FLOW-BENCH: Towards Conversational Generation of Enterprise
Workflows

Evelyn Duesterwald, Siyu Huo, Vatche Isahagian, K.R. Jayaram, Ritesh Kumar,
Vinod Muthusamy, Punleuk Oum, Debashish Saha, Gegi Thomas, Praveen Venkateswaran

IBM Research Al

duester @us.ibm.com, siyu.huo@ibm.com,vatchei @ibm.com, jayaramkr @us.ibm.com, kumar.ritesh@ibm.com

vmuthus @us.ibm.com, debashish.sahal @ibm.com, gegi@us.ibm.com, Praveen. Venkateswaran @ibm.com

Abstract

Large Language Models (LLMs) can be used to
convert natural language (NL) instructions into
structured business process automation (BPA)
process artifacts. This paper contributes (i)
FLOW-BENCH, a high quality dataset of paired
NL instructions and business process defini-
tions to evaluate NL-based BPA tools, and sup-
port research in this area, and (ii) FLOW-GEN,
our approach to utilize LLMs to translate NL
into an intermediate Python representation that
facilitates final conversion into widely adopted
business process definition languages, such as
BPMN and DMN. We bootstrap FLOW-BENCH
by demonstrating how it can be used to evalu-
ate the components of FLOW-GEN across eight
LLMs. We hope that FLOW-GEN and FLOW-
BENCH catalyze further research in BPA.

1 Introduction

With many enterprises relying on BPA to stan-
dardize their work, enhance their operational ef-
ficiency and reduce human error, BPA tools grew
to a $11.84B industry and are projected to grow
to $26B in 2028 (Marketwatch, 2022). In con-
temporary BPA tools, users use visual drag-and-
drop interfaces and reusable templates to construct
workflows, decision models, and document pro-
cess logic, adhering to standard notations such as
BPMN (Grosskopf et al., 2009; Chinosi and Trom-
betta, 2012) and DMN (Biard et al., 2015).

However, even sophisticated low-code BPA plat-
forms frequently necessitate intervention from soft-
ware engineers to ensure robustness, handle intri-
cate integrations, and implement customized logic
not covered by generic templates. The complexity
inherent in configuring detailed integration tasks
and writing low-level transformation logic remains
daunting for novice programmers and tedious even
for seasoned developers.

Recent efforts have explored leveraging natu-
ral language interfaces to simplify BPA author-

ing. LLMs have demonstrated substantial potential
for automating code generation tasks by translat-
ing high-level user intents into executable artifacts.
However, in our experience, even state-of-the-art
LLMs are not effective at generating BPA work-
flows, both due to the lack of BPMN training data
and the extensive boilerplate notations that need to
be generated. Section A.1 showcases a flow and its
corresponding BPMN code.

To the best of our knowledge, there is a lack
of well-established benchmarks to evaluate NL-
driven workflow generation. With this paper, we
contribute FLOW-BENCH, a high quality dataset
designed specifically to support research in natu-
ral language-driven business process automation,
that consists of realistic utterances and their corre-
sponding BPMN representations'. The availability
of this dataset is intended to catalyze model im-
provements, benchmarking, and development of
NLP techniques tailored to the BPA domain.

We also contribute FLOW-GEN, an approach
that leverages LLMs to first translate natural lan-
guage into an intermediate representation (IR) with
Python syntax to precisely capture the logic of the
intended business process. The Python IR provides
several advantages. It takes advantage of the in-
nate Python code generation capabilities of LLMs
and it bridges the gap between unstructured natural
language and formalized business process defini-
tion languages, facilitating easier verification and
refinement of the generated logic. Subsequently,
our approach translates this IR into specific tar-
get process definition languages, such as BPMN-
compliant XML or DMN decision tables, ensur-
ing compatibility with existing BPA solutions and
tools. Further, the use of an IR makes it easy to
catch errors early and to support multiple target
BPA languages. We include the Python IR in the

'FLOW-BENCH dataset can be accessed at

https://github.com/IBM/Flow-Bench

1426

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 1426-1436
November 4-9, 2025 ©2025 Association for Computational Linguistics

FLOW-BENCH dataset, along with the BPMN.

2 FLOW-BENCH dataset

Workflows in FLOW-BENCH consist of sequences
of API invocations, including conditionals and
loops, similar to those found in commercial work-
flow automation platforms like IBM App Con-
nect (IBM App Connect, 2025) and Zapier (Zapier
Apps , 2025). In addition to API calls, workflows
may incorporate manual interventions, termed user
tasks. These user tasks typically involve steps
within a business process that require human ac-
tion, such as managerial approvals, and thus, do
not have corresponding APIs.

To construct FLOW-BENCH we initially sourced
realistic business workflows from pre-existing tem-
plates provided by commercial workflow automa-
tion platforms (specifically IBM App Connect and
Zapier). These templates cover common enterprise
use cases, including support ticket creation, task
management, and marketing campaign automation.

We carried out three high level steps to arrive at
the final FLOW-BENCH dataset: (1) quality control,
(2) manual labeling, and (3) data augmentation.

Quality Control: First, we collected and man-
ually examined workflows sourced from the au-
tomation platforms. We discarded or truncated
workflows that were overly complex with multiple
levels of nested conditions, in order to start with rel-
atively small workflows that a user can reasonably
describe in a few sentences. We removed event
triggers from workflows and discarded workflows
that consisted of only a single API call. We also
discarded workflows that involved APIs without
publicly available OpenAPI spec.

Manual Labeling: We manually added or cor-
rected user utterance to workflows. In some cases,
we rephrased existing workflow descriptions to re-
flect an active user command to constructing the
workflow as opposed to a passive description of the
workflow. The workflows often only had a propri-
etary representation in the respective automation
tool, so we manually crafted Python IR snippets
and generated the corresponding BPMN specifica-
tion. We also retrieved the OpenAPI specs for all
activities in the workflows and established a com-
mon naming convention for API-based worfklow
activities. In addition, we added clear descriptions
for each API, tweaking the descriptions in the Ope-
nAPI specs (if available).

Data Augmentation: Once we had a set of high
quality samples, we expanded the dataset in two
ways. First we incorporated user tasks by either
adding a new activity in the workflow, or by re-
moving the corresponding API from the catalog.
Then we added samples to reflect how users may
incrementally build a workflow, by adding, delet-
ing, or replacing activities in the workflow. For
each new sample, we defined the workflow before
and after the edit, and the corresponding user ut-
terance. To mimic actual software development
the incremental edits may apply anywhere in the
current workflow, not always editing left to right.

The final complete workflows in FLOW-BENCH
are generated through incremental build steps cate-
gorized as add, delete, or replace.

Build steps in FLOW-BENCH are kept as self-
contained tests by including three elements: (1)
Prior Sequence, representing the current state of
the workflow before applying changes?; (2) Utter-
ance, describing the modification to be performed
in natural language (e.g, "Retrieve all issues from
the Jira board."); and (3) Expected Sequence, indi-
cating the resulting workflow after implementing
the command specified by the utterance. Note that
a single utterance can express a sequence of multi-
ple activities, establishing a one-to-many mapping
between utterances and activities. For instance,
an utterance like "Create a GitHub issue and then
notify the team on Slack" maps to two distinct activ-
ities (GitHub issue creation and Slack notification)
with an explicit sequential ordering.

Build step type Tests Avgp.:cﬁPIs Ag)g(b:ﬁ:dls
linear:generate 34 - 2.26
linear:add 11 2.27 3.45
linear:delete 5 32 2.2
linear:replace 6 35 3.5
cond:generate 19 - 2.94
cond:add 10 24 35
cond:delete 9 3.88 2.33
cond:replace 7 3.0 3.0
Total 101 3.04 2.89

Table 1: FLOW-BENCH composition of 101 incremental
build tests with linear and conditional (cond) prior and ex-
pected sequences

FLOW-BENCH comprises 101 high-quality, man-
ually curated incremental build step tests structured
according to this methodology. Figure 1 illustrates

’This may be empty in the initial generation step.

1427

_metadata:
tags:
- conditional_update
uid: 97
input:
utterance: |-
Instead of retrieving all the issues
just create a new issue in each repo
prior_sequence:
- -
repositories = GitHub_Repository__3_0_0__retrievewithwhere_Repository()
for repo in repositories:
new_issue = GitHub_Issue__3_0_0__retrievewithwhere_Issue()
prior_context: []
bpmn:
$ref: "context/uid_97_context.bpmn”
expected_output:
sequence:
- |_
repositories = GitHub_Repository__3_0_0__retrievewithwhere_Repository()
for repo in repositories:
updated_issue = GitHub_Issue__3_0_0__create_Issue()
bpmn :
$ref: "output/uid_97_output.bpmn”

Figure 1: Example of FLOW-BENCH test case

an example test case from FLOW-BENCH. Each
build step is uniquely identified and provides a self-
contained test scenario, including explicit BPMN
representations of both the Prior Sequence and
Expected Sequence. Additionally, each test is anno-
tated with metadata describing the build step type
(add, delete, replace), the control flow structure
(1inear or conditional, where conditional en-
compasses both if-statements and loops), and the in-
clusion of user task steps (denoted by user_task).
The BPMN representation of Figure 1 is shown in
A2.

Table 1 shows the break-down of the FLOW-
BENCH by build step type along with the average
test size in terms of the number of APIs included.
Conditional tests include between 1 and 4 control
flow statements with an average and maximum
nesting depths of 1.64 and 4, respectively.

To ensure compact and clear representations
of prior and expected workflows, FLOW-BENCH
adopts a constrained subset of Python syntax. This
subset includes assignment statements, conditional
statements (if-statements), loops (for and while),
and function calls. These representations are ex-
plicitly provided within the Prior Sequence and
Expected Sequence elements of each test.

Generating accurate pythonic function calls in
a FLOW-BENCH test by an LLM requires knowl-
edge of existing APIs and their descriptions. Thus,
we also provide a separate file containing a cat-
alog of APIs along with their descriptions. The
catalog used in our experiments contains 546 API
endpoints from diverse enterprise applications in-
cluding GitHub, Jira, Slack, Salesforce, and other
common business automation platforms. An exam-
ple of an API and its description is shown below.

{

"id": "Jira_Issue__2_0_0__retrievewithwhere_Issue”,
"description”: "Retrieve all Jira issues”

}

3 FLOW-GEN

This section presents FLOW-GEN, an approach that
applies pre-trained LLMs to solve the workflow
generation tasks in the FLOW-BENCH dataset.

3.1 Python Intermediate Representation

Our initial observations suggest that while some
LLMs can generate BPMN directly, these mod-
els have not been extensively trained or evaluated
specifically on BPMN data. In contrast, many
pre-trained LLMs have been extensively trained
on Python code and have demonstrated signifi-
cant proficiency in generating Python scripts ac-
curately (Tong and Zhang, 2024).

Moreover, BPMN representations are inher-
ently verbose, which introduces complexity and
increases the likelihood of syntactic and semantic
errors when generated by LLMs. Longer BPMN
outputs also increase computational cost and slow
down generation, negatively impacting interactive
user experiences. To illustrate this, consider the
straightforward linear BPMN flow depicted in the
bottom left of Figure 2. Its BPMN representation
requires 3,151 characters, whereas the equivalent
logic can be succinctly expressed in only 148 char-
acters of Python code:

issue = GitHub_Issue__3_0_0__create_Issue()
pr = GitHub_Pullrequest__3_0_0__create_Pullrequest()

comment = GitHub_Comment__3_0_0__create_Comment()

In FLOW-BENCH, the BPMN representation is
on average 25 times longer than the Python equiva-
lent. While there are BPMN-specific concepts such
as swimlanes and roles that do not translate directly
into Python, these are out of scope of the FLOW-
BENCH dataset. FLOW-GEN also accommodates
the concept of user tasks—activities performed by
humans that are not linked to predefined workflows
or APIs. These tasks represent ad-hoc activities
specified by the user.

3.2 Initial Flow Generation

Consider the scenario where a user wants to create
a new workflow based solely on an NL description.
This initial flow generation process, outlined in the
upper part of Figure 2, involves several steps.
Initially, the user’s NL utterance is analyzed to
retrieve a relevant subset of predefined activities.
These activities typically correspond to APIs, deci-
sion rules, or other processes from a comprehensive

1428

Utterance (e.g., “As the first step, create a jira issue”)

User 3 1

Retrievers

Instantiated

(This is the final output when there is no input BPMN)

Generated
Python code

Generated BPMN

_y Activity Prom pt
retriever |

_, Demo generator

m retriever

pYi

pYi
Input BPMN

(BPMN;)

Input Python code (py;)

Prompt — 77 (pyg) [
LLM Py2BPMN

| Ty |

PYg
Updated BPMN

Process *'—> BPMN2Py

2 Diff2BPMN

]

Gt Gitub - Gt
Cresto hsue Cresa PR C
Comment
b 1

BPMN,;

(This is the final output when the input BPMN is used)

Figure 2: FLOW-GEN overview. The top part (in black) depicts the steps to generate a new workflow based on a user utterance.
The bottom part (in blue) are the additional steps to update an existing workflow based on an utterance.

activity catalog. Including this subset in the LLM
prompt is essential, especially when the entire cat-
alog cannot fit within the LLM’s context window.
The different approaches to retrieving relevant ac-
tivities are detailed in Section 3.4.

Concurrently, the utterance is used to select
the most relevant demonstrations from the dataset.
Each demonstration comprises an NL utterance
paired with a Python code snippet. These exam-
ples, provided as few-shot demonstrations in the
LLM prompt, guide the LLM to generate accurate
Python code snippets, illustrating correct invoca-
tion patterns of predefined activities as Python func-
tions. Section 3.5 further elaborates on the methods
evaluated for demonstration retrieval.

Next, an LLM generates a Python code snippet
based on a dynamically assembled prompt that in-
cludes the user’s NL utterance, retrieved activity
descriptions, and selected few-shot demonstrations.
This generated snippet captures the workflow de-
scribed by the user, incorporating user tasks where
necessary for activities not in the catalog.

Finally, the deterministic PY2BPMN module
converts the generated Python code into standard
BPMN, completing the translation from NL to exe-
cutable workflow definition.

3.3 Incremental Flow Updates

Let us now consider the case where there is already
an existing workflow, and the user issues an ut-
terance to incrementally edit the workflow. The
bottom portion of Figure 2 show the additional
steps in FLOW-GEN to support this case.

First, the original BPMN workflow (BPM N;)
is transformed into a Python code snippet (py;).
This is done using deterministic code in the
BPMN2PY module.

The code py; is used as additional information
for the retrievers. For example, the activity retriever

should select not only activities mentioned in the
utterance, but also those referenced in the input
workflow. Similarly, if py, contains conditional or
looping constructs, the demonstration retriever will
more likely select few-shot samples that include
such constructs. The code snippet py, is coupled
with the user query to serve as input to the LLM
code generation step.

The DIFF2BPMN module computes the differ-
ence between the input (py;) and generated (py,)
Python and internally generates a set of update op-
erations. These update operations are applied to
the input workflow (BPM N ;) to arrive at the final
updated BPMN workflow.

3.4 Activity Retrievers

Given the user’s NL utterance, the generated code
is expected to reference activities from the pro-
vided catalog (grounding) and avoid hallucinations.
However, as catalogs may contain thousands of ac-
tivities, it becomes infeasible to include the entire
catalog within the limited context window of the
LLM. Thus we need to retrieve and include only
the top-k most relevant subset. We outline three
types of activity retrievers.

ED_Retriever: Compares the user utterance
against the description of each activity from the
catalog to quantify how dissimilar (or similar) the
two are based on edit distance. Given that edit dis-
tance computation only compares the raw strings
without incorporating any semantic meaning, the
performance of this retriever is limited in scope.

Embeddings_Retriever: A Bi-Encoder based
retrieval that generates the embedding vectors for
the user utterance and all the activities, followed
by computing the cosine similarity between each
pair. Embeddings capture the semantic meaning
and thus, boost the performance significantly as
compared to the Edit Distance based approaches.

1429

We used the all-MiniLM-L6-v2 model to generate
the embeddings and ChromaDB to store, index,
and retrieve top-K activities. Since the catalog is
relatively stable, the embeddings can be generated
once and stored to improve runtime latency.

Activities_Search: This retriever works like Em-
beddings_Retriever, but we use a custom model
fine-tuned to generate better embeddings for the
activity retrieval task.

3.5 Demonstration Retrievers

Demonstrations refer to the few shot in-context
examples that are incorporated in the prompt. We
explored two retrieval approaches.

TopKRetriever: A Bi-Encoder based retrieval
similar to Embeddings_Retriever.

CE_Retriever: A cross-encoder based retrieval,
where two strings are passed simultaneously to
the model that outputs similarity score ranging be-
tween 0 and 1. Cross-encoder based retrieval is
more accurate since the model is trained on a large
dataset to generate the similarity score. Since the
user utterance is only available at runtime, the sim-
ilarity computation against the demos can only be
performed at runtime which introduces latency. To
reduce the latency, we shortlist the demonstration
catalog based on the provided context before pass-
ing it to cross-encoder. For example, if the user is
updating an existing workflow, only the demos con-
taining a prior sequence are selected. We use the
stsb-distilroberta-base model as the cross-encoder.

4 Evaluation

In this section, we evaluate FLOW-GEN on the
FLOW-BENCH dataset. All experiments evaluate
the generation of Python intermediate represen-
tation (IR) from natural language utterances, fol-
lowed by deterministic conversion to BPMN. The
IR-based approach is central to our methodology,
and all reported metrics measure the quality of the
generated Python IR. We begin by providing an
evaluation of the retrievers. All experiments were
conducted over the 101 FLOW-BENCH test cases.

4.1 Activity Retrievers

Table 2 summarizes the results of the three activity
retrievers: ED_Retriever, Embeddings_Retriever,
and Activities_Search. TopK refers to the number
of retrieved activities. Activities Recall is com-
puted based on the overlap between the retrieved
activities and those in the ground truth. Exact

Retriever TopK Activities Recall Exact Match Hallucination Rate
10 0.7327 0.495 0.0469
ED_Retriever 50 0.7913 0.604 0.0621
100 0.8086 0.6139 0.0586
Embed- 10 0.9307 0.6733 0.0207
dings_Retriever 50 0.9794 0.7525 0.0205
- 100 0.9851 0.7129 0.0236
10 0.9703 0.6931 0.0069
Activities_Search 50 0.9926 0.7723 0.0102
100 0.9926 0.7525 0.0102

Table 2: Evaluation of different retrievers with different
TopK.

Match highlights the accuracy of the generated IR
to the ground truth syntactically and semantically.
Hallucination Rate computes the fraction of activ-
ities in the generated workflows that are not in the
catalog.

Table 2 shows that Activities_Search with
TopK=50 has the best recall and best exact match
score with the least hallucination rate, followed by
Embeddings_Retriever. This validates that embed-
ding similarity is more effective than edit distance.
We also see that larger TopK improves recall but
reduces the exact match since it increases LLM’s
probability of selecting the incorrect Activity.

Model DemoSelector TopK Exact Match
2 0.5842
0.5941
0.6734
0.6634
0.5842
0.6436
0.6931
0.6733
0.7029
0.7131
0.7228
0.7228
0.703
0.7228
0.7624
0.7624

TopKRetriever

Granite-20b-code-instruct-v2

CE_Retriever

TopKRetriever

codellama-34b-instruct-hf

CE_Retriever

N U W RN WY W NN B W

Table 3: Evaluation of demonstration retrievers with
different number of demos (TopK) while using Activi-
ties_Search with TopK=50 for Activities selection.

4.2 Demonstration Retriever

Table 3 compares TopKRetriever and
CE_Retriever for different values of TopK
using Granite-20b-code-instruct-v2 and codellama-
34b-instruct-hf models. TopK here refers to the
number of demonstrations not activities.

The cross-encoder based retriever boosts the ex-
act match by 4 points irrespective of model choice.
Increasing the number of demonstrations retrieved
beyond five degrades the overall performance. For
the remainder of these experiments we consider
retrieving five demonstrations using CE_Retriever.

1430

Model Activities Domain | Exact Match | Syntax F1
mixtral-8x7b-instruct-v01 ‘c“m‘i‘:“‘dg'[:m 8:22 g:g;
granite-8b-code-instruct i:?;)(i(s)-rggirlr:ain 823 832
Hama-3-1-8-instruct crosedomain | 019 036
Granite-20b-code-instruct-v2 icnr;i:-r:‘jgi[:ain 82; ggé
Codellama-34b-instruct-hf i:?;)(i(s)-rggirlr:ain 8;(2) 83‘?
ama-3-3-70b-instruct | R | O 071
Mistral-large icl:‘-d(?n:ain . ggg ggg
Hama-3-40Sb-instruct crovvdomsin | 035 030

Table 4: Evaluation of different models using Activi-
ties_Search (TopK=>50) as and CE_Retriever(TopK=5)
as Activities and demos retrievers respectively.

4.3 Opverall Evaluation

In Table 4, we provide an extensive evaluation of
FLOW-GENWe use Activities_Search as the activ-
ity retriever with TopK=50 and CE_Retriever as
the demonstration retriever with TopK=5. Table 4
compares the performance of several models vary-
ing in size. Recall that Exact Match highlights the
accuracy of the generated IR to the ground truth
syntactically and semantically, and Activities Re-
call is the overlap between the retrieved activities
and those in the ground truth. Syntax F1 evaluates
correctness of the generated IR code syntactically.

To evaluate the impact of interference between
the activities catalog and activities present in the
demonstrations we provide both cross-domain and
in-domain evaluations. By cross-domain we make
sure that demos are selected such that the activities
present in the ground-truth are not used by any
of the selected demonstrations and for in-domain,
activities present in ground-truth may be present in
selected demos.

Mistral-large model preformed best with exact
match of 0.83 and 0.79 for both in-domain and
cross-domain scenarios respectively. High Syntax
F1 highlights the ability of Mistral-large to generate
syntactically correct Python IRs. The llama-3-1-
8b-instruct small model performs the worst.

5 Deployment

Our approach has been deployed as a technical pre-
view (c.f. Figure 3) as part of the Unified Automa-
tion Builder (UAB) of IBM’s Watsonx Orchestrate
(2025). UAB provides an intuitive graphical inter-
face for the creation, evaluation and deployment of
automation flows. The UAB tooling is deployed
as a scalable cloud solution, with numerous con-
tainers deployed in a cluster. Our approach has
been to deploy FLOW-GEN as a first-class compo-

nent, in the cluster, enabling secure access to the
API catalog, as well as LLM inference capabilities
available from Watsonx.ai. Additionally, Watsonx
Assistant is leveraged as the user-facing interface,
where utterances are input by the user, and routed
to FLOW-GEN via internal proxy services which
facilitate the returning responses.

Figure 3: Deployment in WxO production environment

6 Related Work

Leveraging LLMs to automate the creation and
improvement of BPM flows is an active area of re-
search. AutoFlow (Li et al., 2024) is a framework
that automatically generates workflows enabling
agents to tackle complex tasks. It adopts the CoRE
language (Xu et al., 2024) for workflow represen-
tation, requiring fine-tuning of LLMs to master
the specific grammar and workflow generation pro-
tocols associated with CoRE. However, this fine-
tuning requirement limits flexibility, preventing the
integration of off-the-shelf LLMs.

Agentic Process Automation (APA) (Ye et al.,
2023) formulates workflow creation as a Python
code-generation task, where actions within the
workflows are represented by Python function calls
executed by specialized agents. Nonetheless, APA
does not ground the APIs explicitly within the busi-
ness process, creating potential for hallucination
where the LLM might reference incorrect or nonex-
istent APIs. Our research avoids hallucination by
embedding API grounding directly within the LLM
prompts, thus enabling the LLM to accurately inter-
pret, select, and utilize APIs as practical tools for
workflow generation (Liu et al., 2024; Yan et al.,
2024; Qin et al., 2023). This also facilitates the
LLM’s comprehension APIs, resulting in Python-
generated workflows that reflect the intended busi-
ness process control flow.

Recently, (Fan et al., 2024) also used a Pythonic
IR for workflow processes and collected grounded
APIs specifically for workflow construction. Their
workflow generation strategy depends on training

1431

specialized data annotators based on data collected,
which is constrained by the domains of data collec-
tion (Apple Shortcuts and RoutineHub), limiting its
broader applicability handling out-of-domain APIs
and queries. In contrast, our method leverages in-
context learning combined with API retrieval tech-
niques, both of which inherently support greater
flexibility and ease of generalization across diverse
domains.

Our dataset and approach have the unique com-
bination of reflecting incremental multi-turn work-
flow construction where users can switch between
updating the workflow manually and conversation-
ally, and supporting workflows with dynamically
constructed user tasks rather than being restricted
to a pre-defined set of activities.

More broadly, our work builds upon the sig-
nificant advances in LLM-based code genera-
tion (Zheng et al., 2023; Tong and Zhang, 2024),
particularly Python code generation where mod-
els have demonstrated strong capabilities. How-
ever, business process generation poses unique
challenges beyond general-purpose code genera-
tion: workflows must be grounded in specific API
catalogs to avoid hallucination, support incremen-
tal multi-turn construction, and ultimately translate
to standardized notations like BPMN for integra-
tion with existing enterprise tooling.

Direct quantitative comparison with the afore-
mentioned related work is challenging for several
reasons. First, many approaches such as Aut-
oFlow (Li et al., 2024) require domain-specific
fine-tuning of models, while our method uses off-
the-shelf LLMs with in-context learning, represent-
ing fundamentally different evaluation paradigms.
Second, existing work either targets specific do-
mains (e.g., Apple Shortcuts in (Fan et al., 2024))
or uses proprietary representations (e.g., CoRE
language) that are not directly comparable to our
BPMN-based workflows. Most importantly, none
of the related work addresses incremental, multi-
turn workflow updates—a core contribution of our
approach—making like-for-like baseline compar-
isons infeasible. Our evaluation instead focuses
on demonstrating the efficacy of our IR-based ap-
proach across multiple LL.Ms and retrieval strate-
gies on the FLOW-BENCH dataset.

7 Conclusions

In this paper, our contributions include both the
FLOW-BENCH dataset and the FLOW-GEN method-

ology, aiming to significantly lower barriers for
both expert and citizen developers to construct
automated business processes. FLOW-BENCH is
a novel dataset specifically curated to facilitate
research on automating workflows using LLMs.
FLOW-GEN is a technique that translates natural
language instructions into structured BPMN arti-
facts, leveraging an IR. By grounding workflow
construction in contextually relevant API documen-
tation and utilizing in-context learning, we address
common issues such as hallucination and limited
domain adaptability present in previous methods.
Future work includes expanding dataset coverage,
further refining API grounding methods, and evalu-
ating our proposed methods in more complex busi-
ness scenarios.

Limitations

While FLOW-GEN and FLOW-BENCH advance the
state of natural language-driven business process
automation, several limitations warrant discussion.

Intermediate Representation Expressiveness:
Our Python-based IR deliberately focuses on cap-
turing core BPMN control flow and data flow con-
structs (sequences, conditionals, loops, and API
invocations). However, BPMN includes domain-
specific concepts such as swimlanes, roles, and
message flows that do not translate directly into our
IR. This is a conscious design trade-off: the IR en-
ables compact representation and leverages LLMs’
strong Python generation capabilities, but sacrifices
some BPMN expressiveness. Importantly, our solu-
tion is designed to augment existing BPMN editors
rather than replace them. Users can leverage FLOW-
GEN to rapidly generate the core workflow logic,
then use traditional BPMN tooling to configure ad-
ditional attributes like swimlanes, roles, and visual
layout. This hybrid approach balances automation
with the flexibility needed for enterprise-grade pro-
cess modeling.

Hallucination and Activity Grounding: De-
spite our activity retrieval mechanisms, LLMs may
occasionally generate hallucinated activity names
not present in the catalog. We address this chal-
lenge by modeling hallucinated activities as user
tasks—manual intervention points in the workflow.
This approach transforms a limitation into a feature:
users can express activities for which no API exists,
and the system gracefully handles them as human
tasks. However, this requires users to review gener-
ated workflows to distinguish between intentional

1432

user tasks and unintended hallucinations.

Dataset Scale and Domain Coverage: FLOW-
BENCH contains 101 high-quality manually cu-
rated test cases. While these tests cover diverse pat-
terns (linear/conditional flows, add/delete/replace
operations, user tasks), they represent a limited
sample of real-world business process complexity.
The 546 activities in our catalog span common en-
terprise domains (GitHub, Jira, Slack, Salesforce),
but expanding coverage to additional domains and
more complex nested workflows remains important
future work.

Evaluation Scope: Our evaluation focuses on
the technical accuracy of generated Python IR and
its syntactic/semantic correctness. We do not eval-
uate end-user usability, the quality of natural lan-
guage utterances that real users would provide, or
the long-term maintainability of conversationally-
constructed workflows in production settings. User
studies would provide valuable insights into the
practical utility of our approach.

References

Thierry Biard, Alexandre Le Mauff, Michel Bigand, and
Jean-Pierre Bourey. 2015. Separation of decision
modeling from business process modeling using new
“decision model and notation”(dmn) for automating
operational decision-making. In Risks and Resilience
of Collaborative Networks: 16th IFIP WG 5.5 Work-
ing Conference on Virtual Enterprises, PRO-VE 2015,
Albi, France,, October 5-7, 2015, Proceedings 16,
pages 489—496. Springer.

Michele Chinosi and Alberto Trombetta. 2012. Bpmn:
An introduction to the standard. Computer Standards
& Interfaces, 34(1):124-134.

Shengda Fan, Xin Cong, Yuepeng Fu, Zhong Zhang,
Shuyan Zhang, Yuanwei Liu, Yesai Wu, Yankai Lin,
Zhiyuan Liu, and Maosong Sun. 2024. Workflowllm:
Enhancing workflow orchestration capability of large
language models. ArXiv, abs/2411.05451.

Alexander Grosskopf, Gero Decker, and Mathias Weske.
2009. The process: business process modeling using
BPMN. Meghan-Kiffer Press.

IBM App Connect. 2025. IBM Automation
Explorer. https://explorer.automation.ibm.
com/?type=template. Online; accessed 2025.

Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Bal-
aji Rama, Om Raheja, Hao Wang, He Zhu, and
Yongfeng Zhang. 2024. Autoflow: Automated work-
flow generation for large language model agents.
ArXiv, abs/2407.12821.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao,
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,

Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yux-
ian Wang, Wu Ning, Yutai Hou, Bin Wang, Chuhan
Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, and
8 others. 2024. Toolace: Winning the points of 1lm
function calling. ArXiv, abs/2409.00920.

Marketwatch. 2022.
management growth.
marketwatch.com/press-release/
business-process-management-market-size\
-growth-with-top-leading-players-growth-\
key-factors-global-trends-industry-share\
-and-forecast-2022-2031-2022-08-18. Online;
accessed 2022.

Business process
https://www.

Yujia Qin, Shi Liang, Yining Ye, Kunlun Zhu, Lan Yan,
Ya-Ting Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Runchu Tian, Ruobing Xie,
Jie Zhou, Marc H. Gerstein, Dahai Li, Zhiyuan Liu,
and Maosong Sun. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
ArXiv, abs/2307.16789.

Weixi Tong and Tianyi Zhang. 2024. CodeJudge: Eval-
uating code generation with large language models.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
20032-20051, Miami, Florida, USA. Association for
Computational Linguistics.

watsonx Orchestrate. 2025. watsonx Orchestrate: Al
for business productivity. https://www.ibm.com/
products/watsonx-orchestrate. Online; ac-
cessed 2025.

Shuyuan Xu, Zelong Li, Kai Mei, and Yongfeng Zhang.
2024. Core: Llm as interpreter for natural language
programming, pseudo-code programming, and flow
programming of ai agents. arXiv e-prints, pages
arXiv—2405.

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji,
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and
Joseph E. Gonzalez. 2024. Berkeley function calling
leaderboard. https://gorilla.cs.berkeley.
edu/blogs/8_berkeley_function_calling_
leaderboard.html.

Yining Ye, Xin Cong, Shizuo Tian, Jian Cao, Hao Wang,
Yujia Qin, Ya-Ting Lu, Heyang Yu, Huadong Wang,
Yankai Lin, Zhiyuan Liu, and Maosong Sun. 2023.
Proagent: From robotic process automation to agen-
tic process automation. ArXiv, abs/2311.10751.

Zapier Apps . 2025. Find ways for Zapier to handle
repetitive tasks in the apps you use every day. https:
//zapier.com/explore. Online; accessed 2025.

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen
Zhang, Dewu Zheng, Mingxi Ye, and Jiachi Chen.
2023. A survey of large language models for code:
Evolution, benchmarking, and future trends. ArXiv,
abs/2311.10372.

1433

https://api.semanticscholar.org/CorpusID:273950328
https://api.semanticscholar.org/CorpusID:273950328
https://api.semanticscholar.org/CorpusID:273950328
https://explorer.automation.ibm.com/?type=template
https://explorer.automation.ibm.com/?type=template
https://api.semanticscholar.org/CorpusID:271270428
https://api.semanticscholar.org/CorpusID:271270428
https://api.semanticscholar.org/CorpusID:272368347
https://api.semanticscholar.org/CorpusID:272368347
https://www.marketwatch.com/press-release/business-process- management-market-size\-growth-with-top-leading-players-growth-\key- factors-global-trends-industry-share\-and-forecast-2022-2031-2022-08-18
https://www.marketwatch.com/press-release/business-process- management-market-size\-growth-with-top-leading-players-growth-\key- factors-global-trends-industry-share\-and-forecast-2022-2031-2022-08-18
https://www.marketwatch.com/press-release/business-process- management-market-size\-growth-with-top-leading-players-growth-\key- factors-global-trends-industry-share\-and-forecast-2022-2031-2022-08-18
https://www.marketwatch.com/press-release/business-process- management-market-size\-growth-with-top-leading-players-growth-\key- factors-global-trends-industry-share\-and-forecast-2022-2031-2022-08-18
https://www.marketwatch.com/press-release/business-process- management-market-size\-growth-with-top-leading-players-growth-\key- factors-global-trends-industry-share\-and-forecast-2022-2031-2022-08-18
https://www.marketwatch.com/press-release/business-process- management-market-size\-growth-with-top-leading-players-growth-\key- factors-global-trends-industry-share\-and-forecast-2022-2031-2022-08-18
https://api.semanticscholar.org/CorpusID:260334759
https://api.semanticscholar.org/CorpusID:260334759
https://doi.org/10.18653/v1/2024.emnlp-main.1118
https://doi.org/10.18653/v1/2024.emnlp-main.1118
https://www.ibm.com/products/watsonx-orchestrate
https://www.ibm.com/products/watsonx-orchestrate
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://api.semanticscholar.org/CorpusID:265295561
https://api.semanticscholar.org/CorpusID:265295561
https://zapier.com/explore
https://zapier.com/explore
https://api.semanticscholar.org/CorpusID:265281389
https://api.semanticscholar.org/CorpusID:265281389

A Appendix
A.1 BPMN diagram and code

Figure 4 shows an example of a flow expressed
as a BPMN diagram along with the corresponding
BPMN code shown in Figure 5.

GitHub_Reposi

tory_3.0_0__

create_Reposit
ory

Jira_lssue_2

0_0_ create_|
ssue

Figure 4: Simple flow example

<?xml version="1.0" encoding="UTF-8"7>
<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/D1"
xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
xmlns:di="http://www.omg.org/spec/DD/20100524/D1" exporter="bpmn-js
(https://demo.bpmn.io)" exporterVersion="18.3.1">
<process id="Process_1" isExecutable="false">
<startEvent id="startEvent_1" name="Start"” />
<task id="task_2" name="Jira_Issue__2_0_0__create_Issue" />
<sequenceFlow id="flow_startEvent_1_task_2"
sourceRef="startEvent_1" targetRef="task_2" />
<task id="task_3" name="GitHub_Repository__3_0_0__create_Repository” />
<sequenceFlow id="flow_task_2_task_3"
sourceRef="task_2" targetRef="task_3" />
<endEvent id="endEvent_4" name="End" />
<sequenceFlow id="flow_task_3_endEvent_4"
sourceRef="task_3" targetRef="endEvent_4" />
</process>
<bpmndi:BPMNDiagram id="BPMNDiagram_1">
<bpmndi:BPMNPlane id="BPMNPlane_1" bpmnElement="Process_1">
<bpmndi:BPMNShape id="BPMNShape_task_3" bpmnElement="task_3">
<dc:Bounds x="460" y="80" width="100" height="80" />
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_endEvent_4"
bpmnElement="endEvent_4">
<dc:Bounds x="682" y="93" width="36" height="36" />
<bpmndi:BPMNLabel>
<dc:Bounds x="690" y="129" width="20" height="14" />
</bpmndi :BPMNLabel>
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_task_2" bpmnElement="task_2">
<dc:Bounds x="270" y="80" width="100" height="80" />
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="BPMNShape_startEvent_1"
bpmnElement="startEvent_1">
<dc:Bounds x="152" y="102" width="36" height="36" />
<bpmndi :BPMNLabel>
<dc:Bounds x="158" y="138" width="24" height="14" />
</bpmndi : BPMNLabel>
</bpmndi : BPMNShape>
<bpmndi:BPMNEdge id="BPMNEdge_flow_startEvent_1_task_2"
bpmnElement="flow_startEvent_1_task_2">
<di:waypoint x="188" y="120" />
<di:waypoint x="27@" y="120" />
</bpmndi : BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_flow_task_2_task_3"
bpmnElement="flow_task_2_task_3">
<di:waypoint x="370" y="120" />
<di:waypoint x="460" y="120" />
</bpmndi :BPMNEdge>
<bpmndi:BPMNEdge id="BPMNEdge_flow_task_3_endEvent_4"
bpmnElement="flow_task_3_endEvent_4">
<di:waypoint x="560" 13" />
<di:waypoint x="682" y="113" />
</bpmndi : BPMNEdge>
</bpmndi:BPMNPlane>
</bpmndi:BPMNDiagram>
</definitions>

Figure 5: BPMN code corresponding to example in
Figure 4

A.2 BPMN Representation of FLOW-BENCH
test case

Figures 6 and 7 show the BPMN code for FLOW-
BENCHTtest case shown in Figure 1.

1434

<?xml version="1.0" encoding="UTF-8"7>
<bpmn:definitions xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance” xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/D1" xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"
xmlns:di="http://www.omg.org/spec/DD/20100524/D1" exporter="Camunda Modeler”
exporterVersion="5.32.0">
<bpmn:process id="Process_1j6betq"” isExecutable="false">
<bpmn:startEvent id="StartEvent_1twgfyv">
<bpmn:outgoing>Flow_040uk43</bpmn:outgoing>
</bpmn:startEvent>
<bpmn:subProcess id="Activity_en3dkn6">
<bpmn:incoming>Flow_@fmvfja</bpmn:incoming>
<bpmn:outgoing>Flow_0304pmp</bpmn:outgoing>
<bpmn:multiInstanceLoopCharacteristics isSequential="true" />
<bpmn:startEvent id="Event_1g6k28n">
<bpmn:outgoing>Flow_0ez4w93</bpmn:outgoing>
</bpmn:startEvent>
<bpmn:endEvent id="Event_0lbdydr">
<bpmn:incoming>Flow_05t21yg</bpmn:incoming>
</bpmn:endEvent>
<bpmn:sequenceFlow id="Flow_0ez4w93" sourceRef="Event_1g6k28n" targetRef="Activity_0sj4qjl" />
<bpmn:task id="Activity_0sj4qjl” name="GitHub_Issue__3_0_0__retrievewithwhere_Issue">
<bpmn:incoming>Flow_0@ez4w93</bpmn:incoming>
<bpmn:outgoing>Flow_05t21yg</bpmn:outgoing>
</bpmn:task>
<bpmn:sequenceFlow id="Flow_05t21yg"” sourceRef="Activity_0sj4qjl” targetRef="Event_0lbdydr" />
</bpmn: subProcess>
<bpmn:endEvent id="Event_lycwwda">
<bpmn:incoming>Flow_0@304pmp</bpmn:incoming>
</bpmn:endEvent>
<bpmn:sequenceFlow id="Flow_0304pmp"” sourceRef="Activity_on3dkn6" targetRef="Event_lycwwda" />
<bpmn:task id="Activity_@cwpd7f"” name="GitHub_Repository__3_0_0__retrievewithwhere_Repository”>
<bpmn: incoming>Flow_040uk43</bpmn:incoming>
<bpmn:outgoing>Flow_0fmvfja</bpmn:outgoing>
</bpmn: task>
<bpmn:sequenceFlow id="Flow_040uk43" sourceRef="StartEvent_1twgfyv" targetRef="Activity_@cwpd7f" />
<bpmn:sequenceFlow id="Flow_0fmvfja” sourceRef="Activity_@cwpd7f" targetRef="Activity_on3dkn6" />
<bpmn:textAnnotation id="TextAnnotation_1q9vfnx">
<bpmn:text>for repo in repositories</bpmn:text>
</bpmn:textAnnotation>
<bpmn:association id="Association_0c@ii8c"” associationDirection="None" sourceRef="Activity_@n3dkn6" targetRef="TextAnnotation_1q9vfnx" />
</bpmn:process>
<bpmndi:BPMNDiagram id="BPMNDiagram_1">
<bpmndi:BPMNPlane id="BPMNPlane_1" bpmnElement="Process_1j6betq">
<bpmndi:BPMNShape id="_BPMNShape_StartEvent_2" bpmnElement="StartEvent_1twgfyv">
<dc:Bounds x="152" y="177" width="36" height="36" />
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="Activity_@cwpd7f_di” bpmnElement="Activity_@cwpd7f">
<dc:Bounds x="250" y="155" width="100" height="80" />
<bpmndi:BPMNLabel />
</bpmnd1i : BPMNShape>
<bpmndi:BPMNShape id="Event_lycwwda_di" bpmnElement="Event_1ycwwda">
<dc:Bounds x="1102" y="177" width="36" height="36" />
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="Activity_@dishkm_di” bpmnElement="Activity_@n3dkn6" isExpanded="true">
<dc:Bounds x="440" y="130" width="500" height="150" />
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="Event_1g6k28n_di" bpmnElement="Event_1g6k28n">
<dc:Bounds x="472" y="182" width="36" height="36" />
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="Activity_0sj4qjl_di” bpmnElement="Activity_0sj4qjl">
<dc:Bounds x="650" y="160" width="100" height="80" />
<bpmndi:BPMNLabel />
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="Event_0lbdydr_di" bpmnElement="Event_0lbdydr">
<dc:Bounds x="842" y="182" width="36" height="36" />
</bpmndi : BPMNShape>
<bpmndi:BPMNEdge id="Flow_05t21yg_di"” bpmnElement="Flow_05t21yg">
<di:waypoint x="750" y="200" />
<di:waypoint x="842" y="200" />
</bpmndi : BPMNEdge>
<bpmndi:BPMNEdge id="Flow_0ez4w93_di"” bpmnElement="Flow_0ez4w93">
<di:waypoint x="508" y="200" />
<di:waypoint x="650" y="200" />
</bpmndi : BPMNEdge>
<bpmndi:BPMNEdge id="Association_0c@ii8c_di"” bpmnElement="Association_0c@ii8c">
<di:waypoint x="839" y="130" />
<di:waypoint x="853" y="81" />
</bpmndi :BPMNEdge>
<bpmndi:BPMNShape id="TextAnnotation_1q9vfnx_di" bpmnElement="TextAnnotation_1q9vfnx">
<dc:Bounds x="810" y="40" width="100" height="41" />
<bpmndi:BPMNLabel />
</bpmndi : BPMNShape>
<bpmndi:BPMNEdge id="Flow_0304pmp_di"” bpmnElement="Flow_0304pmp">
<di:waypoint x="940" y="195" />
<di:waypoint x="1102" y="195" />
</bpmndi : BPMNEdge>
<bpmndi:BPMNEdge id="Flow_040Quk43_di" bpmnElement="Flow_040Quk43">
<di:waypoint x="188" y="195" />
<di:waypoint x="250" y="195" />
</bpmndi : BPMNEdge>
<bpmndi:BPMNEdge id="Flow_0fmvfja_di” bpmnElement="Flow_ofmvfja">
<di:waypoint x="350" y="195" />
<di:waypoint x="440" y="195" />
</bpmndi : BPMNEdge>
</bpmndi:BPMNPlane>
</bpmndi :BPMNDiagram>
</bpmn:definitions>

Figure 6: BPMN code corresponding to the prior sequence of Figure 1

1435

<?xml version="1.0" encoding="UTF-8"7>
<bpmn:definitions xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance” xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/D1"
xmlns:dc="http://www.omg.org/spec/DD/20100524/DC" xmlns:di="http://www.omg.org/spec/DD/20100524/DI" exporter="Camunda Modeler"” exporterVersion="5.32.0">
<bpmn:process id="Process_1j6betq” isExecutable="false">
<bpmn:startEvent id="StartEvent_1twgfyv">
<bpmn:outgoing>Flow_040uk43</bpmn:outgoing>
</bpmn:startEvent>
<bpmn:subProcess id="Activity_en3dkn6">
<bpmn:incoming>Flow_@fmvfja</bpmn:incoming>
<bpmn:outgoing>Flow_0304pmp</bpmn:outgoing>
<bpmn:multiInstanceLoopCharacteristics isSequential="true" />
<bpmn:startEvent id="Event_1g6k28n">
<bpmn:outgoing>Flow_0ez4w93</bpmn:outgoing>
</bpmn:startEvent>
<bpmn:endEvent id="Event_0lbdydr">
<bpmn:incoming>Flow_05t21yg</bpmn:incoming>
</bpmn:endEvent>
<bpmn:sequenceFlow id="Flow_0ez4w93" sourceRef="Event_1g6k28n" targetRef="Activity_0sj4qjl" />
<bpmn:task id="Activity_0sj4qjl" name="GitHub_Issue__3_0_0__create_Issue">
<bpmn:incoming>Flow_0@ez4w93</bpmn:incoming>
<bpmn:outgoing>Flow_05t21yg</bpmn:outgoing>
</bpmn:task>
<bpmn:sequenceFlow id="Flow_05t21yg" sourceRef="Activity_0sj4qjl” targetRef="Event_0lbdydr" />
</bpmn: subProcess>
<bpmn:endEvent id="Event_lycwwda">
<bpmn:incoming>Flow_0304pmp</bpmn:incoming>
</bpmn:endEvent>
<bpmn:sequenceFlow id="Flow_03o04pmp"” sourceRef="Activity_on3dkn6" targetRef="Event_lycwwda" />
<bpmn:task id="Activity_@cwpd7f"” name="GitHub_Repository__3_0_0__retrievewithwhere_Repository”>
<bpmn: incoming>Flow_040uk43</bpmn:incoming>
<bpmn:outgoing>Flow_0fmvfja</bpmn:outgoing>
</bpmn: task>
<bpmn:sequenceFlow id="Flow_040uk43" sourceRef="StartEvent_1twgfyv" targetRef="Activity_@cwpd7f" />
<bpmn:sequenceFlow id="Flow_0fmvfja” sourceRef="Activity_@cwpd7f" targetRef="Activity_on3dkn6" />
<bpmn:textAnnotation id="TextAnnotation_1q9vfnx">
<bpmn:text>for repo in repositories</bpmn:text>
</bpmn:textAnnotation>
<bpmn:association id="Association_0c@ii8c” associationDirection="None" sourceRef="Activity_0n3dkn6" targetRef="TextAnnotation_1q9vfnx" />
</bpmn:process>
<bpmndi:BPMNDiagram id="BPMNDiagram_1">
<bpmndi:BPMNPlane id="BPMNPlane_1" bpmnElement="Process_1j6betq">
<bpmndi:BPMNShape id="_BPMNShape_StartEvent_2" bpmnElement="StartEvent_1twgfyv">
<dc:Bounds x="152" y="177" width="36" height="36" />
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="Activity_@cwpd7f_di” bpmnElement="Activity_@cwpd7f">
<dc:Bounds x="250" y="155" width="100" height="80" />
<bpmndi:BPMNLabel />
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="Event_lycwwda_di" bpmnElement="Event_1ycwwda">
<dc:Bounds x="1102" y="177" width="36" height="36" />
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="Activity_@dishkm_di” bpmnElement="Activity_@n3dkn6" isExpanded="true">
<dc:Bounds x="440" y="130" width="500" height="150" />
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="Event_1g6k28n_di" bpmnElement="Event_1g6k28n">
<dc:Bounds x="472" y="182" width="36" height="36" />
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="Activity_0sj4qjl_di” bpmnElement="Activity_0sj4qjl">
<dc:Bounds x="650" y="160" width="100" height="80" />
<bpmndi:BPMNLabel />
</bpmndi : BPMNShape>
<bpmndi:BPMNShape id="Event_0lbdydr_di" bpmnElement="Event_0lbdydr">
<dc:Bounds x="842" y="182" width="36" height="36" />
</bpmndi : BPMNShape>
<bpmndi:BPMNEdge id="Flow_05t21yg_di” bpmnElement="Flow_05t21yg">
<di:waypoint x="750" y="200" />
<di:waypoint x="842" y="200" />
</bpmndi : BPMNEdge>
<bpmndi:BPMNEdge id="Flow_0ez4w93_di"” bpmnElement="Flow_0ez4w93">
<di:waypoint x="508" y="200" />
<di:waypoint x="650" y="200" />
</bpmndi : BPMNEdge>
<bpmndi:BPMNEdge id="Association_0c@ii8c_di"” bpmnElement="Association_0c@ii8c">
<di:waypoint x="839" y="130" />
<di:waypoint x="853" y="81" />
</bpmndi :BPMNEdge>
<bpmndi:BPMNShape id="TextAnnotation_1q9vfnx_di" bpmnElement="TextAnnotation_1q9vfnx">
<dc:Bounds x="810" y="40" width="100" height="41" />
<bpmndi:BPMNLabel />
</bpmndi : BPMNShape>
<bpmndi:BPMNEdge id="Flow_0304pmp_di"” bpmnElement="Flow_0304pmp">
<di:waypoint x="940" y="195" />
<di:waypoint x="1102" y="195" />
</bpmndi : BPMNEdge>
<bpmndi:BPMNEdge id="Flow_040Quk43_di" bpmnElement="Flow_040Quk43">
<di:waypoint x="188" y="195" />
<di:waypoint x="250" y="195" />
</bpmndi : BPMNEdge>
<bpmndi:BPMNEdge id="Flow_@fmvfja_di” bpmnElement="Flow_ofmvfja">
<di:waypoint x="350" y="195" />
<di:waypoint x="440" y="195" />
</bpmndi :BPMNEdge>
</bpmndi:BPMNPlane>
</bpmndi :BPMNDiagram>
</bpmn:definitions>

Figure 7: BPMN code corresponding to the final output of Figure 1

1436

