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Abstract

Recent trends in NLP utilize knowledge graphs
(KGs) to enhance pretrained language models
by incorporating additional knowledge from
the graph structures to learn domain-specific
terminology or relationships between docu-
ments that might otherwise be overlooked. This
paper explores how SciNCL, a graph-aware
neighborhood contrastive learning methodol-
ogy originally designed for scientific publica-
tions, can be applied to the process industry
domain, where text logs contain crucial infor-
mation about daily operations and are often
structured as sparse KGs. Our experiments
demonstrate that language models fine-tuned
with triplets derived from graph embeddings
(GE) outperform a state-of-the-art mES-large
text encoder by 9.8-14.3% (5.45-7.96p) on
the proprietary process industry text embed-
ding benchmark (PITEB) while having 3 times
fewer parameters.

1 Introduction

For several years, domain adaptation of language
models (LMs) has followed three well-established
approaches: fine-tuning pre-trained LMs using la-
beled data of domain-specific tasks (Devlin et al.,
2019; Liu et al., 2019), training domain-specific
LMs from scratch (Lee et al., 2019; Beltagy et al.,
2019; Huang et al., 2019), or domain-adaptive con-
tinual pretraining (DAPT) using smaller amounts of
domain text data when labeled domain task-specific
data is limited (Gururangan et al., 2020; Strubell
et al., 2020). While DAPT and the subsequent
fine-tuning have become a practical and efficient
solution for creating specialized NLP applications
(Guo and Yu, 2022), it relies on the availability of
unlabeled domain-specific data, from which an LM
can learn domain-specific terminology.

When domain-specific unlabeled text data is lim-
ited, self-supervised methods such as SPECTER
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Figure 1: Graph embeddings are obtained from a di-
rected heterogeneous domain graph for the process in-
dustry with two node types (1) text log (TL), i.e., logs
of the daily operations at a production plant, and (2)
functional locations (FL), i.e., hierarchically structured
machinery on a production plant, and three edge types:
related_to (green) connects two text logs, reports_about
(black) links a text log to FLs, and part_of (blue) repre-
sents the hierarchical structure among FLs.

suggest leveraging the underlying graph as an addi-
tional data source structure to enhance training on
the passage or document level (Cohan et al., 2020).
Such a graph represents documents as nodes and
their relationships as edges, providing valuable con-
textual information about how documents are inter-
connected (Kinney et al., 2023). Incorporating this
graph-based information into an LM’s training pro-
cess enables the model to capture inter-document
relationships (Cohan et al., 2020).

Domain-specific areas that involve proprietary
knowledge in languages other than English often
fall into the low-resource setting when both unla-
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beled and labeled text data are scarce (Usuga Ca-
david et al., 2020; Zhong et al., 2024). Although
the text data can be scarce, companies often col-
lect, store, and use structured and/or graph data, for
example, those belonging to the process industry
domain (Figure 1). Text records in this domain are
logs of daily plant operations, organized in shift
books, which preserve valuable knowledge about
production and maintenance (May et al., 2022;
Zhukova et al., 2024).

This paper explores adapting the SciNCL
methodology, a contrastive learning approach
based on scientific graph embeddings (GE) (Os-
tendorff et al., 2022), to enhance the text encoder
in German plant operation logs and improve a se-
mantic search task in this domain. The goal is
to explore the potential of fine-tuning small mod-
els in low-resource settings, additionally aiming to
achieve cost-efficient inference in production. The
experiments show that the best-performing model
was obtained by fine-tuning mBERT using triplets
generated based on the GE.

The primary objective of adapting SciNCL is
to leverage the relationships within the knowledge
graph (KG) to provide an additional signal indi-
cating the semantic relatedness between text logs,
particularly in terms of the terminology used, e.g.,
"FL 1-1" as an abbreviation and “Lomi” as jargon.
In example from Figure 1, one text log (TL2) re-
ports about a reactor with a short code "FL 1-1" and
uses Lomi alongside, and another text log (TL6)
reports about its component with a short code "FL
1-1-2" but uses the textbook terminology of Lomi,
1.e., Losungsmittel (solvent). When using the KG
and specifically graph embeddings, we can encode
the information that these logs are connected via
the chain of edges TL6 — reports_about — FL
1-1-2 — part_of — FL 1-1 < reports_about <+
TL2. Incorporating domain-specific semantic re-
lationships that were not available at the time of
LM pretraining aims at bringing jargons, such as
Lomi-Losungsmittel, closer together in the vector
space.

Our evaluation showed that mBERT outper-
formed a state-of-the-art mE5-large bi-encoder by
14.3% (7.96p) and the best-performing baseline
M3 by 1.5% (0.92p) on the domain process in-
dustry text embedding benchmark (PITEB) while
requiring considerably less training data (2.45M
text pairs) and having 3 times fewer parameters
(179M vs 560M).

2 Related work

A specific area of NLP, known as Technical Lan-
guage Processing (TLP) (Brundage et al., 2021;
May et al., 2022; Akhbardeh et al., 2020), adapts
traditional NLP methods to address the unique
challenges of the technical industry. The state-of-
the-art NLP models often fall short when dealing
with domain-specific technical terms, abbreviations
(Akhbardeh et al., 2020), incomplete sentences,
typographical errors, and non-standard notations
(Dima et al., 2021).

Knowledge graphs (KGs) provide rich structural
information and have been widely applied in vari-
ous domains, including academic graphs, industrial
manufacturing, and maintenance (Xia et al., 2023;
Xiao et al., 2023; Stewart et al., 2022). Knowl-
edge embedding techniques transform these graphs
into continuous embeddings for entities and their
relationships (Wang et al., 2021). Since general-
purpose language models lack domain-specific
knowledge (Qiu et al., 2020), several approaches
have been developed to enhance language repre-
sentation by integrating information from exter-
nal knowledge bases. The recent development of
the NLP applications in the process industry do-
main utilizes KGs for decision support (Naqvi et al.,
2024), predictive maintenance (Naqvi et al., 2022;
Usuga-Cadavid et al., 2022), or semantic search
(Nagqvi et al., 2024; Zhukova et al., 2024).

Research on knowledge graph-based fine-tuning
techniques includes methods such as K-BERT (Liu
et al., 2020), ERNIE (Zhang et al., 2019), Know-
BERT (Peters et al., 2019), and KEPLER (Wang
et al., 2021), which directly incorporate entity em-
beddings and knowledge into the model’s training
process. Other studies focus on utilizing the graph
structure of documents for learning document-level
semantics, such as SPECTER (Cohan et al., 2020),
LinkBERT (Yasunaga et al., 2022), and SciNCL
(Ostendorff et al., 2022), which use citation infor-
mation and document relations to fine-tune mod-
els. TwHIN-BERT (Zhang et al., 2023) applies
contrastive learning on social media data, while
MICoL (Zhang et al., 2022) uses metadata-induced
contrastive learning. SciNCL, unlike other meth-
ods, utilizes graph embedding to sample both posi-
tive and negative documents, making it effective for
adapting models to the process industry by learn-
ing from graph structures and incorporating hard-
to-learn negatives (Bucher et al., 2016; Wu et al.,
2017).
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Figure 2: The methodology of adapting SciNCL (Ostendorff et al., 2022) to a semantic search in the domain of
the process industry. The two main changes involve generating document triplets using graph embeddings (GE)
constructed from a heterogeneous knowledge graph (KG) and using these triplets as a source for query-document

triplet generation during bi-encoder fine-tuning.

3 Methodology

We closely follow the implementation of SciNCL,
with several modifications and adaptations tailored
to the domain of the process industry. The fol-
lowing section describes the key changes to the
SciNCL methodology. Appendix A.l until Ap-
pendix A.3 provides more details about each im-
plementation stage.

Input data A KG in the process industry dif-
fers from the scientific graph in passage length and
graph connectivity. Table 1 provides an overview
of the key distinctions between the input data for
the process industry and the original SciNCL ap-
proach. Unlike scientific abstracts, which maintain
a consistent length and writing style to summarize
research papers and have dense connectivity, text
logs in the process industry are not subject to the
writing constraints and result in a sparse graph. The
text logs have a style and syntax similar to quickly
taken notes (i.e., prone to typos), contain a lot of
professional jargon and abbreviations, may contain
partial information, are formatted inconsistently,
and may exhibit other irregularities compared to
commonly structured text. This results in logs as
short as a few words, posing challenges for lan-
guage learning objectives.

Knowledge graph Our implementation expands
the scientific graph from the homogeneous graph
with one relation type to a heterogeneous graph
(i.e., text logs and functional locations (FLs)) with
three relation types: (1) part_of relation to rep-
resent the hierarchical structure between FLs, (2)
reports_about relation to connect text logs to the
FLs they reference, and (3) related_to relation to
link two text logs when the second log is a follow-
up event to the first, such as a solution to a reported

Params SciNCL PI-adapt.

Domain scientific proc. industry

Document type title + abstract text logs

Avg. passage

length (in words) 150-250 8-21

Graph connectivity  high low

Data quality high low

Graph type homogeneous heterogeneous

# nodes >52M 22K-172K

# edges >462M 24K-1.8M
S20RC domain data

Training data (Loetal., 2020) (4 plants)
(~82.5Gb) (~0.25Gb)

Table 1: A summary table of the discrepancies of the
original methodology of SciNCL to the proposed im-
plementation adapted to the process industry. While
small, these differences may significantly impact the
effectiveness of leveraging domain KGs for language
model fine-tuning.

problem. These edges are directed, with clearly
defined source and target nodes. By combining
these three relations, the graph effectively captures
the domain-specific relationships inherent in pro-
cess industry data. To improve graph connectivity,
we perform a preprocessing step using link pre-
diction with two custom models. First, we utilize
named entity linking to restore reports_about rela-
tions, and then record linking to restore related_to
relations (Zhukova et al., 2025¢).

Graph embeddings A graph embedding (GE)
model is designed to capture the domain-specific re-
lationships within the process industry graph. Dur-
ing training, the model learns to position nodes con-
nected by edges closer together in the embedding
space. While node embeddings are typically initial-
ized with random values, we improve the learning
process by initializing the node embeddings with
the sentence transformers applied to (1) text logs
and (2) FL descriptions. This approach is similar
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to the method used by Asada et al. (2021), who
incorporated text embeddings to enhance the train-
ing of a graph embedding model in cases where
the graph’s structural information alone was insuf-
ficient.

Document triplet sampling We employ the
graph embedding neighborhood of a query doc-
ument vector d€ to sample positives and negatives
by selecting the k-nearest neighbors. Graph em-
beddings provide a continuous and undirected sim-
ilarity signal, enabling the identification of seman-
tically similar nodes even when there are no direct
edges between them. In a heterogeneous graph
setup, node embeddings inherently encode the di-
verse contexts introduced by various relation types,
thereby eliminating the need for complex sampling
strategies that rely on directly building positive
samples from graph edges (Zhang et al., 2022). Al-
though edges between FLs and text logs help define
the graph embedding space, the resulting node em-
beddings ultimately become independent of these
direct connections. We adopt the same sampling
strategies for positives and negatives as SciNCL,
employing kNN sampling for positives and hard
negatives, and filtered random sampling for easy
negatives. The sampling parameters were set as
follows: ¢™ = 2 for positives, Ceqsy = 1 for easy
negatives, and ¢, , = 1 for hard negatives, where
positives were selected given the kNN parameter
kT = 2, and a hard negative was chosen from
k}:ard = 50.

Learning objective: document similarity level
A contrastive learning objective ensures that similar
documents are positioned close together in the em-
bedding space of a fine-tuned LM while dissimilar
documents are pushed farther apart. We fine-tune
an LM with a self-supervised triplet margin loss
(Schroff et al., 2015):

N (e R )
1

where d is a document vector representation
fim(d) = d using an LM, ¢ represents the mar-
gin that ensures that d* is at least & closer to d<
than d—, and || Ad|2 is the L? norm, which is used
as a distance function. In our experiments, we use
d as (1) a vector of [CLS] token from the last hid-
den layer or (2) a concatenation of [CLS] and mean
pooling of all tokens from the last hidden layer.

Query-document triplet sampling To create
query-document pairs based on GE-triplets, we
begin by generating a search query for each query
document (Zhukova et al., 2025a). Next, we ap-
ply a hard negative mining strategy to train Sen-
tence Transformers using the MS MARCO dataset
(Sentence-Transformers, 2021): we treat all doc-
uments retrieved by any model as negatives (both
positive and negatives), except for the query doc-
ument itself. As a result, all retrieved triplet doc-
uments are considered negatives, and previously
positive documents are now treated as hard-to-learn
negatives.

Bi-encoder fine-tuning We use Multiple Nega-
tives Ranking Loss to train a bi-encoder from the
implementation from the BEIR benchmark (Thakur
etal.,, 2021)".

4 Evaluation

4.1 Experiment setup

Model selection For LM fine-tuning, we selected
several pre-trained and domain-adapted mono-
lingual or multilingual pre-trained LMs. Specif-
ically, we selected state-of-the-art LMs with BERT
architectures that support the German language:
GBERT-base (Chan et al., 2020), multilingual
mBERT-base (Devlin et al., 2019), and XLM-
RoBERTa-base (Conneau et al., 2020). Addition-
ally, we evaluate daGBERT, a domain LM tailored
for the process industry using continual pretrain-
ing (Zhukova et al., 2025b). All selected models
have an embedding size of 768, and the number of
parameters is under 300M.

Baselines The evaluation compares our method-
ology to the state-of-the-art multilingual text
encoders that support the German language:
SBERT paraphrase-multilingual-MinilM-L12-v
and msmarco-distilbert-multilingual (Reimers
and Gurevych, 2019), mES5-base and mES5-
large (Wang et al., 2024), IBM Granite 107m
and 278m (Granite Embedding Team, 2024),
OpenAl text-embedding-3-large (OpenAl,
2024), mGTE-base (Zhang et al., 2024), Nomic
Embed v2 (Nussbaum and Duderstadt, 2025),
deepset-mxbai-embed-de-large-v1 (Lee et al.,
2024), and M3 (Chen et al., 2024). The selected

models vary in terms of embedding size and

"https://github.com/beir-cellar/beir/blob/
main/examples/retrieval/training/train_msmarco_

v3.py.
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Plant #docs # queries #docs — GE-based
relevant triplets

A 17K 30 2266 +

B 14K 30 1747 -

C 129K 30 1698 +

D 71K 30 3799 +

E 10K 28 1097 -

F 26K 28 1894 -

G 64K 29 2179 +
total 330K 205 14680

Table 2: Process industry text embedding benchmark
(PITEB) for semantic search evaluation. The data from
three plants was unseen during the LM fine-tuning on
the document level.

number of parameters, thereby ensuring a fair
comparison in terms of performance and efficiency.
Adding these models to our evaluation assesses
their performance in highly specific, technical
domains, such as the process industry and the
German language, thereby contributing to the
exploration of their limits/boundaries for such
edge cases.

Implementation The models were trained on an
NVIDIA Tesla A100 (80GB). Adam with weight
decay was used as the optimizer, with a learning
rate of A = 27°. Our preliminary experiments
showed that the most optimal pooling strategy for
GBERT, daGBERT, and mBERT is concatenation,
whereas for XLM-RoBERTs%, it is using the [CLS]
vector token. The training was conducted for three
epochs with a batch size of 16. We fine-tuned a
GBERT, daGBERT, and mBERT for 3 epochs and
XLM-RoBERTa for 5 epochs. We trained a bi-
encoder for 5 epochs on GBERT, daGBERT, and
mBERT, using a batch size of 64 and 1000 warm-
up steps. In contrast, due to the larger number
of training parameters, XLM-RoBERTa was fine-
tuned for 8 epochs with 3000 warm-up steps with
the same batch size. The remaining parameters
were inherited from SciNCL.

Test collection: PITEB We evaluate our models
and baselines using a private expert-verified pro-
cess industry text embedding benchmark (PITEB)
(Zhukova et al., 2025a). Table 2 provides details
on the test collection, which comprises data from
seven production plants in the chemical and phar-
maceutical domains, totaling 205 queries across
a collection of 330K documents. Data from
four plants is used to build training datasets for
both document-level triplets and a dataset for bi-
encoders.

Component Pos.pairs  Neg.pairs Total
domain-related
MS MARCO 132K 2.14M  227M

Tsynthec T T T T T T T T T T o TT oo
domain data 9K 32K 41K
(plants A-F)

"~ GE-based
query-doc pairs 20K 80K 100K
(plants A, C, D, G)

Total 161K 225M  241M

Table 3: The query-document pair datasets used for bi-
encoder fine-tuning. A combination of domain-related
MS MARCO and synthetic domain data is labeled as
DR-MM + SID dataset, and the combination of all three
components is labeled as DR-MM + SID + GET.

Document similarity training dataset We
generated 100K document triplets equally dis-
tributed from four plants (50K unique query
documents). We have enforced an additional
quality check of the triplets by following a
Sentence Transformers methodology of creating
hard negatives for the MS MARCO dataset!:
we scored the pairs with a cross-encoder
cross-encoder/msmarco-MinilLM-L12-en-de-v1 and
kept the triplets where a positive document is simi-
lar enough to a query-document (pos.pair > 5.0)
and a negative document is distant enough from the
positive document (pos.pair — neg.pair > 3.0).
Hence, we ensured a second quality layer after the
GEs and obtained the final training dataset with
14K triplets.

Bi-encoder training dataset The dataset for bi-
encoder fine-tuning consists of three components
(Table 3): (1) the domain-related version of Ger-
man MS MARCO (Nguyen et al., 2016) (DR-MM)
(see Appendix A.4), (2) a synthetic in-domain
dataset created using an ensemble of text encoders
(SID) (Zhukova et al., 2025a), and (3) a collection
of query-document pairs generated from GE-based
document-level triplets (GET). To create GET, we
sampled 5K query documents from plants A, C,
D, and G from the unique 50K query documents
from the triplets above, and ensured that these docu-
ments do not occur in the test collection as relevant
documents. To evaluate the impact of the query-
document pairs based on GE-triplets, we use two
versions of the dataset: (1) DR-MM + SID (2.31M
pairs), (2) DR-MM + SID + GET (2.41M pairs). As
a baseline, we also use the German MS MARCO
(MM, 160M pairs) as a comparison dataset for our
domain-specific version.
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Model Params, - - Doc.-sim. Bi-encoder MAP@I0 MRR@10 nDCG@I0 | Mean
M fine-tuning fine-tuning

SBERT/MiniLM-L12-v2 118 - - 43.84 46.99 26.90 39.24

SBERT/msmarco-distilbert-multilingual 135 - 54.83 59.81 35.12 49.92

intfloat/multilingual-e5-base 278 - 58.78 65.08 40.28 54.71

intfloat/multilingual-e5-large 560 - 59.82 65.31 42.26 55.80

ibm-granite/granite-embedding-107m-multiling. 107 - 62.42 67.45 44.67 58.18

OpenAl-text-embedding-3-large UNK - 63.68 68.57 45.60 59.28

Alibaba-NLP/gte-multilingual-base 305 - 63.44 68.76 46.03 59.41

nomic-ai/nomic-embed-text-v2-moe 305 - 62.20 68.70 47.99 59.63

ibm-granite/granite-embedding-278m-multiling. 278 - 64.44 70.22 46.26 60.31

mixedbread-ai/deepset-mxbai-embed-de-large-v1 487 - 65.32 70.33 48.13 61.26

BAAI/bge-m3 560 - 66.24 71.33 50.94 62.84

MM 59.86 65.72 42.99 56.19

111 DR-MM + SID 62.64 66.92 45.78 58.45

GBERT-base (Chan et al., 2020) - DR-MM +SID + GET | 64.58 71.48 50.42 62.16

+ DR-MM + SID + GET | 64.08 71.42 49.97 61.82

- DR-MM + SID 62.21 69.36 45.81 59.13

daGBERT-base (Zhukova et al., 2025b) 111 - DR-MM + SID + GET | 62.36 69.24 48.06 59.89

+ DR-MM + SID + GET | 64.60 69.24 48.06 61.24

- DR-MM + SID 64.81 70.85 48.11 61.26

mBERT (Devlin et al., 2019) 179 - DR-MM + SID + GET | 65.22 70.86 50.70 62.26

+ DR-MM + SID + GET 67.12 72.58 51.56 63.75

- DR-MM + SID 62.51 67.29 46.10 58.63

XLM-RoBERTa (Conneau et al., 2020) 278 - DR-MM + SID + GET | 64.47 69.88 48.82 61.06

+ DR-MM + SID + GET | 64.18 70.23 49.35 61.25

Table 4: The evaluation demonstrates that fine-tuning language models (LMs) using the adapted SciNCL method-
ology outperforms the baseline text encoders. The most significant improvement is observed with the two-stage
model fine-tuning (first on document-level similarity and then on query-document level) and the DR-MM + SID +
GET dataset, which shows the highest impact across almost all fine-tuned models. This result is achieved despite the
GE-based triplets comprising only 6% of the entire training corpus.

Metrics We evaluate the text encoder with three
metrics: mean average precision (MAP@10), mean
reciprocal rank (MRR @10), and normalized dis-
counted cumulative gain (nDCG@10). Using
all three metrics together provides a more well-
rounded evaluation, giving insights into ranking
quality, early retrieval performance, and overall re-
trieval quality. We report the mean of these metrics
across seven plants.

4.2 Results

Table 4 shows that fine-tuning LMs with GE-based
query-document triplets, whether used alone or
combined with preliminary fine-tuning at the doc-
ument level, outperforms 9 out of 11 text en-
coder baselines. The best model performance was
achieved by fine-tuning mBERT with a two-stage
fine-tuning process (first on document-level similar-
ity and then on query-document level), which out-
performed the state-of-the-art mES-large by 14.3%
(7.96 points) and the strongest baseline, M3, by
1.5% (0.92 points). Despite having three times
fewer parameters and a smaller embedding dimen-
sion, fine-tuned mBERT surpassed these baselines.

The analysis of the bi-encoder dataset reveals a
positive effect from using domain-related query-
document pairs from MS MARCO (DR-MM + SID),
particularly when combined with in-domain data
from GE-based query-document pairs (GET). The

M aAI/bge-m3 = daGBERT/doc/bi-encoder =] XLM-RoBERTa/doc/bi-encoder
5] GBERT/doc/bi-encoder m] mGBERT/doc/bi-encoder
0.7898

0.7498

0.7421
0.7192

0.6273 0.6687 05719 05456
M - 0.6304

o.5018
0.5765-3932

I

Al B D | E

0.5453 0-5058

Foo[e]

Figure 3: The best-performing fine-tuned mGBERT
outperformed the strongest baseline M3 (Chen et al.,
2024) in almost all plants, the data from which was used
for the fine-tuning (i.e., A, C, D, G).

results show that fine-tuning GBERT using DR-MM
+ SIDis 4% (2.27 points) more efficient than using
the full German MS MARCO MM, while requiring
significantly less training data (1.4%). Although
DR-MM + SID includes synthetic domain data, its
contribution is minimal, as it makes up just 1.8% of
the dataset. The greatest performance improvement
comes from the GE-based query-document pairs,
which accounted for only 5.6% of the DR-MM +
SID + GET bi-encoder dataset, as this component
improved model performance across all evaluated
models by 1.28-6.35% compared to training on
DR-MM + SID alone.

1477


https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
https://huggingface.co/intfloat/multilingual-e5-base
https://huggingface.co/intfloat/multilingual-e5-large
https://huggingface.co/ibm-granite/granite-embedding-107m-multilingual
https://platform.openai.com/docs/models/text-embedding-3-large
https://huggingface.co/Alibaba-NLP/gte-multilingual-base
https://huggingface.co/nomic-ai/nomic-embed-text-v2-moe
https://huggingface.co/ibm-granite/granite-embedding-278m-multilingual
https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1
https://huggingface.co/BAAI/bge-m3

The two-stage fine-tuning process resulted in
a systematic performance improvement for three
out of four fine-tuned LMs, while the solely bi-
encoder fine-tuning improved performance in all
LMs compared to the baselines. Our experiments
show that using a continually pretrained daGBERT
is only beneficial when the domain-specific com-
ponent is not available in the bi-encoder training
data, and the domain-specific knowledge can be
compensated for from the domain-pretrained LM.
In contrast to the high performance improvement
of mBERT, our two-stage fine-tuning approach did
not yield significant improvements for GBERT and
XLM-RoBERTa. Further experiments with dataset
configuration, i.e., composition and size, as well as
fine-tuning parameters, are required to investigate
the potential performance improvement.

When breaking down the overall results at the
plant level, we see that mBERT outperforms our
strongest baseline, M3, in three out of four plants,
for which the data was used for triplet generation
(Figure 3). Plant G has the largest number of graph
edges in KG after linking prediction; therefore,
potentially more triplets should have been used
in each of the fine-tuning stages to see a positive
effect on this plant from the semantic relations en-
coded in these connections. The fine-tuned models
systematically outperform the four plants from the
datasets, but further investigation is necessary to re-
fine the methodology and achieve generalizability
and optimal performance for each plant.

4.3 Discussion

The results showed that leveraging a heterogeneous
domain KG that combines signals from text logs
and FLs significantly enhances document repre-
sentations for the process industry domain. Our re-
sults indicate that we have successfully adapted and
modified the SciNCL methodology from a domain
of scientific publications to the process industry
domain. The largest impact was observed in using
the document triplets collected using GE to cre-
ate positive and negative query-document pairs for
the bi-encoder fine-tuning. These findings suggest
that SciNCL could be further expanded into more
heterogeneous graphs with limited text data avail-
ability. Furthermore, we demonstrate that triplets
obtained through kNN in the GE vector space can
be used indirectly as a source of synthetic data
for downstream tasks. The current experiments fo-
cused solely on creating synthetic data to train a
bi-encoder; however, the methodology can be fur-

ther explored to generate data for auxiliary tasks,
such as question answering, document ranking, and
text classification.

In future work, we plan to expand our KG
by incorporating named entity recognition (NER),
which will enable us to enrich the graph with addi-
tional entities and relationship types, such as chem-
icals and products. We also aim to optimize the
methodology by initializing the GE model with
high-performing text encoders designed for seman-
tic text similarity tasks, such as M3 (Chen et al.,
2024). Additionally, we will evaluate the impact of
various parameters, including the number of posi-
tive and negative documents retrieved using GEs,
and explore methods to ensure the quality of the
generated triplets. We also plan to assess the effect
of using data from other plants as triplet sources,
optimize model training parameters, and explore
other strategies for the negative selection in the
query-document triplets. Finally, we will focus on
improving the domain dataset for bi-encoder fine-
tuning by enhancing the domain-specificity and
quality of the query-document pairs derived from
both publicly available and proprietary sources.
Our further analysis will include a detailed inves-
tigation of how the methodology impacts perfor-
mance at the plant level, with the goal of optimizing
results for each individual plant.

5 Conclusion

This work explores the application of the SciNCL
methodology for domain adaptation of LMs in
the process industry, focusing on fine-tuning them
using triplets derived from the vector representa-
tion of the domain knowledge graph. Our experi-
ments show that the query-document triplets gener-
ated from the GE play a crucial role in providing
domain-specific knowledge during the fine-tuning
of the four LMs we evaluated.

Limitations

The limitations of this study primarily stem from
the restricted scope of the data and methodology.
Our experiments were conducted using graph em-
bedding models built from data from only four
plants and evaluated on just seven plants. The
limited dataset size may affect the generalizability
of the results, and the performance observed here
may not necessarily hold for larger, more diverse
datasets with a different composition of data from
plants in the process industry. Variations of training
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datasets for both document-level fine-tuning and as
a bi-encoder can additionally impact the results.

Furthermore, we did not conduct exhaustive pa-
rameter tuning of the graph embedding model,
triplet selection, or a detailed investigation of the
parameters adjusted to fine-tune specific models,
which could potentially impact the performance
and robustness of the results. Further investigation
is needed to assess the scalability and generalizabil-
ity of the approach across various conditions, in-
cluding the connectivity of knowledge graphs, the
quality of text logs, the methods used in the prepro-
cessing step for link prediction, and the proportion
of subdomains used in training and evaluation (e.g.,
pharmaceuticals and chemistry).

Additionally, the adaptation of the SciNCL
methodology may not produce the same positive
trends or results if applied to other industries, do-
mains, or languages. Hence, the approach requires
extended investigation when applied to a specific
linguistic and domain context. Moreover, our re-
sults may not be fully reproducible due to the use of
proprietary data, which limits external validation.

Finally, the methodology described in this paper
was not compared to other methods of utilizing
KGs for language model fine-tuning or enhance-
ment. A comprehensive comparison was beyond
the scope of this research; therefore, we do not rule
out the possibility that other existing methods using
graph embeddings may outperform SciNCL.
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A Implementation details

A.1 Knowledge graph

We build a domain KG by using all FL nodes and
only those text log nodes that contain at least one

attached FL. Although S20RC used for SciNLC
contained titles and abstracts with more than 100
characters (Lo et al., 2020), removing all short text
logs (<100 chars) from the domain KG for the pro-
cess industry would filter out almost half of the
available documents. Table 5 presents a statistical
analysis of the process industry graphs, revealing
that the number of direct links between text logs
is low (see the related_to edge type) and empha-
sizing the importance of indirectly connecting text
logs through shared FLs. Since every text log in
the graph is linked to at least one FL, there is a
high number of reports_about edges, significantly
improving the overall connectivity of the graph.

Data analysis revealed that many FLs are ref-
erenced in text logs using domain-specific abbre-
viations (e.g., A11) but are not explicitly linked
as attributes (see Figure 1). This lack of direct
association limits our implementation’s ability to
construct a comprehensive domain KG. To address
this problem, we implement two domain-specific
custom link prediction models to (1) reconstruct the
reports_about and related_to connections within
the domain KG, (2) expand the context of domain-
specific abbreviations. In the context expansion,
we replace the abbreviations such as "A11" with a
combination of the abbreviation and its description
"A11 Pumpe", which was obtained from the linked
FL node. As shown in Table 5, this approach sig-
nificantly increases the number of graph edges and
expands the number of text log nodes, i.e., text logs
that previously lacked associated FLs are now inte-
grated into the graph, enhancing its overall struc-
ture and connectivity. Moreover, we apply a record
linking model (Zhukova et al., 2025¢) to restore
connectivity between the text logs, i.e., when two
records reported about a problem and a solution to
it, but were not explicitly linked in a database as
related. Table 5 shows that the KG after the link
prediction includes the largest number of text log
nodes from the available raw data.

A.2 Graph embeddings

Following SciNCL, we employ PyTorch BigGraph
(PBG) (Lerer et al., 2019) for training graph embed-
ding models. PBG supports graphs with multiple
node and edge types, making it suitable for the het-
erogeneous process industry graph introduced in
this work. PBG processes the input graph as a list
of edges, where each edge is defined by a source
node, a target node, and an edge type. It generates
embeddings for each node, ensuring that connected
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KG stage Parameters A C D G

node candidates 24K 229K 119K 147K

Raw data FLs 0.5K 62K 37K 35K

text logs 23K 167K 82K 112K

nodes 22K 140K 114K 125K

FLs 0.5K 62K 37K 35K

. text logs 21.5K 78K 77K 90K
lvl‘r’l‘lih;;‘d TedgesT T T T T T 20K T Ti52K TIT9K T TIB8K

. related_to 0.1K 1K 1K 0.1K

reports_about  21.5K 89K 81K 102K

part_of 0.5K 62K 37K 35K

nodes 22K 172K 117K 132K

FLs 0.5K 62K 37K 35K

. text logs 21.5K 110K 80K 96K
l’;fe‘;clt‘i';ﬁ Tdges T T T T 245K~ 33K T746K ~ T8T5K

related_to 2.5K 31K 86K 1602K

reports_about ~ 21.5K 240K 123K 178K

part_of 0.5K 62K 37K 35K

Table 5: Overview of the plant datasets, which consist
of two types of data: text logs of daily operations and
a function location tree that describes the hierarchical
structure of the plant machinery. To enhance data con-
nectivity, link prediction was performed to reconstruct
the related_to and reports_about links.

Init. with
sent. LP MRR Hits@l Hits@10 AUC
embed.
no no 16.96 09.39 30.47 59.93
yes no 36.48 21.54 72.25 78.75
yes yes  47.80 33.91 7821 85.06

Table 6: Evaluation of graph embedding models. Link
prediction (LP) performance of PyTorch BigGraph em-
beddings trained on the process industry graphs for plant
D (1) with and without node initialization with sentence
embedding, and (2) before and after data enrichment.

nodes are positioned closer together in the vector
space while unconnected nodes are pushed farther
apart. This design ensures that entities with similar
neighbor distributions are located near one another
in the embedding space. In addition to handling het-
erogeneous graphs, PBG is highly scalable, making
it well-suited to accommodate the growing volume
of text logs in the future.

Our methodology primarily adopts the training
parameters for the graph embedding model de-
scribed in SciNCL, while experimenting with vari-
ations in the number of training epochs and us-
ing sentence embedding initialization. Some FLs
have similar descriptions, such as reactors of dif-
ferent types. Initializing the graph network with
semantically meaningful vectors can enhance the
learning of structural connections between nodes.
For example, by initializing FL. nodes using their
descriptions, similar FL types (e.g., pumps) are nat-
urally positioned closer together in the embedding
space. During training, text logs referencing dif-
ferent pumps are more likely to be mapped to sim-
ilar regions within the embedding space, as their

corresponding FLs were initially placed near each
other. Consequently, text logs that do not share the
same FLs but originate from semantically similar
contexts can still achieve similar node embeddings.
Moreover, if text logs contain terms similar to those
in the descriptions of FLs, such nodes will also be
positioned closely in the vector space. We antici-
pate that integrating domain-specific relationships
with semantic similarity will help mitigate chal-
lenges such as low graph connectivity and poor
text quality, while improving the sampling of both
similar and dissimilar text documents.

The node embeddings for the graph model
are initialized by vectorizing the text logs
and functional location (FL) descriptions us-
ing sentence transformer embeddings from
PM-AI/bi-encoder_msmarco_bert-base_german. Ta-
ble 6 presents the link prediction performance for
plant D, evaluated using metrics such as MRR,
Hits@1, Hits@10, and AUC. For these experi-
ments, 99% of the data was used for training, while
the remaining 1% (1193 edges) was reserved for
testing”. The results demonstrate that initializing
nodes with text embeddings significantly enhances
the performance of link prediction. These findings
highlight the crucial role of initializing node em-
beddings with text embeddings in effectively train-
ing graph embedding models within the process
industry.

A.3 Triplet sampling

For each query document, we sampled two triplets,
consisting of one easy negative and one hard nega-
tive. This provides a diverse similarity signal while
ensuring broader document coverage, even within
smaller data subsets.

To identify text logs with a similar graph context
— those associated with similar text logs and func-
tional locations — an approximate nearest neigh-
bor (ANN) search was conducted in the text log
embedding space. FAISS (Johnson et al., 2021)
was employed to construct a flat index of text logs,
keyed by their node embeddings. To ensure consis-
tency in distance measurement, embeddings were
L2-normalized, and cosine similarity was used as
the distance metric by computing the inner product
of the embeddings. After building and populating
the FAISS index with text log embeddings, queries
in the form of text log embeddings d% were used

*Metric definitions are available in the PBG doc-

umentation: https://torchbiggraph.readthedocs.io/
en/latest/evaluation.html
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to retrieve the k-nearest neighbors based on their
cosine distance in the embedding space.

Initial experiments revealed that including overly
short text sequences during training significantly
degrades language model performance, leading to
the introduction of a minimum text length criterion.
To preserve as many nodes and edges as possible
for graph model training, this criterion was applied
after training the graph embedding model but be-
fore triplet sampling. By filtering text logs shorter
than 100 characters (approximately 15-25 words)
only before the ANN search, the approach ensures
robust text embeddings, enhances contextual infor-
mation, and improves node embedding quality in
graphs with low edge density. Table 5 shows the
number of generated triplets per plant.

Positive samples d* should be semantically simi-
lar to the query document d%, but not overly similar,
to avoid gradient collapse. Additionally, positives
should be sampled from a comparable distance to
the query embedding d€ to ensure balanced train-
ing (Wang and Isola, 2020). To achieve this, we
follow SciNCL that selects positive (similar) doc-
uments by first defining the distance to the query
embedding d€ using kT and then sampling the ¢t
nearest neighbors within a range (k™ — ¢, k™), as
illustrated by the green band in Figure 2.

Negative samples d— should be semantically dis-
similar from the query document d?, meaning
they are sampled from a distant region relative
to the query embedding d®. Sampling hard-to-
learn negatives, i.e., those close to potential posi-
tives, has been shown to enhance contrastive learn-
ing (Bucher et al., 2016; Wu et al., 2017). How-
ever, when negative samples overlap with positive
ones, it can introduce noise into the learning signal
(Saunshi et al., 2019). To prevent such collisions,
SciNCL employs a sample-induced margin defined
by the k parameter. This margin ensures the sam-
pling of hard negatives (represented by the red band
in Figure 2) without overlapping with the sampled
positives (green band). To provide a robust simi-
larity signal for contrastive learning, SciNCL rec-
ommends using a mix of hard and easy negatives,
where easy negatives are embeddings located fur-
ther from the query embedding than hard negatives
(outside the red band).

Sampling strategies differ between positive and
types of negative samples, i.e., similar to SciNCL.
We use kNN sampling for positives and hard neg-
atives, and filtered random sampling for easy neg-
atives. kNN sampling is conducted as k-nearest

neighbors search kNN (fyem(d?),D) given a
graph embedding model (e.g., PyTorch BigGraph
(Lerer et al., 2019)) denoted as fger,, document
node embeddings D, and a search index (e.g.,
FAISS (Johnson et al., 2021)). From the neigh-
bors around the query document d<, ¢ samples
are selected using the interval (k — ¢, k|, where
N = {ny,n9,ns,...} represents the neighbors,
i.e., n; is the ¢-th nearest neighbor in the graph em-
bedding space. For example, if ¢ = 3 and k = 10,
the selected samples would be the three closest
neighbors within the specified range: ng, ng, and
ni1g. Filtered random sampling utilizes random
sampling, i.e., samples ¢’ documents from the cor-
pus without replacement, but excludes the docu-
ments retrieved by kNN, i.e., neighbors within the
largest k.

Due to the low number of direct connections
between text logs, we select the closest £ = 2
neighbors as positive samples. A small k™ ensures
that text logs that are positioned close in the graph
embedding space, due to their direct links, are in-
cluded. A higher k£ value could risk skipping such
direct links. Similarly, k; ., was set to 50 to ensure
that the selected hard negatives were sufficiently
dissimilar, as the 50th neighbor is expected to fall
outside the direct neighborhood of the query log.

A.4 Domain-related MS MARCO Dataset

We created a domain-related version of MS
MARCO by running the document collection
through our binary classifier, which identifies
whether a document is domain-related or not. This
classifier is a fine-tuned SciBERT model (Beltagy
et al., 2019) trained on an 80K dataset that com-
bines fields of study (FoS) data and our in-domain
data. The train dataset was split so that 50% con-
sisted of domain-related texts, selected by the la-
bels in FoS that correspond to our domain, and in-
domain texts, thereby forming the true labels, while
the other 50% was sampled from various areas of
FoS. We classified the English documents and used
the document IDs to extract the German version
of the same texts. A document was considered
domain-related if a confidence in the positive label
was larger than 0.9, and we collected the query-
document pairs where the documents were labeled
as domain-related. The resulting dataset contained
approximately 2.27M training pairs, where 132K
pairs were positive.
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