the final answer. This outcome-
centric view overlooks the underlying collaboration
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dynamics, how agents share information, coordi-
nate reasoning, and avoid duplication of efforts.

Recent studies highlight the limitations of this
evaluation and call for process-level metrics that as-
sess the quality of intermediate reasoning steps (Liu
et al., 2023). In practice, multi-agent systems often
re-traverse the same inference paths or underuti-
lize some agents entirely. Redundant messages
can significantly inflate token usage, introducing a
communication tax that increases both latency and
computational cost (Zhang et al., 2024a).

Existing evaluation metrics fail to expose these
inefficiencies. Representing agent interactions as
a directed graph, where nodes denote agents and
edges represent message passing, provides a struc-
tured view of coordination patterns (Zhang et al.,
2024b). This view enables the identification of
redundant reasoning paths and inactive agents, of-
fering actionable insight into the behavior of the
system. Furthermore, smaller open-source LLMs
have demonstrated competitive performance with
significantly reduced cost, in some cases up to 94%
lower than proprietary models (Liu et al., 2023;
Zhang et al., 2024a). These trends motivate the
need for evaluation methods that go beyond accu-
racy and help practitioners build more interpretable
and efficient multi-agent systems.

Motivated by this gap, we present GEMMAS,
a graph-based evaluation framework for analyz-
ing multi-agent LLM reasoning processes. GEM-
MAS encodes the entire reasoning trace as a di-
rected acyclic graph (DAG), where each node rep-
resents an agent having (prompt, response) pair
and each edge captures the flow of information be-
tween them. We introduce two structure-aware met-
rics: (1) Information Diversity Score (IDS), which
quantifies the semantic uniqueness of agent con-
tributions, and (2) Unnecessary Path Ratio (UPR),
which measures the fraction of reasoning steps that
do not contribute new information. Together, these
metrics evaluate collaboration efficiency beyond

1522

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1522-1532
November 4-9, 2025 ©2025 Association for Computational Linguistics



F Beth bakes 4, 2 dozen
.~ | batches of cookies in
@ T aweek. Ifthese
cookies are shared

@ amongst 16 people
. : equally, how many

Input Data Q

cookies does each
person consume?

B

e Collaborative reasoning with
specialized roles

96+16=6

Graph-based Evaluation

D)

Q Information Diversity Score :

-
PV 4X24+16=6 A

Double“:check:
4x2x12=96

Compare the syntactic and
semantic similarity between agent
responses for diversity

Vanilla AD

Unnecessary Path ratio

x-d-2
I . | S _ ﬁ4
ﬁdeffunco: : l& & “
|
|
|
|

- Is 96+16 the only | ﬂ’ -
way? Consider I ‘ x
. 1

96+:6=16..

®

Necessary

)

Unnecessary

®p

®

batches = 4
o] aa
Necessary

Identify reasoning paths with redundant
information for task solving

A ent ropout

'f - e Directed Acyclic Graph (DAG)
£ <— s - ! - -
! aa \ f W =W B
’% Math Solver Adverserial agent g A A A | A A JX : AA )
£ g I N\ I A\
: P XL KD N
.‘? ] | |
= o — | |
2 §§%<—|§@\<—:§&<—
|
g .
7] I

Analyzer Code Writer

Figure 1: Overview of the GEMMAS evaluation framework. The process begins with input mathematical
problems, which are solved collaboratively by a multi-agent system composed of specialized agents. Their
interactions are represented as a DAG, capturing both communication flow and reasoning structure. From this DAG,
GEMMAS computes structural metrics, Information Diversity Score (IDS) and Unnecessary Path Ratio (UPR), to
evaluate collaboration quality and efficiency beyond final-task accuracy.

what is captured by task accuracy alone.

We apply GEMMAS to five mathematical rea-
soning benchmarks: GSM8K, AQuA, MultiArith,
SVAMP, and MMLU using lightweight open-
source LLMs. Our findings show that naive agent
pipelines suffer from high redundancy and low di-
versity, while configurations optimized for higher
IDS and lower UPR improve both accuracy and
token efficiency under fixed computational bud-
gets. GEMMAS thus surfaces hidden inefficiencies
in multi-agent collaboration and offers practical
design signals for building interpretable and cost-
effective agent systems, an especially important
concern in real-world industry deployments.

Our contributions are as follows:

* We introduce GEMMAS, a graph-based evalu-
ation framework for multi-agent LLM reason-
ing, and propose two novel structural metrics:
Information Diversity Score (IDS) and Un-
necessary Path Ratio (UPR), which together
assess collaboration quality beyond task accu-
racy.

* We evaluate multiple small open-source
LLMs, using GEMMAS to compare their
collaborative behavior and identify efficiency

trade-offs.

* We conduct systematic evaluations across five
mathematical reasoning benchmarks, reveal-
ing substantial differences in collaboration
quality among systems with similar final ac-
curacies.

2 Related Work

2.1 Agent-Level Diversity Metrics

Standard metrics (e.g., BLEU, cosine similarity)
capture surface-level variation (Zhu et al., 2018; Li
etal., 2015) but ignore semantic roles and the graph
structure critical for coordination (Li et al., 2015;
Park et al., 2024). Well-orchestrated lightweight
models can match the performance of larger mod-
els in reasoning and planning (Liu et al., 2023),
making efficient evaluation of agent-level diversity
increasingly important.

Agent-level diversity in multi-agent systems re-
quires specialized evaluation that considers how
individual agents contribute unique perspectives to
collaborative reasoning through their structural con-
nectivity within the communication graph. These
limitations have motivated recent efforts to develop
graph-aware metrics that consider both content and
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structural diversity in multi-agent reasoning.

2.2 Evaluation in Multi-Agent Reasoning

Evaluation of multi-agent reasoning remains in its
early stages. Traditional metrics such as final accu-
racy or task success rate often overlook the internal
dynamics of agent collaboration.

To address limitations of conventional evalua-
tions, graph-based methods have been proposed.
AgentPrune (Zhang et al., 2024a) prunes low im-
pact edges in the communication graph, while
AgentDropout (Wang et al., 2025) removes under-
performing agents, both with the aim of reducing
redundancy without compromising output qual-
ity. VillagerAgent (Dong et al., 2024) incorporates
DAG based planning to assess workload balance
and depth of reasoning.

These graph-based approaches highlight the
growing emphasis on structural analysis to uncover
inefficiencies and redundant communication pat-
terns in collaborative reasoning among agents.

3 Evaluation Framework: GEMMAS

In this section, we introduce GEMMAS (General
Evaluation Metrics for Multi-Agent Systems), a
comprehensive evaluation framework for graph-
based multi-agent LLM systems. Unlike conven-
tional approaches that focus solely on task out-
comes, GEMMAS evaluates both the final results
and the internal reasoning process of multi-agent
collaboration.

3.1 Task Definition and Problem Setup

We consider the problem of multi-agent collab-
oration for mathematical reasoning tasks, where
multiple language model agents interact through
structured communication to solve problems jointly.
Each multi-agent system (MAS) is modeled as
a DAG, capturing the flow of information across
agents throughout the reasoning process.

Formally, let G = (V, E, F') denote the commu-
nication graph:

* V = {v1,v9,...,un} is the set of N agent
nodes;

e F CV x V represents directed edges, where
(vi,v;) € E indicates that the output of agent
v; is available to agent v;;

» F'={f1, fa,..., [n} denotes the set of agent-
specific reasoning functions, where f; defines

the behavior or prompt processing logic of
agent v;.

To analyze both the communication structure
and the temporal execution dynamics of the system,
we maintain two adjacency matrices. The spatial
adjacency matrix S € {0,1}¥*N encodes direct
communication links between agents, indicating
which agents can exchange information. Com-
plementarily, the temporal adjacency matrix T €
{0, 1}V %N captures the causal or time-ordered de-
pendencies among agent outputs, allowing us to
trace how intermediate reasoning steps influence
one another across time.

GEMMAS evaluates multi-agent systems be-
yond final-task accuracy by analyzing the spatial
and temporal structures of agent communication.
This reveals inefficiencies such as redundant rea-
soning, low diversity, shallow chains, and idle
agents, patterns not captured by conventional met-
rics. While we report traditional baselines includ-
ing accuracy (correct task completion rate) and
token efficiency (prompt and completion token
usage) (Wang et al., 2025), GEMMAS provides
process-level insights that quantify collaboration
quality and structural resource utilization. By mod-
eling both the topology and semantic content of
communication graphs, it addresses a key limita-
tion in current evaluation practices for multi-agent
LLM systems.

3.2 DAG-specific Metrics

Information Diversity Score (IDS). This metric
quantifies the heterogeneity of information gener-
ated by different agents by measuring the degree of
similarity between their responses. It addresses a
fundamental question in collaborative systems: Do
agents contribute unique perspectives, or do they
merely repeat similar reasoning?

Existing evaluation metrics are limited in multi-
agent contexts, as they primarily capture surface-
level correctness and ignore semantic intent or the
structural role of each agent within the communi-
cation graph. To address this gap, we combine syn-
tactic analysis using TF-IDF (Sparck Jones, 1972)
with semantic similarity computed via BERT em-
beddings (Devlin et al., 2019), while incorporat-
ing structural context from the DAG. Specifically,
we employ the sentence transformer model (all-
MiniLM-L6-v2) to obtain sentence-level embed-
dings. To account for the topology of the agent
graph, we weight each agent pair (7, j) based on
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their spatial and temporal proximity within the
DAG. The Information Diversity Score is defined
as:

25 wij - (1= SSomli; j])
Zi,j Wij
Wij = maX(SZ-j, Sji) + maX(Tij, TJZ) )

Here, SSwwili,j] represents the average
syntactic-semantic similarity between agents 1%
and j, computed as the cosine similarity of their
TF-IDF and BERT representations, weighted
equally with Ay = A2 = 0.5. The weight w;;
captures the relevance of agent pair (7, j) based
on their direct or indirect communication, using
spatial adjacency matrix S and temporal adjacency
matrix 7.

The complete algorithmic procedure for com-
puting IDS, including similarity calculation and
structure-aware weighting, is described in Algo-
rithm 1. Sensitivity analysis for different weighting
schemes is provided in Appendix A.1.

Unnecessary Path Ratio (UPR). This metric as-
sesses the structural efficiency of the MAS by iden-
tifying reasoning paths that provide negligible or
redundant contributions to solving the task. While
IDS focuses on diversity, UPR addresses efficiency,
quantifying the proportion of communication paths
that fail to add meaningful information. It serves
as an indicator of communication overhead and
redundancy in agent interactions.
Formally, UPR is defined as:

IDS =

(D

| Pnecessary |

UPR=1-—
| Pan|

3)
where Py represents the total number of reason-
ing paths in the spatial communication graph, and
Phrecessary includes only those paths that yield contri-
bution scores above a predefined threshold 7 = 0.5.
Sensitivity analysis for different thresholds is pro-
vided in Appendix A.2.

A path is deemed necessary if it facilitates the
production of correct or informative responses by
downstream agents, based on a contribution func-
tion defined over message impact. The detailed
algorithmic pipeline, which includes path enumera-
tion, contribution analysis, and threshold filtering,
is outlined in Algorithm 2.

3.3 Evaluation Setup

We systematically evaluate different MAS archi-
tectures that vary in their communication graph

Algorithm 1 Information Diversity Score

Input: Agent responses O = {o1, ..
Spatial adjacency matrix .S,
Temporal adjacency matrix 7'

Output: Information diversity score IDS € [0, 1]

.y ON},

/* Calculating syntactic-semantic similarity */
: Obtain syntactic features ® <— TF-IDF(O)
: Obtain semantic features ¥ <— BERT(O)
1 SSen + pairwise_cosine(P) {syntactic similarity}
1 SSsem < pairwise_cosine(¥)
1 SSotal ¢ A1+ SSsyn + A2 - SSem
/* Calculating diversity score */
6: Initialize weighted diversity D,, <— 0
7: Initialize DAG connection weights W < 0
8
9

{semantic similarity}

cfori=1to N —1do
forj =i+ 1to N do

10: w <— max(Sij, Sji) + max(T;;, Tj;) {connection
weights}

11: if w > 0 then

12: Dy < Dy +w - (1 — SStotarlt, j])

13: W W+w

14: end if

15:  end for

16: end for

17: return D,,/W

topologies. Our evaluation encompasses both base-
line and structurally optimized approaches to assess
the effectiveness of DAG-based modifications.

Baseline. We employ a fully connected
multi-agent system without structural optimization,
where all agents can directly communicate with
each other. We refer to this baseline configuration
as Vanilla-AD, as a reference point for measuring
the effectiveness of communication graph modifi-
cations.

3.3.1 Multi-Agent System Architecture

We adopt the agent-role configuration established
in AgentPrune (Zhang et al., 2024a), which defines
a structured collaboration protocol among special-
ized agents to promote diversity and robustness in
reasoning.

Our MAS setup involves four specialized agents
with distinct roles. These are 1) AnalyzeAgent
focuses on problem decomposition and structured
plan generation, 2) CodeWritingAgent formulates
code-based computational reasoning strategies, 3)
MathSolverAgent performs formal mathematical
operations and symbolic solving and 4) Adversar-
ialAgent introduces plausible but intentionally in-
correct solutions to stress-test robustness.

The collaborative process unfolds in three stages.
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Algorithm 2 Unnecessary Path Ratio

Input: Spatial communication graph G = (V, Espatial )
Correct answer «
Output: Unnecessary path ratio UPR € [0, 1]
/* Path enumeration */
1: Pau + {p| pisasubpathin G}
2: Precessary 1]
/* Path contribution assessment */
3: for each path p € P, do
Initialize correct count ¢ < 0
Initialize total count ¢ <— 0

4
5
6:  for each agent v € p do
7 a < ExtractAnswer(output(v))
8
9

if a == « then
: c+c+1
10: end if
11: t+—t+1
12: end for

13: score <~ §if ¢ > Oelse 0
14: if score > 7 then

{contribution score}

15: Pnecessary — 7)necessary U {p}
16: end if
17: end for

18: return 1 — |Phecessary|/|Paitl

First, the input problem is distributed to all four
agents concurrently. Second, the agents engage in
two rounds of communication based on the speci-
fied DAG topology, sharing intermediate reasoning
traces from their specialized perspectives. Finally,
a FinalRefer agent aggregates these outputs to gen-
erate the final answer through collective reasoning.
Figure 2 illustrates the structural evolution of
the DAG topology, comparing the initial structure
at Iteration 1 with the optimized structure at Iter-
ation 10 produced by the G-Designer method. To
analyze the effect of structural optimization, we
implement and compare three state-of-the-art meth-
ods called 1) AgentPrune prunes communication
links with low marginal impact, 2) AgentDropout
dynamically removes underperforming agents and
their associated links to reduce redundancy and 3)
G-Designer learns optimal DAG topologies over
multiple iterations, aiming to improve reasoning ef-
ficiency by minimizing communication overhead.

3.3.2 Benchmarks and Language Models

We evaluate DAG-based MAS architectures
on five mathematical reasoning benchmarks:
GSMSK (Cobbe et al., 2021), which contains 1,000
grade-school math problems requiring multistep nu-
meric reasoning; AQuA (Ling et al., 2017), consist-
ing of 254 algebraic word problems with multiple-
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Figure 2: Comparison of Multi-Agent DAG Struc-
tures Before and After Optimization. The figure
shows the evolution of the DAG structure from the ini-
tial setup (Iteration 1) to the final optimized configu-
ration (Iteration 10). Solid blue lines denote spatial
communication links, while dashed orange arrows indi-
cate temporal dependencies.

choice answers; MMLU (Hendrycks et al., 2021),
where we select 748 questions from the mathemat-
ics subsets covering elementary to college-level
topics; MultiArith (Roy and Roth, 2015), with
180 arithmetic word problems; and SVAMP (Pa-
tel et al., 2021), comprising 300 elementary-level
problems designed to test reasoning variation. To
examine how GEMMAS performs across differ-
ent model scales, we use two small open-source
instruction-tuned language models: Llama 3.1-8B-
Instruct (Grattafiori et al., 2024) and Qwen 2.5-7B-
Instruct (Yang et al., 2025).

3.3.3 Implementation Details

All experiments are run under consistent hyperpa-
rameters: a learning rate of 0.1, a dropout rate of
0.1, 40 training examples, 10 sampling iterations,
and two communication rounds per task. We set
the generation temperature to zero for deterministic
outputs. Unless stated otherwise, all other parame-
ters follow the default configurations of the original
MAS frameworks. For reproducibility, all experi-
ments are conducted with the random seed fixed to
2025.

4 Results and Analysis

We apply GEMMAS to assess the structural qual-
ity and collaborative behavior of multi-agent sys-
tems (MAS). Tables 1 and 2 present the results
for both Llama3.1-8B-Instruct and Qwen2.5-7B-
Instruct models across five reasoning benchmarks.

4.1 Revealing Hidden Inefficiencies

Conventional evaluation metrics, such as final an-
swer accuracy, fail to capture inefficiencies in multi-
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Method Accuracy? Ptok| Ctok| IDST UPR| Method Accuracy? Ptok| Ctok| IDST UPR|
GSMSK GSM8K
Vanilla - AD 0.7961 10.18 3.16 0.33 0.39 Vanilla - AD 0.8563 10.15 259 0.39 040
AgentDropout  0.6727  08.01 2.84 0.52 0.33 AgentDropout  0.7797 0699 1.58 040 041
AgentPrune 0.6688  12.68 4.11 033 0.32 AgentPrune 0.7508 10.01 2.68 041 0.16
G-Designer 0.8391 11.09 343 032 0.14 G-Designer 0.8742 0987 224 044 0.08
AQuA AQuA
Vanilla - AD 0.6333 214 094 038 046 Vanilla - AD 0.5958 1.82 0.73 038 0.31
AgentDropout  0.5833 237 1.07 038 047 AgentDropout  0.5917 202 083 038 032
AgentPrune 0.5833 257 125 036 0.44 AgentPrune 0.5417 1.98 0.77 049 0.34
G-Designer 0.5625 276 122 037 047 G-Designer 0.5042 206 080 0.52 036
MultiArith MultiArith
Vanilla - AD 0.9875 121 031 040 0.13 Vanilla - AD 0.9938 1.20 024 043 0.16
AgentDropout  0.8688 099 026 040 0.24 AgentDropout  0.9688 0.86 0.12 046 0.16
AgentPrune 0.8125 1.83 058 042 0.06 AgentPrune 0.9938 145 038 057 0.00
G-Designer 0.9625 142 040 036 0.01 G-Designer 1.0000 .12 021 0.54 0.00
SVAMP SVAMP
Vanilla - AD 0.8536 112 045 0.63 0.39 Vanilla - AD 0.8893 1.02 032 0.67 042
AgentDropout  0.8000 135 058 0.66 0.46 AgentDropout  0.9071 1.05 029 0.69 0.36
AgentPrune 0.8107 286 082 038 0.96 AgentPrune 0.8714 239 045 041 097
G-Designer 0.8286 286 081 037 042 G-Designer 0.9036 237 045 046 0.32
MMLU MMLU
Vanilla - AD 0.5278 348 083 034 0.66 Vanilla - AD 0.7153 313 061 054 051
AgentDropout  0.5389 247 0.68 034 0.62 AgentDropout  0.7181 217 047 0.63 0.53
AgentPrune 0.5792 335 088 036 0.66 AgentPrune 0.7319 271 062 049 043
G-Designer 0.7042 509 200 053 0.70 G-Designer 0.7806 418 134 0.72 0.6l

Table 1: Performance comparison of multi-agent sys-
tems on GSM8K, AQuA, MultiArith, SVAMP, and
MMLU test dataset using Llama 3.1-8B-Instruct.

agent reasoning. For instance, on GSM8K with
Qwen2.5-7B-Instruct, the Vanilla-AD configura-
tion achieves 85.6% accuracy, while G-Designer
reaches 87.4%. Although these results appear sim-
ilar in terms of performance, GEMMAS reveals
that G-Designer operates with significantly higher
structural efficiency, recording a UPR of just 0.08
compared to 0.40 for Vanilla-AD, a fivefold im-
provement in redundant reasoning reduction.

Moreover, models with identical task accuracy
may exhibit distinct internal collaboration patterns.
On MultiArith with Qwen2.5-7B-Instruct, both
Vanilla-AD and AgentPrune reach 99.4% accu-
racy. However, AgentPrune demonstrates greater
semantic diversity (IDS of 0.57 versus 0.43) and
higher structural efficiency (UPR of 0.00 versus
0.16), highlighting that quality of reasoning is not
reflected by accuracy alone.

4.2 Identifying Optimal Configurations

Building on these findings, we identify recurring
trends in structural metrics that support actionable
system design decisions. Systems that simultane-
ously exhibit high IDS and low UPR are particu-
larly desirable, as they combine semantic diversity
with efficient communication.

For example, AgentPrune on MultiArith consis-

Table 2: Performance comparison of multi-agent sys-
tems on GSM8K, AQuA, MultiArith, SVAMP, and
MMLU test dataset using Qwen2.5-7B-Instruct.

tently demonstrates this pattern. With Llama3.1-
8B-Instruct, it achieves IDS 0.42 and UPR 0.06,
while with Qwen2.5-7B-Instruct, it yields IDS 0.57
and UPR 0.00. In contrast, systems with low IDS
and high UPR represent the least efficient config-
urations. On SVAMP, AgentPrune records IDS
0.38 and UPR 0.96 with Llama3.1-8B-Instruct, and
IDS 0.41 and UPR 0.97 with Qwen2.5-7B-Instruct,
signaling redundant or repetitive communication
behavior.

From a performance efficiency perspective,
some configurations manage to achieve strong
accuracy with minimal communication overhead.
For example, G-Designer on MMLU achieves
70.4% accuracy with IDS 0.53 using Llama3.1-
8B-Instruct, and 78.1% accuracy with IDS 0.72
using Qwen2.5-7B-Instruct.

These results confirm that GEMMAS exposes
structural trade-offs that traditional metrics cannot
capture. It offers MAS designers a set of com-
plementary signals to guide configuration choices
based on specific goals, whether that is, maxi-
mizing computational efficiency (via low UPR),
enhancing semantic richness (via high IDS), or
achieving a balance across both dimensions de-
pending on the deployment scenario.
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5 Conclusion

We introduced GEMMAS, a graph-based evalu-
ation framework for multi-agent language model
systems that assesses collaboration quality beyond
final-task accuracy. By modeling agent interac-
tions as a DAG, GEMMAS defines two structural
metrics, Information Diversity Score (IDS) and
Unnecessary Path Ratio (UPR), to capture seman-
tic uniqueness and reasoning redundancy. Exper-
iments on five mathematical benchmarks reveal
that systems with similar accuracy can vary signif-
icantly in internal collaboration patterns. GEM-
MAS thus enables process-level diagnostics to
guide the development of interpretable and efficient
multi-agent systems.

Limitations

While GEMMAS provides a structural lens to eval-
uate multi-agent LLM systems, it is currently lim-
ited to mathematical reasoning tasks and small
open-source models. Extending this framework
to broader domains, integrating runtime adaptiv-
ity, and coupling it with system-level metrics such
as latency and memory footprint represent promis-
ing directions. Additionally, incorporating human-
in-the-loop assessments and evaluating dynamic
DAG topologies could further enhance the utility
of GEMMAS for real-world deployment.
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A Appendix

A.1 Information Diversity Score Analysis

Figures 3 and 4 show how IDS values vary with dif-
ferent combinations of syntactic-semantic weights
between benchmarks and models. The weight
balance parameter \; controls the contribution of
syntactic characteristics (TF-IDF), while seman-
tic features (BERT embeddings) are weighted as
Ay =1— A1

As )\j increases toward 1.0, emphasizing syn-
tactic similarity, IDS values generally increase be-
tween models and benchmarks. This suggests that
syntactic diversity (e.g., different vocabulary usage,
sentence structures) tends to be more pronounced
than semantic diversity in multi-agent communica-
tions.

Different multi-agent systems exhibit varying
sensitivity to weight balance. For example, on
SVAMP with both models, Vanilla-AD and Agent-
Dropout show relatively higher IDS values com-
pared to AgentPrune and G-Designer, indicating
more diverse communication patterns across differ-
ent syntactic-semantic weight settings.

We selected equal weights to balance the syn-
tactic and semantic contribution without favoring
either aspect of the similarity measurement. This
balanced approach provides a neutral baseline for
comparing multi-agent systems across different col-
laboration patterns.

A.2 Unnecessary Path Ratio Analysis

The UPR metric relies on a threshold 7 to deter-
mine whether a reasoning path is necessary. A path
is considered necessary if its contribution score ex-
ceeds 7. Figures 5 and 6 show how UPR values
vary with different threshold values across all five
benchmarks and models.

As expected, UPR values generally increase with
7 across all systems, since stricter thresholds clas-
sify fewer paths as necessary. However, the magni-
tude of this increase varies significantly among sys-
tems and benchmarks, especially at higher thresh-
old values.

At lower thresholds (7 < 0.5), UPR values grad-
ually increase and relatively moderate in most sys-
tems. For instance, on GSM8K with both models,
the systems show UPR values ranging from 0.1
to 0.4 at 7 = 0.5. However, at higher thresh-
olds (7 > 0.5), systems except G-Designer exhibit
sharp increases. Vanilla-AD rises rapidly from 0.4

at 7 = 0.5 to more than 0.9 at 7 = 0.9, while
G-Designer increases more gradually to only 0.2.

Similar patterns appear across other benchmarks.
On MultiArith with both models, both Agent-
Dropout and Vanilla-AD reach vary high UPR val-
ues (over 0.9) when 7 > 0.5, while G-Designer
remains below 0.2. On SVAMP with both mod-
els, AgentPrune maintains consistently high UPR
across all thresholds, indicating that most of its
reasoning paths contribute marginally regardless of
threshold choice.

We selected 7 = 0.5 as the default threshold
to ensure a balanced evaluation criterion. This
criterion indicates that a path must demonstrate
majority correctness, defined as more than 50% of
intermediate outputs being correct, to be consid-
ered necessary.
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Figure 3: Sensitivity of Information Diversity Score (IDS) to syntactic-semantic weight balance across five

benchmarks using Llama3.1-8B-Instruct. The x-axis shows \; (syntactic weight), with vertical dashed line
indicating A; = 0.5 used in our main experiments.
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Figure 4: Sensitivity of Information Diversity Score (IDS) to syntactic-semantic weight balance across five
benchmarks using Qwen2.5-7B-Instruct. The x-axis shows A\ (syntactic weight), with vertical dashed line indicating
A1 = 0.5 used in our main experiments.
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Figure 5: Sensitivity of Unnecessary Path Ratio (UPR) to threshold values across five benchmarks using Llama3.1-
8B-Instruct. The x-axis shows 7 (path necessity threshold), with vertical dashed line indicating 7 = 0.5 used in our
main experiments.
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Figure 6: Sensitivity of Unnecessary Path Ratio (UPR) to threshold values across five benchmarks using Qwen2.5-
7B-Instruct. The x-axis shows 7 (path necessity threshold), with vertical dashed line indicating 7 = 0.5 used in our
main experiments.
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