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Abstract

Multimodal Large Language Models (MLLMs)
have achieved impressive results on vision-
language benchmarks, yet it remains unclear
whether these benchmarks assess genuine
global reasoning or allow success via localized
visual cues. Existing evaluation methods do not
explicitly measure this distinction, hindering ef-
fective dataset curation and real-world focused
model development.

We introduce Region Comprehension Index
(RCI), the first model-based score to directly
quantify a dataset’s reliance on global versus
local visual information. RCI systematically
compares reference-model performance on im-
age patches versus full images, revealing if
tasks require holistic image understanding or
can be solved with partial or localized visual
cues.

When applying RCI to 13 widely used mul-
timodal benchmarks, we observed that most
of them favor localized reasoning and exhibit
significant spatial biases, indicating potential
risks in real-world applications. RCI equips
researchers & practitioners with an actionable
tool for diagnosing & mitigating these biases,
enabling the construction of datasets and bench-
marks to foster the development of robust,
enterprise-ready multimodal systems.

1 Introduction

MLLMs have driven dramatic progress in vision-
language tasks such as visual question answering
(Pattnayak et al., 2024, 2025a), image captioning,
and data generation (Agarwal et al., 2024a,b; Pa-
tel et al., 2024, 2025), enabled by advances in
model architectures and the availability of large-
scale datasets and standardized benchmarks. Yet,
as these models transition from academic labs
to real-world applications (Singh, 2021, 2023), a
critical question arises: Do current benchmarks
truly reflect the reasoning demands of practical,

deployment-oriented systems, or do they enable
models to succeed via narrow, localized cues?

Recent studies (Woh et al., 2022; Huang et al.,
2024) reveal that many popular benchmarks allow
high performance through exploitation of limited or
localized visual context, without requiring genuine
integration of global visual information across the
image. This often results in models that appear
robust on paper, but fail to generalize or perform
reliably when deployed in real-world settings.

In industrial and mission-critical applications,
such as autonomous driving, remote sensing, medi-
cal imaging, document intelligence, and large-scale
content moderation, models must demonstrate ro-
bust global reasoning: correlating information dis-
tributed across an entire image or scene. Con-
versely, some practical tasks (e.g., facial recog-
nition, fine-grained inspection, anomaly detection)
require only highly localized reasoning: analyzing
localized visual cues. A persistent challenge is that
existing benchmarks rarely make these reasoning
dependencies explicit, leading to costly misalign-
ment between evaluation metrics and real-world
system requirements.

This ambiguity stems from the design of cur-
rent benchmarks, many of which can be solved by
models leveraging local visual features or cues, cre-
ating an illusion of general visual reasoning. This
misalignment risks wasted effort and, more impor-
tantly, unreliable deployed systems.

In this work, we propose the Region Comprehen-
sion Index (RCI), a practical, model-based score
for auditing and guiding the development of mul-
timodal benchmarks and datasets. RCI systemat-
ically compares a reference-model performance
on individual image patches versus full images,
across different granularities, to quantify whether a
dataset requires global (holistic) or local reasoning
to succeed. In contrast to traditional evaluation met-
rics (e.g., FID (Yu et al., 2021), CLIPScore (Hessel
et al., 2021), CIDEr (Vedantam et al., 2015)), which
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primarily focus on alignment or diversity, RCI pro-
vides an actionable signal for both researchers and
industry practitioners to diagnose, compare, and
curate benchmarks that better match real-world de-
ployment needs. Our key contributions are:

• Introducing RCI, the first score to explicitly
quantify global vs. local reasoning require-
ments in multimodal benchmarks.

• Presenting a structured, patch-based evalua-
tion framework to reveal and analyze spatial
reasoning biases in vision-language datasets.

• Applying RCI to 13 widely-used benchmarks,
providing insights for data & system designers
in both research & industry contexts.

By enabling practitioners to audit and align
benchmarks with actual application demands, RCI
helps bridge the gap between academic evaluation
and real-world deployment, supporting the develop-
ment of robust, generalizable multimodal systems.

2 Related Work

2.1 Vision-Language Benchmarks

Vision-language benchmarks such as MS
COCO (Chen et al., 2015), GQA (Hudson and
Manning, 2019), TextVQA & VizWiz have signifi-
cantly advanced multimodal model development.
However, recent works (Geirhos et al., 2020; Guan
et al., 2024; Woh et al., 2022; Huang et al., 2024;
Kamath et al., 2023) reveal critical limitations:
many tasks can be effectively addressed by
exploiting localized visual information, creating
an illusion of progress. For instance, models
often leverage minimal contextual clues & biased
spatial distributions to achieve deceptively high
benchmark scores (Woh et al., 2022; Kamath
et al., 2023). Benchmarks like SPEC (Peng
et al., 2024), AMBER, BLINK, MVTamperBench
(Agarwal et al., 2025b), & What’s Up (Kamath
et al., 2023) explicitly highlight these issues by
isolating fine-grained spatial-temporal & semantic
reasoning tasks, uncovering significant model
limitations. Such localized shortcuts undermine
robustness, interpretability, & generalization,
impacting real-world applications like medical
analysis (Pattnayak et al., 2025b), document
analysis (Meghwani et al., 2025; Agarwal et al.,
2025a,c), accessibility for visually impaired
users (Panda et al., 2025a,b,c), & autonomous

navigation, where comprehensive visual and audio
reasoning is essential (Singh, 2022).

2.2 Spatial Reasoning and Dataset Quality
Assessment

Spatial reasoning remains a challenging yet es-
sential capability for vision-language models (Wu
et al., 2024; Kamath et al., 2023). Recent research
demonstrates widespread deficiencies in spatial re-
lation comprehension, even among advanced mod-
els (Kamath et al., 2023). For example, SPEC
explicitly diagnoses model comprehension of spa-
tial attributes, demonstrating near-random perfor-
mance even for state-of-the-art MLLMs (Peng
et al., 2024). Similarly, Zhao et al. (2023) high-
light the importance of dataset quality, revealing
substantial annotation issues that exacerbate spa-
tial reasoning deficiencies. To address these short-
comings, some researchers have proposed visual
prompting techniques, guiding model’s attention
explicitly through visual cues (Yu et al., 2024).

2.3 Metrics for Vision-Language Tasks

Traditional metrics like CIDEr, BLEU (Papineni
et al., 2002), and METEOR (Banerjee and Lavie,
2005) primarily assess linguistic properties such as
caption similarity and diversity, but fail to explic-
itly capture deeper reasoning capabilities or spatial
dependencies. Metrics like CLIPScore and FID
evaluate cross-modal alignment and image realism.

Recently, Tao et al. (2024) probed multimodal
models for global and local semantic representa-
tions, highlighting discrepancies in representation
across model layers. Although insightful, this work
does not quantify how datasets themselves struc-
ture or promote spatial reasoning explicitly.

Our Contribution Our research explicitly ad-
dresses these critical gaps by introducing RCI. Un-
like previous approaches that focus on isolated eval-
uation dimensions or linguistic alignment, RCI
systematically measures and reveals whether a
dataset’s tasks fundamentally depend on integrat-
ing information across the entire image, or can be
addressed using isolated regions.

3 Methodology

To assess whether a benchmark truly evaluates
global versus local reasoning, we propose a patch-
based evaluation framework. RCI is designed as
a practical, model-based score for dataset audit-
ing and curation, not for optimizing model perfor-
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Figure 1: Computation of Full Image Performance (FIP) and Maximum Patch Performance (MPP) on a sample from
the POPE benchmark. FIP (top) evaluates model performance on the full image, while MPP (bottom) identifies the
highest-performing patch. These are aggregated across the dataset to compute RCI.

mance. We emphasize that RCI is a descriptive, not
prescriptive, metric. It does not label a benchmark
as “invalid” because many items can be solved with
localized visual cues. Instead, RCI quantifies the
type of visual information a benchmark rewards,
helping dataset designers align benchmarks with
the intended reasoning requirements of their ap-
plications. This framing underscores our focus on
aiding dataset curation and benchmark evaluation,
rather than optimizing specific model performance.

Below, we detail our evaluation framework and
formalize RCI.

3.1 Patch-Based Evaluation Framework
In our framework (Figure 1), each image is system-
atically divided into n×n non-overlapping, equally
sized patches, where n controls spatial granular-
ity. For each patch, we independently evaluate the
reference-model’s performance, thereby isolating
the contribution of localized visual information.
This approach reveals whether a benchmark can be
solved by focusing on specific regions or genuinely
requires holistic image understanding.

We adopt a regular grid partitioning to ensure
that patch selection is systematic, unbiased, and
easy to interpret. This approach avoids the confu-
sion and implementation overhead of object-centric
or saliency-based patching, making results more
reproducible and conclusions more comparable
across benchmarks. Specifically, we study:

• n = 1 (full image): Baseline for RCI

• n = 2 (four patches): Coarse-level for RCI

• n = 3 (nine patches): Fine-level for RCI

We explored higher n, in selected experiments
(see Appendix A.5.3), finding diminishing gains &
substantially increased computational cost (n2).

3.2 Region Comprehension Index (RCI)

RCI quantifies the extent to which solving a
dataset’s tasks requires global versus localized vi-
sual information. For patch granularity n, RCI is
defined as:

RCIn = 1− MPPn

FIP
(1)

where:

• MPPn (Maximum Patch Performance): The
aggregated model performance on the best-
performing individual patch (per sample) is
used, at granularity n.

• FIP (Full Image Performance): The aggre-
gated model performance over full-image for
each sample.

RCI does not require patch-level annotations. In-
stead, it reuses existing item labels and selects the
best-performing patch per item using the bench-
mark’s native scorer, ensuring no new annotations
are necessary. This makes RCI a model-based au-
dit tool that evaluates dataset reasoning require-
ment without altering the dataset itself. See Ap-
pendix A.1 for detailed definitions & intuition.

Validity Domain & Chance. We interpret RCI
only when the full-image performance (FIP) ex-
ceeds a dataset-specific chance threshold by a
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small margin (Appendix A.2). Formally, a (dataset,
model) pair (d,m) is considered valid if

FIP(d,m) ≥ chance(d) + ∆min,

where ∆min = δ = 1.0 percentage point by default,
or max{δ, 2 SE} when confidence intervals (CIs)
are reported. All dataset-model pairs in our study
satisfy this criterion.

Interpretation: RCI can be interpreted as shown
in Table 1. RCI is not a metric in the geometric
sense, nor is it a normalized score between 0 and
1, but rather a comparative score. As with other
model-based evaluation scores (e.g., CLIPScore),
its absolute value may vary across datasets and
the reference-models used. However, in our ex-
periments, we observe that RCI trends are robust
across a variety of reference-model architectures,
underscoring its practical utility for both academic
and industrial benchmarking.

RCI Value Interpretation

RCI ≫ 0 Task requires strong
global reasoning

RCI ≈ 0 Balanced global and local
reasoning

RCI ≪ 0 Task can be solved with lo-
calized visual cues

Table 1: Interpretation of RCI values in terms of task
reasoning requirements.

Guidance for RCI. To facilitate interpretation of
RCI values, we introduce qualitative bands based
on the dataset’s requirement for local vs. global
visual information:

• Strong local (RCI ≤ −0.30): The dataset
heavily rewards local visual features, with lim-
ited global reasoning required for high model
performance.

• Moderate local (−0.30 < RCI ≤ −0.10):
The dataset relies on local features but still
requires some degree of global reasoning.

• Balanced (−0.10 < RCI ≤ +0.10): The
dataset requires a balance of local and global
reasoning, with no clear preference for one
over the other.

• Moderate global (+0.10 < RCI ≤ +0.30):
The dataset favors global reasoning but still
has elements where local features are impor-
tant.

• Strong global (RCI ≥ +0.30): The dataset
predominantly rewards global visual informa-
tion, with little reliance on local features.

These bands provide a clear mapping of the RCI
value to an intuitive understanding of the dataset’s
requirements for local vs. global visual reasoning.
We also recommend percentile-based calibration,
especially when applying RCI to larger datasets,
where adjustments may be needed depending on
the dataset’s inherent structure.

3.3 Spatial Bias Analysis

To diagnose whether certain image regions dispro-
portionately affect performance on benchmark , we
analyze the contribution of each patch across the
dataset. Specifically, for every patch position, we
compute the fraction of total correct predictions
(or score) resulting from that patch when used in
isolation. This reveals if particular regions, such as
the image center: dominate task success, indicating
potential spatial shortcuts or artifacts in the bench-
mark design. Identifying such biases helps dataset
creators diversify content placement and mitigate
unintended model shortcuts.

4 Experiments and Results

We apply our RCI-based evaluation on a compre-
hensive range of benchmarks, ensuring our evalu-
ation captures variations across task types, visual
context granularities and reference-models.

4.1 Experimental Setup

Reference Models for RCI To comprehensively
understand dataset designs and the dependency on
global versus localized reasoning, we selected mod-
els based on the following key criteria: (1) Ar-
chitectural Diversity, (2) Reasoning Capabilities,
(3) Grounding and Localization Sensitivity, and
(4) Scalability and Efficiency. Based on these we,
shortlisted InternVl-2.5-1B, Qwen2-VL-2B, and
Molmo-1B models for RCI computation.

Datasets & Benchmarks We evaluate RCI
across the following vision-language benchmarks:

- Multiple-Choice QA (MCQ): AI2D, BLINK,
MMStar, ScienceQA, RealWorldQA.

- Yes/No Classification: AMBER, MME, POPE,
HallusionBench.

- Visual Question Answering (VQA): GQA,
ChartQA, TextVQA, VizWiz.
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Evaluation Protocol. We evaluate using patch
granularities n ∈ {2, 3}, balancing computational
efficiency with the dataset’s reasoning require-
ments. While finer granularities offer more detail,
they incur diminishing returns and increased com-
putational cost. The evaluation is performed using
InternVL-2.5-1B, Qwen2-VL-2B, and Molmo-1B
models, ensuring robustness across different model
types. The smaller models align closely with larger
models (r > 0.9) in terms of performance, providing
an efficient yet reliable evaluation.

We recommend using these values for efficient
yet robust audits. For further details on evaluation
protocol, model selection and granularity, refer to
Appendix A.3. The benchmark datasets are further
elaborated in Appendix A.4.

4.2 Results and Discussion

We organize our analysis around core research
questions central to evaluating RCI’s validity and
utility. Each subsection directly addresses one of
these questions.

Figure 2: Cross-model correlation of RCI at n=2, 3.
High correlations indicates RCI is inherent to dataset
rather than specific model behaviors.

4.2.1 Does the Choice of Reference-Model
Affect RCI?

We assess the robustness of RCI across diverse ref-
erence models and scales, including InternVL-2.5,
Qwen2-VL, and Molmo. As shown in Figure 2,
RCI values are highly correlated across architec-
tures (r ≥ 0.91), demonstrating that the global
versus local reasoning dependencies measured by
RCI are intrinsic to the datasets, rather than arti-
facts of specific model choices. Comparing small
and large model variants (e.g., Qwen2-VL-2B vs.
Qwen2-VL-72B) yields similarly high intra-family
correlations (r ≥ 0.86), supporting the use of effi-
cient, smaller models for RCI-based dataset audits
without loss of diagnostic power. Detailed correla-

tion matrices and further analysis are provided in
Appendix A.5.1, confirming RCI’s reliability for
both research and industry applications.

4.2.2 Does RCI Reflect Human Reasoning in
Vision-Language Tasks?

To further validate RCI, we conducted a small-
scale human study in which annotators solved rep-
resentative benchmark tasks using individual image
patches versus full images. Human performance
exhibited similar trends as model-based RCI: tasks
with high RCI values were consistently more dif-
ficult for humans when restricted to local patches,
while tasks with low RCI could often be solved
from partial information. This alignment suggests
RCI not only diagnoses dataset biases for mod-
els, but also reflects human reasoning expectations.
Further details are in Appendix A.5.2.

4.2.3 What Reasoning Biases Does RCI
Reveal?

Table 2 summarizes RCI results across 13 multi-
modal benchmarks at patch granularities n = 2, 3.
We identify distinct patterns in terms of dependency
on global reasoning versus localized reasoning.

Benchmarks in Favor of Localized Reasoning.
Benchmarks like BLINK, HallusionBench, MM-
Star, RealWorldQA, GQA, and AI2D, consistently
exhibit strong negative RCI values. Negative RCI
indicates models achieve superior performance us-
ing smaller image patches than full images, clearly
highlighting substantial dependence on localized
reasoning. Such benchmarks thus permit solving
the tasks using localized visual cues rather than
enforcing global reasoning.

Benchmarks in Favor of Global Reasoning.
Benchmarks like ChartQA, ScienceQA, and
TextVQA consistently yield positive or near-neutral
RCI values, explicitly indicating their reliance on
comprehensive global reasoning. For instance,
ChartQA tasks require interpreting multiple visual
elements like axes, legends, & graphical data si-
multaneously, enforcing integration of distributed
visual information rather than localized cues alone.

Influence of Patch Granularity. Decrease in
RCI values observed at finer granularity (n = 3)
further exposes localized reasoning biases. For ex-
ample, MMStar RCI drops notably from -0.235
(n = 2) to -0.286 (n = 3) for RCI with InternVL-
2.5, and more drastically for RCI with Molmo from
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Dataset InternVL-2.5-1B Qwen2-VL-2B-Instruct Molmo-1B
RCIn=2 RCIn=3 RCIn=2 RCIn=3 RCIn=2 RCIn=3

AI2D_TEST -0.171 -0.215 -0.112 -0.159 -0.224 -0.324
AMBER -0.010 -0.028 -0.013 -0.027 -0.015 -0.038
BLINK -0.231 -0.294 -0.204 -0.367 -0.383 -0.516
ChartQA_TEST 0.202 0.290 0.243 0.290 0.198 0.237
GQA_TestDev_Balanced -0.207 -0.266 -0.189 -0.265 -0.235 -0.310
HallusionBench -0.267 -0.346 -0.223 -0.353 -0.216 -0.355
MME -0.064 -0.097 -0.107 -0.117 -0.134 -0.171
MMStar -0.235 -0.286 -0.262 -0.389 -0.296 -0.458
POPE -0.054 -0.055 -0.055 -0.068 -0.044 -0.051
RealWorldQA -0.210 -0.307 -0.170 -0.272 -0.222 -0.315
ScienceQA_TEST 0.037 0.060 0.071 0.124 0.044 0.080
TextVQA_VAL 0.063 0.112 0.075 0.119 0.093 0.136
VizWiz -0.099 -0.122 -0.030 -0.036 -0.083 -0.092

Table 2: RCI scores for 13 multimodal benchmarks across three reference MLLMs and two patch granularities
(n = 2, 3), highlighting the reasoning requirements of each dataset as measured by RCI.

Figure 3: Avg. contribution of each patch to MPPn=3 across all datasets. Central patches (Patch 5) dominate,
highlighting localized biases, whereas peripheral patches contribute minimally.

-0.296 to -0.458. This confirms that finer gran-
ularity patches accentuate dataset biases toward
localized reasoning, highlighting the inadequacy
of existing benchmarks to robustly assess global
reasoning. We discuss higher values of n, model-
specific trends & illustrative examples in Appendix
A.5.3, & B.3.

4.2.4 Do Benchmarks Exhibit Systematic
Spatial Biases?

We further analyze spatial biases, highlighting how
visual information is disproportionately distributed
across image patches within benchmarks.

Central Spatial Bias (Patch 5). Figure 3 and 4
clearly indicates a strong central bias across bench-
marks, with the center patch (Patch 5) consistently
contributing the highest to model performance.
This confirms a pervasive dataset design flaw where

central visual information disproportionately influ-
ences performance, promoting localized reasoning
rather than holistic image understanding.

Peripheral Underrepresentation. Peripheral
patches (like 1, 3, 7, and 8) consistently exhibit min-
imal contributions, suggesting benchmarks rarely
include significant information in these areas. Such
biases hinder the assessment of comprehensive spa-
tial reasoning, potentially compromising model ro-
bustness.

Dataset-specific Variability. Certain bench-
marks exhibit notable variance in patch contribu-
tions. For instance, ChartQA demonstrates sub-
stantial reliance on Patch 3 (top-right) (Figure 4),
reflecting dataset-specific layouts such as chart leg-
ends or annotations. This emphasizes the impor-
tance of explicitly understanding dataset structures
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Figure 4: Distribution of each patch patch contribution
for MPPn=3. Patch 5 consistently dominates, reinforc-
ing strong central spatial biases.

to avoid inadvertent biases.

Patch Granularity Sensitivity. Comparing re-
sults at n = 2 and n = 3 granularities (Figure 8,
7) we observe finer patches (n = 3) clearly ex-
pose spatial biases more prominently than coarser
patches (n = 2). Larger patches naturally cover
critical regions more evenly, masking biases, while
smaller patches reveal precise localization biases.
Despite computational constraints, the choice of
n = 3 strikes a balance between detailed analysis
and computational efficiency, effectively capturing
meaningful spatial biases.

All reported results fall within the validity do-
main: for every dataset–model pair, FIP exceeds
the dataset-specific chance floor by at least ∆min

(Appendix A.2).

5 Practical Implications for Industry and
Deployment

RCI provides an actionable lens for aligning multi-
modal datasets and benchmarks with the specific
reasoning needs of real-world applications. By
quantifying the dependency on global versus local
visual information, RCI enables practitioners to:

• Audit and select datasets based on the rea-
soning requirements of target deployment sce-
narios (e.g., favoring high-RCI datasets for
applications needing holistic understanding).

• Detect and address spatial biases during
dataset development, supporting the creation

of more balanced and robust benchmarks.

• Continuously monitor and maintain the
alignment between production data, bench-
mark tasks, and application demands as sys-
tems evolve.

For detailed practitioner guidance and applica-
tion examples, see Appendix B. Further discussion
of limitations and future directions is provided in
Appendix C.

6 Conclusion

We introduced the Region Comprehension Index
(RCI), the first model-based score to explicitly
quantify whether multimodal benchmarks are suit-
able for global or local visual reasoning to solve
tasks. By providing a transparent measure of spatial
reasoning dependency, RCI empowers researchers
and practitioners to curate and evaluate datasets that
are better aligned with real-world application needs,
supporting the development of robust MLLMs for
deployed systems.

Through systematic evaluation on 13 widely-
used benchmarks, we found that most current
datasets favor localized reasoning and often contain
significant spatial biases and shortcuts, potentially
undermining model robustness and generalization
in practical settings.

RCI is already integrated into enterprise work-
flows to guide dataset construction and evalua-
tion to train production-grade multimodal models.
Looking forward, we will extend RCI to sequential
and broader multimodal domains such as video and
audio, further enabling reliable, production-ready
AI systems.

Limitations

While RCI is model-based, our experiments show
that its trends are robust across diverse open-
source architectures and scales. Nevertheless, ab-
solute RCI values may still reflect reference model
choices, and future work could explore ensembles
or standardized model sets for evaluation. Our
analysis is limited to visual benchmarks and does
not address temporal or audio modalities, which
present new challenges for reasoning assessment.

Additionally, RCI computation requires multiple
model inferences per image (for n = 2, 3 patch
granularities), leading to increased cost on large
datasets; efficient sampling or approximation meth-
ods are a promising area for further research. Our
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study focuses on open-source models due to cost
and reproducibility; extending RCI to proprietary
or closed-source systems remains an open question.

Expanded discussion of these points and further
future directions can be found in Appendix C.
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A Appendix

A.1 Expanded Definitions: MPP and FIP
RCI is based on two key quantities, each computed
using the native evaluation metric (e.g., accuracy,
CIDEr, VQA score) of the benchmark:

Maximum Patch Performance (MPPn): For
patch granularity n, each image is divided into
n × n non-overlapping patches. For each image-
question pair, we compute the model’s prediction
on each patch and select the highest-performing
patch as the prediction for that sample. The set
of all such “best-patch” predictions is then used
to compute the official benchmark metric to yield
MPPn:

MPPn = M
(
{ max
p∈P(n)

i

F (p, qi)}Ni=1

)

where M is the benchmark’s evaluation metric
(e.g., accuracy), P(n)

i is the set of n × n patches
for image i, qi is the question or prompt, F is the
reference model’s prediction for patch p and query
qi, and N is the dataset size.

Full Image Performance (FIP): For the same
dataset, FIP is the model’s performance when using
the full image for each input:

FIP = M
(
{F (imgi, qi)}Ni=1

)

where imgi is the original image.
Key Property: Since both MPPn and FIP use

the same data and evaluation metric, RCI is invari-
ant to metric choice and directly comparable across
benchmarks.

Intuitive Explanation:
- MPPn: “What is the best the model can do if it

only sees one patch of the image?”
- FIP: “How well does the model do with the

whole image?”
- If MPPn is much less than FIP, the tasks in the

dataset needs information from multiple regions
(global reasoning).

- If MPPn is close or more to FIP, the tasks in the
dataset can be solved well with individual patches
(localized reasoning).

A.2 Chance Floors & Validity Domain
Chance floors. We define a dataset-specific
chance baseline, consistent with each dataset’s offi-
cial scorer:

• Multiple-choice QA: uniform guess 1/|C|
over options.

• Yes/No: 0.5; if label skew is material, we also
compute the majority-class baseline and use
max(0.5, majority).

• Open-ended VQA / short-answer: the
majority-answer baseline evaluated with the
official scorer (for VQA-style consensus met-
rics this is typically near zero).

Validity rule. We interpret RCI only in non-
degenerate regimes where full-image performance
(FIP) exceeds the dataset’s chance floor by a small
absolute margin. A (dataset, model) cell (d,m) is
deemed valid if

FIP(d,m) ≥ chance(d) + ∆min, (2)

with ∆min = δ and δ = 1.0 percentage point
by default. When confidence intervals are re-
ported, we adopt a more conservative threshold
∆min = max{δ, 2 SE}, where SE is the standard
error estimated over items (nonparametric boot-
strap by default).

Outcome. All dataset–model pairs in this paper
satisfy (2); consequently, no pairs are suppressed
and all reported RCI values are interpreted. The
datasets categorization are provided in Table 3.

A.3 Extended Experimental Setup
Benchmark Evaluation Procedure. To system-
atically quantify reasoning dependencies within
benchmarks, we follow a structured evaluation pro-
cedure:

1. Obtain model predictions for each image
patch independently.

2. Identify the patch achieving the highest accu-
racy relative to ground-truth labels.

3. Compute the Maximum Patch Performance
MPPn, representing the best achievable per-
formance using a single patch at granularity
n.

4. Calculate the Full Image Performance FIP by
evaluating models on full, unaltered images.

5. Derive RCI using MPPn and FIP for the spec-
ified granularity.

Each evaluation is executed three times, and we re-
port the averaged results, observing negligible vari-
ance across runs. For consistency and reproducibil-
ity, evaluations are conducted using VLMEvalKit
(Duan et al., 2024).
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Model Selection Criteria To comprehensively
evaluate dataset biases and the dependency on
global versus localized reasoning, we selected mod-
els based on the following key criteria:

• Architectural Diversity: We include models
with varied architectures, ensuring that our
findings are not specific to a single model de-
sign but instead generalized across different
model families.

• Reasoning Capabilities: Models are chosen
to represent a balance between fine-grained
local reasoning and global reasoning. This
allows us to assess whether benchmarks pro-
mote or hinder global reasoning.

• Grounding and Localization Sensitivity:
Since RCI specifically analyzes spatial bias,
models that excel in object grounding, point-
ing, and spatial reasoning tasks provide deeper
insights into patch-level performance.

• Scalability and Efficiency: We include mod-
els optimized for both efficiency and perfor-
mance while reducing compute requirements
for stable RCI.

Models Used Based on these criteria, we selected
the following MLLMs for evaluation:

InternVL 2.5-1B (Chen et al., 2024c; Gao et al.,
2024; Chen et al., 2024b,d) is a large-scale, open-
source MLLM that has demonstrated strong perfor-
mance across diverse multimodal reasoning tasks,
including document understanding, commonsense
reasoning, and hallucination detection. Its robust-
ness on vision-language benchmarks, including
MMMU, makes it particularly suitable for analyz-
ing dataset biases related to local versus global
reasoning.

Qwen2-VL-2B (Wang et al., 2024b) is a
lightweight yet powerful MLLM designed for effi-
cient deployment without sacrificing reasoning ca-
pabilities. Notably, it exhibits strong performance
in multi-image understanding and long-context rea-
soning, making it an essential candidate for evalu-
ating RCI, particularly for tasks that require exten-
sive global context comprehension.

Molmo-1B (Deitke et al., 2024) is an MLLM
specifically designed with an emphasis on fine-
grained image-text reasoning, grounding, and
pointing tasks. Built from scratch using open

datasets such as PixMo, Molmo’s architecture is
inherently sensitive to spatial biases. Its ability
to highlight localized versus global attention pat-
terns makes it a valuable model for our patch-based
evaluation and heatmap analyses.

A.4 Dataset & Benchmarks
We evaluate our approach across 13 widely-used
vision-language benchmarks, covering a diverse
range of tasks. These datasets were selected to rep-
resent a balanced mix of localized perception tasks
(e.g., object recognition) and global contextual rea-
soning challenges (e.g., complex multiple choice
question answering).

• Visual Question Answering (VQA): Bench-
marks such as GQA (Lu et al., 2022),
ChartQA (Masry et al., 2022), TextVQA
(Singh et al., 2019), and VizWiz (Gurari
et al., 2018) are open-ended VQA tasks where
MLLMs must generate responses without re-
stricted answer choices. These benchmarks
assess a model’s ability to infer answers based
on both localized and global scene informa-
tion.

• Multiple-Choice Question Answering
(MCQ): Benchmarks including BLINK (Fu
et al., 2024b), RealWorldQA (XAI-Org,
2024), AI2D (Kembhavi et al., 2016),
ScienceQA (Lu et al., 2022), and MMStar
(Chen et al., 2024a) provide multiple answer
choices, requiring MLLMs to differentiate
between options and select the most accurate
response. These tasks evaluate multimodal
reasoning and answer disambiguation, offer-
ing insights into whether datasets support
global contextual reasoning.

• Yes/No Questions (Binary Classification):
Datasets such as POPE (Li et al., 2023), Hal-
lusionBench (Guan et al., 2024), AMBER
(Wang et al., 2024a), and MME (Fu et al.,
2024a) focus on binary (yes/no) questions.
AMBER, in particular, tests the ability of the
model to capture fine-grained spatial relation-
ships, making it useful for evaluating whether
a dataset enforces strict spatial comprehen-
sion.

Our dataset selection ensures a diverse evaluation
landscape, encompassing tasks that test both local-
ized visual understanding and complex multi-step
reasoning.
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Task type Datasets (examples) Chance(d) definition

MCQ AI2D, BLINK, ScienceQA 1/|C| (uniform over options)
Yes/No AMBER, MME, POPE, HallusionBench 0.5 (or majority, whichever is larger)
Open-ended GQA, ChartQA, TextVQA, VizWiz Majority-answer under official scorer

Table 3: Task-aware chance definitions used for validity checks. All cells in our study pass FIP ≥ chance+ δ.

Figure 5: Correlation heatmap comparing RCI for n=2,3; between smaller models and their larger-scale counterparts.
The results show consistently high intra-model correlations (≥ 0.86). While larger models show slightly lower cross-
model correlation, the findings reinforce that dataset-induced biases persist even in state-of-the-art architectures,
validating the use of smaller models for RCI evaluation.

Dataset Full Img Perf. (%) Patch Perf. (%) Perf. Change (%) RCIn=3 w/ Molmo-1B
ChartQA_TEST 93.0 66.0 -27.0 0.237
AMBER 80.0 82.0 +2.0 -0.038
BLINK 46.0 73.0 +48.0 -0.516

Table 4: Human accuracy with full images vs. best patch on three benchmarks with varying RCI.

A.5 Extended Result & Discussion

A.5.1 Reference Model and Scale Comparison

To ensure the generalizability of RCI trends, we
compare its behavior across both model architec-
tures and scales. As visualized in Figure 5, high
intra-model and intra-family correlations (r ≥
0.86) persist even as model size increases (e.g.,
Qwen2-VL-2B vs. Qwen2-VL-72B). Notably, even
larger models remain highly correlated, their cross-
model correlations are slightly lower. Molmo-72B
shows strong alignment with InternVL-2.5-26B

and Qwen2-72B, reinforcing that even the largest
models, remain highly sensitive to dataset-induced
spatial biases, underlining that benchmark improve-
ments must focus on data construction rather than
model architecture and scaling alone.

A.5.2 Human Study: Protocol and Findings

Protocol. To assess the alignment between RCI
and human reasoning, we selected three represen-
tative benchmarks: ChartQA_TEST (high RCI),
AMBER (balanced RCI), and BLINK (low RCI).
For each, we sampled approximately 20% of the
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dataset (ChartQA_TEST, AMBER and BLINK).
Three annotators (authors of the paper) answered
benchmark questions under two conditions: (1) see-
ing only the best-performing patch, and (2) seeing
the full image. Annotators were not shown model
outputs or dataset labels and could consult task in-
structions as needed. We measured performance in
both conditions and collected qualitative feedback
on difficulty and task confidence.

Findings. Table 4 summarizes the results. For
ChartQA_TEST (high RCI), human- performance
dropped sharply from 93% (full image) to 66%
(patch only), closely mirroring the RCI score of
0.29. For AMBER (balanced RCI), the perfor-
mance increase was modest (80% to 82%), con-
sistent with near-zero RCI. For BLINK (low RCI),
humans performed well with the patch-only input,
consistent with strong localized cues indicated by
negative RCI.

Qualitative feedback further supports these
trends: annotators reported greater uncertainty and
frustration for high-RCI tasks when restricted to
patches, noting that key information was often miss-
ing. For low-RCI tasks, patch-based answers felt
easier and more “guessable,” consistent with short-
cut cues.

Conclusion. These results demonstrate strong
alignment between human performance drops and
RCI scores across benchmarks. Thus, RCI not only
reveals model-dependent spatial biases, but also
aligns with human reasoning demands, supporting
its use as a diagnostic tool for dataset and bench-
mark development.

A.5.3 Effect of Higher Patch Granularity
(n = 4, 5)

Dataset RCIn=3 RCIn=4 RCIn=5

ChartQA_TEST 0.237 0.30 1.00
AMBER -0.038 -0.030 0.55
BLINK -0.516 -0.558 0.38

Table 5: RCI values (w/ Molmo-1B) at increasing patch
granularity (n = 3, 4, 5) for representative benchmarks.
Higher n does not yield new trends and can fragment
meaningful visual content.

To evaluate the effect of finer spatial partitioning,
we computed RCI values at higher patch granular-
ities (n = 4 and n = 5) for three representative
benchmarks (ChartQA_TEST, AMBER, BLINK)

using Molmo-1B as the reference model. Results
are shown in Table 5.

We observe that RCI remains relatively stable
from n = 3 to n = 4, but increases sharply for
n = 5 across all datasets—most notably, RCIn=5

for ChartQA_TEST rises to 1.00, and for AMBER
and BLINK to 0.55 and 0.38, respectively. This
sharp increase is not indicative of greater global rea-
soning requirements, but rather reflects an artificial
inflation caused by excessive patch fragmentation:
when each patch contains as little as 4% of the
original image, essential visual context required to
solve the task is often lost, dramatically reducing
maximum patch performance (MPP) while leaving
full-image performance unchanged. This, in turn,
inflates the RCI score and obscures the meaningful
distinction between local and global reasoning.

These findings highlight a fundamental limita-
tion of overly fine partitioning: as n increases,
patches may no longer retain enough semantic in-
formation to meaningfully assess reasoning depen-
dencies. Thus, although moderate changes in n
(from 2 to 3 or 4) provide some additional insight,
further partitioning risks distorting the interpretabil-
ity and utility of RCI. Based on this analysis, we
recommend using n = 2 or n = 3 as a practical
and meaningful range for spatial bias assessment
in most vision-language benchmarks.

A.6 Spatial Bias Visualizations and
Interpretation

To complement the quantitative spatial bias anal-
ysis in the main text, we present detailed visual-
izations of patch-wise contributions for all bench-
marks and model variants. These analyses pro-
vide an interpretable diagnostic for identifying spa-
tial shortcuts, dataset artifacts, and potential weak-
nesses in benchmark design.

Patch Contribution Distributions (n = 2). Fig-
ure 6 (box plot) summarizes the distribution of each
patch’s contribution (as a percentage of Maximum
Patch Performance, MPP) across all datasets for
n = 2 patch granularity and three different model
architectures. Uniform distributions would indicate
no spatial bias, while skewed contributions signal
over-reliance on certain regions. We observe that,
on average, central and lower-right patches con-
tribute more, suggesting that many datasets embed
critical information non-uniformly.

Patch Performance Heatmaps (n = 2 and n =
3). Figures 7 and 8 show heatmaps for patch-wise
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Figure 6: Patch-wise MPPn=2 distributions across all datasets. Due to larger patches compared to MPPn=3, it is
harder to isolate localized reasoning dependencies and spatial biases. Patch 2 exhibits slightly higher variance,
suggesting dataset-dependent reliance.

MPP contributions at both n = 2 (2x2) and n = 3
(3x3) granularities, for each benchmark. Color in-
tensity indicates the relative importance of each
patch position, averaged across all samples. Across
most benchmarks, a pronounced central bias is ev-
ident at n = 3, where the center patch (patch 5)
accounts for a disproportionately large fraction of
performance. In contrast, peripheral patches (e.g.,
corners and edges) are consistently underutilized,
reinforcing the claim that current datasets often
fail to require models to attend to the full spatial
context.

Dataset-Specific and Granularity Insights.
Certain benchmarks (e.g., ChartQA_TEST, MM-
Star) display task-specific spatial dependencies,
such as top-right or lower-left patches dominating
due to consistent layout of legends or labels. Com-
paring n = 2 with n = 3, finer granularity reveals
sharper biases that are masked at coarser levels,
confirming that spatial artifacts are best diagnosed
with higher patch resolution (balanced against com-
putational feasibility).

Interpretation and Takeaways. These visual-
izations concretely demonstrate the prevalence of
spatial shortcuts in widely used benchmarks and
highlight how RCI and patch-based analysis enable
dataset creators to detect and correct these biases.
Practitioners should leverage such analyses during
dataset development and choosing benchmarks to
evaluate models, to ensure that benchmarks reflects

the usecase requirements , thereby supporting the
construction of more robust and generalizable mul-
timodal models.

B Practical Implications for Industry and
Deployment

The Region Comprehension Index (RCI) offers a
concrete, actionable tool for practitioners design-
ing, auditing, and maintaining multimodal bench-
marks and datasets for real-world applications. In-
tegrating RCI into data and system workflows can
provide the following practical benefits:

1. Application-Driven Dataset Selection: RCI
enables practitioners to select or curate
datasets according to the actual reasoning re-
quirements of their target use cases. For exam-
ple, high-RCI datasets are best suited for tasks
requiring holistic scene understanding (e.g.,
autonomous driving, document analysis, com-
plex visual QA), while low-RCI datasets are
appropriate for local cue-driven applications
(e.g., facial authentication, manufacturing de-
fect detection).

2. Benchmark Auditing and Dataset Quality
Control: By systematically quantifying spa-
tial reasoning dependencies, RCI helps iden-
tify central or localized biases that may un-
dermine generalization. This allows dataset
creators to remediate these issues—by di-
versifying spatial placement of task-relevant
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Figure 7: Patch-wise MPPn=2 performance heatmaps across datasets. The results show that performance is relatively
uniform across patches, but models still prioritize certain patches, reinforcing a reliance on localized rather than
global contextual reasoning.

content or augmenting underrepresented re-
gions—before system deployment.

3. Guided Dataset Construction and Improve-
ment: During iterative dataset development,
RCI can be used as a continuous feedback
signal: practitioners can set RCI targets for
new benchmarks and use the metric to moni-
tor and correct emergent biases as more data
is collected or annotated.

4. Deployment Robustness and Continuous
Monitoring: For deployed systems, RCI can
inform post-deployment auditing. If system

failures or unexpected behaviors are observed
in production, re-evaluating datasets with RCI
can reveal whether unintentional local/global
biases have crept in over time, prompting cor-
rective data interventions.

5. Actionable Workflow for Practitioners:

• Step 1: Apply RCI to candidate datasets
or benchmarks to measure their depen-
dency on local vs. global reasoning.

• Step 2: Compare RCI profiles to the rea-
soning needs of your application (see Ta-
ble 6 for guidance).
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Figure 8: Patch-wise MPPn=3 performance heatmaps across datasets. The results highlight that central and middle-
row patches consistently dominating performance. Peripheral patches contribute significantly less, confirming that
benchmarks favor spatial regions and localized reasoning, potentially leading to shortcut learning in multimodal
models.

• Step 3: If mismatches are found, use
RCI as a feedback signal for data aug-
mentation, sample selection, or bench-
mark redesign.

• Step 4: Re-evaluate after each major up-
date to ensure continued alignment with
application requirements.

RCI thus empowers both researchers and indus-
trial teams to build, evaluate, and maintain datasets
and benchmarks that more accurately reflect and
anticipate real-world demands. This enables the
development of robust, generalizable multimodal

systems that perform reliably outside controlled lab
settings.

B.1 A New Paradigm for Benchmark
Evaluation

The adoption of RCI introduces a new paradigm for
quantifying multimodal dataset biases. Unlike tra-
ditional dataset metrics, which focus on linguistic
alignment or classification accuracy, RCI explicitly
measures spatial reasoning dependencies, provid-
ing a more interpretable framework for evaluating
dataset structure.
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Application Domain Recommended
RCI

Reasoning Requirement / Rationale

Autonomous Driving,
Remote Sensing, Medi-
cal Diagnostics

High (≫ 0) Requires holistic/global understanding of the
full scene; critical information is distributed
across image regions.

Document Intelligence,
Chart QA, Visual Ana-
lytics

Medium to
High (≳ 0)

Relies on integrating spatially dispersed or
multi-element content; benefits from enforcing
global context reasoning.

Facial Recognition,
Fine-Grained Visual
Inspection, Defect
Detection

Low (≲ 0) Performance is determined by local visual cues;
global scene often irrelevant or distracting.

Multi-Purpose, General
VQA, Open-World
Tasks

Medium (near
0)

Mixed reasoning needs; desirable to avoid
strong local or global bias for broad applica-
bility and generalization.

Table 6: Application scenarios and recommended RCI ranges. RCI helps practitioners select or design datasets best
suited to the real-world reasoning demands of their use case.

Question Original 2×2 Split 3×3 Split Answerable with

Which direction is the
arrow pointing?

Full image, 2×2 split
(row 2, column 1), 3×3
split (row 3, column 1)

How many stamps are in
this photo?

Full image, 3×3 split
(row 2, column 2)

Where is the toy relative
to the dog?

Full image, 2×2 split
(row 1, column 2)

Which cat is smaller? Full image

Table 7: Illustrative examples from the RealWorldQA dataset demonstrating how context granularity (full image vs.
2×2 and 3×3 splits) affects answerability. For each question, the answerable regions are highlighted, showing which
image segments provide sufficient context for accurate answering. Green boundaries denote sufficient context; Red
boundaries indicate insufficiency.

This paradigm shift has three major implications:

• Researchers can use RCI to systematically
quantify reasoning requirements, revealing
dataset biases that traditional metrics over-
look.

• Benchmark designers can apply RCI to ensure
datasets enforce distributed visual reasoning
rather than localized shortcut learning.

• Practitioners can leverage RCI to identify
which datasets to train, benchmarks and mod-
els are best suited for real-world multimodal
applications.

By setting a higher standard for training and
benchmarking datasets, this work aims to drive
progress toward more interpretable, robust, and
generalizable vision-language models.
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B.2 Real-World Relevance
The biases revealed by RCI have significant im-
plications for real-world applications of vision-
language models:

• Complex Environments. Applications such
as autonomous driving, medical imaging, and
robotics require global reasoning across dis-
tributed visual information. Models trained
on biased datasets may struggle to generalize
to these contexts.

• Robustness and Interpretability. Models
that rely on localized cues are less robust to
unseen scenarios and harder to interpret. In-
corporating benchmarks with higher RCI’s
can lead to more reliable and interpretable
systems.

• Region Comprehension in Real-Time Sys-
tems. Tasks such as disaster response and
surveillance demand real-time processing of
spatially distributed information. Evaluating
and improving region comprehension is criti-
cal for such high-stakes scenarios.

B.3 Illustrative Examples
To qualitatively demonstrate how RCI reflects vi-
sual reasoning dependencies in vision-language
tasks, Table 7 presents representative examples
from the RealWorldQA benchmark. Each row
shows a question along with the original image,
its 2×2 and 3×3 patch splits, and visual context
needed to answer the question. These examples
highlight varying degrees of reliance on local ver-
sus global visual information.

These examples demonstrate how RCI serves as
a fine-grained diagnostic tool to assess the extent of
visual context needed for accurate question answer-
ing, helping uncover local vs. global reasoning
biases in multimodal datasets

C Limitations and Future Work

While RCI provides a novel framework for evaluat-
ing dataset biases and spatial reasoning require-
ments, several limitations remain. Addressing
these challenges will be essential for expanding its
applicability and ensuring comprehensive bench-
mark evaluation.

C.1 Current Limitations
Model Dependency. Since RCI is computed us-
ing model-based evaluations, its results may be in-

fluenced by model architecture and training biases.
Future work should explore the use of model en-
sembles or develop a standardized reference model
set to ensure consistency across evaluations.

Single-Image Focus. Our evaluation is primar-
ily suited for single-image benchmarks, limiting
its applicability to datasets requiring multi-image
context or video-based reasoning. Extending RCI
to sequential data would enable an understanding
of temporal biases and multi-frame dependencies.

Task-Specific Sensitivity. Certain tasks, such as
single-object detection, inherently rely on local-
ized information rather than distributed reasoning.
Future adaptations of RCI should account for task-
specific dependencies, ensuring fair evaluations
across different types of multimodal tasks.

C.2 Future Research Directions

Expanding to Multi-Image and Video Under-
standing. To evaluate spatial biases in multi-
frame reasoning, we propose extending RCI to
video datasets and multi-image benchmarks. This
would allow for analyzing how dataset biases
evolve over time, particularly in tasks requiring
temporal consistency.

RCI for Dataset Optimization. Beyond evalu-
ating existing benchmarks, RCI can be leveraged
for training dataset construction and filtering. By
computing RCI at the dataset level, we can:

• Filter out samples where models can succeed
using only localized information, ensuring a
dataset composition that requires global con-
textual reasoning.

• Design adversarial datasets that distribute task-
relevant information across multiple regions,
preventing models from relying on shortcuts.

• Implement automated dataset rebalancing,
where training data selection is adjusted dy-
namically based on RCI.

Adversarial Benchmarking. To prevent models
from exploiting dataset biases, we propose design-
ing adversarial dataset variants. These datasets
would include:

• Randomized spatial layouts to test whether
models generalize beyond static object place-
ments.
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• Occlusion-based modifications to analyze
how models adapt when key visual cues are
hidden.

• Cross-domain shifts to evaluate model robust-
ness in unseen distributions.

By addressing these challenges, RCI can evolve
into a comprehensive framework across different
modalities not only for dataset evaluation but also
for dataset and model optimization. Future re-
search can explore integrating RCI directly into
the training pipeline to improve dataset fairness,
balance spatial reasoning, and enhance multimodal
model generalization, ensuring more robust and
interpretable benchmarking across multimodal AI
research.
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