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Abstract

Advertising (Ad) is a cornerstone of the digital
economy, yet the moderation of video adver-
tisements remains a significant challenge due
to their complexity and the need for precise vio-
lation localization. While recent advancements,
such as the RAVEN model, have improved
coarse-grained violation detection, critical gaps
persist in fine-grained understanding, explain-
ability, and generalization. To address these
limitations, we propose RAVEN++, a novel
framework that introduces three key innova-
tions: 1) Active Reinforcement Learning (RL),
which dynamically adapts training to samples
of varying difficulty; 2) Fine-Grained Viola-
tion Understanding, achieved through hierarchi-
cal reward functions and reasoning distillation;
and 3) Progressive Multi-Stage Training, which
systematically combines knowledge injection,
curriculum-based passive RL, and active RL.
Extensive experiments on both public and pro-
prietary datasets, on both offline scenarios and
online deployed A/B Testing, demonstrate that
RAVEN++ outperforms general-purpose LLMs
and specialized models like RAVEN in terms of
fine-grained violation understanding, reasoning
capabilities, and generalization ability.

1 Introduction

Advertising (Ad) plays a pivotal role in the digital
economy, serving as a primary driver of revenue
and growth for online platforms (Rathee and Mil-
feld, 2024; Campbell et al., 2025; Ji et al., 2025a).
To maintain legal compliance, support sustainable
development, and create a positive user experience,
platforms implement strict content moderation poli-
cies for advertisers. Despite these efforts, viola-
tions of Ad guidelines remain prevalent, present-
ing ongoing challenges for effective moderation.
While recent advancements in large language mod-
els (LLMs) (Liu et al., 2023; Bai et al., 2023a,b;
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Zhu et al., 2024a,b, 2025a) have improved the de-
tection of non-compliant content, critical gaps per-
sist, especially in the moderation (Qiao et al., 2024;
Madio and Quinn, 2025; Hasan and Juhannis, 2024;
Al Kurdi and Alshurideh, 2025; Baek et al., 2024)
of video advertisements.

Among all content types, video advertisements
are the most challenging to moderate due to their
complexity and the need for precise localization
(Huang et al., 2024; Ji et al., 2025b, 2023; Chen
et al., 2024; Gu et al., 2024; Ji et al., 2022) of
violations. Recent work, such as RAVEN (Ji
et al., 2025c), has made significant progress in
identifying coarse-grained violation labels and sub-
scenes by leveraging large-scale coarsely annotated
datasets and fine-tuning with smaller, precisely an-
notated datasets. However, in practical industrial
applications, RAVEN’s capabilities still face cer-
tain limitations that highlight opportunities for fur-
ther enhancement: 1) Fine-Grained Understand-
ing: While RAVEN performs well in detecting ma-
jor violation categories, its ability to identify finer-
grained sub-categories and localize sub-scenes with
high precision remains an area for improvement;
2) Explainability: RAVEN’s reasoning process oc-
casionally produces explanations that are verbose
or misaligned with label rules, and in some cases,
its chain-of-thought (CoT) reasoning may contra-
dict the final output, reducing its interpretability; 3)
Generalization: RAVEN’s performance in out-of-
domain (OOD) scenarios is limited, which restricts
its applicability in diverse industrial settings.

These limitations arise from three key factors:
1) RAVEN’s reliance on fixed rule-based rewards
in its GRPO-based (Guo et al., 2025) passive re-
inforcement learning framework, which limits its
adaptability to samples of varying difficulty; 2) in-
sufficient constraints on the model’s reasoning and
attribution processes, which can lead to inconsis-
tent explanations; 3) a lack of generalized under-
standing of Ad knowledge and moderation rules,
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which can result in overfitting to specific labels and
reduced OOD performance.

To the end, we propose RAVEN++ with three
key innovations: 1) Active Reinforcement Learn-
ing: RAVEN++ dynamically rolls out samples of
varying difficulty during training and adaptively
interleaves supervised fine-tuning (SFT) with rein-
forcement learning (RL) to optimize performance,
leveraging the complementary strengths of SFT for
tasks beyond the model’s current capabilities and
RL for refining existing skills; 2) Fine-Grained Vi-
olation Understanding: By designing a hierarchi-
cal set of several reward functions that incorporate
Tversky Distance and distill reasoning ability from
larger models, RAVEN++ significantly improves
the accuracy of fine-grained violation categories,
the precision of sub-scene localization, and the reli-
ability and logical coherence of its explanations; 3)
Progressive Multi-Stage Training: RAVEN++ in-
troduces a systematic training framework that com-
bines progressive knowledge injection of Ad and
moderation rules, curriculum-based passive RL,
and active RL, effectively leveraging both large-
scale noisy data and small-scale precisely anno-
tated data to enhance violation granularity, general-
ization, and interpretability.

We conduct extensive experiments to validate
RAVEN++ using both publicly available datasets
and proprietary industrial data, on both offline and
online deployment scenarios. Our results demon-
strate that the RAVEN-++ model outperforms mod-
els of the same scale, including general-purpose
LLMs like LLaVa (Liu et al., 2023) and Qwen(Bai
et al., 2023a), as well as the specialized video mod-
eration model RAVEN(Ji et al., 2025¢), in terms
of fine-grained violation understanding, reasoning
capabilities, and generalization ability.

2 Related Work

2.1 Advancements in Reinforcement Learning
for Multimodal Systems

Recent breakthroughs in Multimodal Large Lan-
guage Models (MLLMs) have revolutionized how
machines interpret (Liu et al., 2023; Bai et al.,
2023a,b; Maity et al., 2024) and generate con-
tent across visual and textual domains (Yin et al.,
2023; Ji et al., 2024a; Xu et al., 2024a,b; Zhu
et al.; Ji et al., 2024b). While foundational archi-
tectures like CLIP (Radford et al., 2021) and BLIP
(Li et al., 2022) established strong cross-modal
alignment, and subsequent models like Flamingo

(Alayrac et al., 2022) incorporated temporal aware-
ness, these systems predominantly rely on super-
vised learning paradigms. This dependence of-
ten leads to catastrophic forgetting when adapt-
ing to new tasks and limited generalization to un-
seen data distributions. Emerging research has be-
gun exploring reinforcement learning (Zhu et al.,
2025b; Yu et al., 2024; Amini et al., 2024; Song
et al., 2024; Liu et al.) with curriculum learn-
ing (Narvekar et al., 2020; Bengio et al., 2009;
Graves et al., 2017; Hacohen and Weinshall, 2019;
Soviany et al., 2022; Pentina et al., 2015) as a
complementary framework to address these lim-
itations. Rather than treating reinforcement learn-
ing as a separate optimization mechanism, contem-
porary approaches integrate it as a core compo-
nent of the multimodal reasoning pipeline. Tech-
niques such as reward-weighted policy optimiza-
tion (Christiano et al., 2017) and preference-based
learning (Rafailov et al., 2024) have demonstrated
remarkable success in aligning model outputs with
human preferences, particularly in domains requir-
ing nuanced temporal understanding. The inte-
gration of chain-of-thought reasoning (Wei et al.,
2022; Ji et al., 2024¢) with reinforcement learning
has further enabled models to decompose complex
multimodal tasks into structured decision-making
processes, creating more interpretable and control-
lable systems.

2.2 Active Learning Paradigms for Content
Understanding

The paradigm of active reinforcement learning rep-
resents a significant shift from traditional passive
learning approaches. While conventional systems
process whatever data they are given, active rein-
forcement learning empowers models to strategi-
cally acquire the most valuable perceptual informa-
tion through dynamic interaction with their envi-
ronment. This approach fundamentally transforms
the model from a passive observer to an active par-
ticipant in the learning process. Modern implemen-
tations of active reinforcement learning build upon
early theoretical foundations (Epshteyn et al., 2008)
but incorporate sophisticated perceptual capabil-
ities. Contemporary systems (Shang and Ryoo,
2023) demonstrate that active viewpoint selection
and strategic information gathering can dramati-
cally improve sample efficiency and generalization
performance. In the context of content modera-
tion (Al Kurdi and Alshurideh, 2025; Kolla et al.,
2024; Kumar et al., 2024; Blackwell, 2025), this
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Figure 1: The Overview of RAVEN++ Training.

active approach enables models to proactively iden-
tify subtle violations that might be missed through
passive observation alone. The framework allows
models to dynamically adjust their perceptual fo-
cus, prioritizing regions of interest and temporal
segments that are most likely to contain policy vi-
olations, thereby optimizing both computational
resources and detection accuracy.

3 Method

3.1 Overview

3.1.1 Problem Formulation

Given an input video V, a predefined hierarchi-
cal violation labels tree 7', and a prompt P, the
RAVEN++ framework outputs: 1) the violation
labels C = {c1,c9,...,c,} associated with V,
2) the sub-categories S, = {s1,s2,...,Sm} for
each violation label ¢, 3) the temporal intervals
Xes = (th 17 ;) of the sub-scenes corresponding
to each sub-category s of violation ¢, and 4) the
reasoning R s behind each sub-category s, pro-
viding interpretable explanations for the detected
violations. Here, tf:’ s and t;. ; denote the start and
end times of the sub-scene for sub-category s of
violation ¢, respectively. The hierarchical struc-
ture of T is defined as “major category — sub-
category — rule”. This extends RAVEN’s (Ji et al.,
2025c¢) capabilities by incorporating fine-grained
reasoning and improved generalization. Specifi-
cally, RAVEN++ outputs fine-grained sub-labels
for violations and their corresponding reasoning,
enabling more detailed and actionable insights.

3.1.2 Training

As shown in Fig. 1, the manually annotated results
Veis = (YL 5 yL) often deviate from the ground

truth 2, = (2L, 2. ;) due to annotation errors or
ambiguities. While RAVEN achieved significant
improvements by leveraging GRPO-based passive
reinforcement learning (RL) to handle noisy anno-
tations, we aim to further enhance the framework
for: 1) fine-grained identification of sub-labels S,
for each violation c, 2) precise localization of the
temporal intervals X, ; = (t. 7. ) of sub-scenes
corresponding to each sub-category s, and 3) in-
terpretable and reliable reasoning R. s for each
violation.

To achieve these goals, RAVEN++ introduces
progressive multi-stage training: 1) Knowledge In-
jection with Augmented Data: the base model is ini-
tialized with Ad content and label rule knowledge
with augmented data by lightweight SFT; 2) Pas-
sive RL with Large-Scale Noisy Data: the model
is trained on large-scale coarsely annotated data
and a small set of precisely annotated data, guided
by a hierarchical set of 6 reward functions to learn
global data distributions; 3) Active RL with Small-
Scale Precise Data: the model actively identifies
valuable samples through designed sampling strate-
gies, enabling comprehensive improvements with
minimal precisely annotated data.

3.2 Stage 1: Knowledge Injection with
Augmented Data

The knowledge injection process integrates both
Ad content and moderation rule knowledge into the
base model through a unified SFT framework. This
process consists of the following steps:

1) Video Summarization and Ad Knowledge Ex-
traction: The input video V' is processed by a large
model (e.g., Qwen-72B) to generate a detailed cap-
tion or summary, including the product name, prod-
uct attributes (e.g., medicine, cosmetics, clothing),



target audience, and key messaging. Based on the
summary, Qwen-72B generates question-answer
(QA) pairs, such as:

Question: What product is advertised in this video?
Answer: The product is a sunscreen named XXX.

Question: Who is the target audience for this advertisement?
Answer: The target audience is young adults aged about
18-60.

2) Hierarchical Rule Knowledge Extraction: The
moderation rules are structured hierarchically. QA
pairs are generated to capture the relationships be-
tween major categories, sub-categories, and rules,
such as:

Question: What are the sub-categories and rules for the main
category ‘Discomforting Content’?

Answer: Sub-labels: ‘Gory Content,” ..., Rules: ...
Question: What constitutes a violation under the sub-category
‘Misleading Claims’?

Answer: Claims that exaggerate product efficacy without
evidence.

3) Joint SFT: All the generated QA pairs are com-

bined with a small portion of precisely annotated
data to fine-tune the base model.

3.3 Reward Design for RL

The reward function R optimizes the model’s RL
performance across six dimensions,

3.3.1 Format Reward Rgyrmat

It ensures the model’s output adheres to the prede-
fined structure, which is critical for downstream
processing and interpretation, The format requires

the output to include the following components:
Rformat = I((think) (/think) (reason)content summarization: ... risk

analysis: ... conclusion: ...{/reason)(violation) Y/N(/violation)
(result) {major: ..., sub: ..., ground: ...} {/result)

(result) {major: ..., sub: ..., ground: ...} {/result)...),

where I(+) is an indicator function.

3.3.2 Violation Reward Ryjolation

This reward evaluates whether the model’s predic-
tion of a violation matches the ground truth (GT):

Rviolation — ]I(Pviolation = GTviolation)- (2)
3.3.3 Reasoning Consistency Reward Ryeason

This reward encourages logical and coherent rea-
soning chains R s, structured into summarization,
risk analysis, and conclusion. It compares the
model’s CoT reasoning with a high-quality struc-
tured CoT from Qwen-72B (Eq. 1), using a seman-
tic cosine similarity measure with BERT (Devlin,
2018) to enhance interpretability and reliability.

Rreason — Sim(COTmOdela COTQwen-72B)- (3)

3.3.4 Major Category Reward Ryajor

This reward measures the accuracy of the model’s
prediction for the major violation category ¢ € C.
It uses the Tversky distance (Tversky, 1977), a
generalization of the Dice coefficient, to evaluate
the similarity between the predicted and ground
truth major categories:

Rmajor =1- TVCrSkY(Pmajor; GTmajor>7 4

the Tversky distance is particularly effective for im-
balanced datasets, as it allows for flexible weight-
ing of false positives and false negatives.

3.3.5 Sub-Category Reward Ry,

Similar to the major category reward, this compo-
nent evaluates the model’s performance in identi-
fying the specific violation sub-category s € S..
It also employs the Tversky distance for robust
evaluation:

Ry = 1 — Tversky(Psub, GTgup)- 5)

3.3.6 Temporal Grounding Reward Rground

It evaluates the model’s ability to localize the viola-
tion temporal sub-scenes X, s = (tL , t7 ) within
the video. Following RAVEN, it combines the
Intersection over Union (IoU) metric, which mea-
sures the overlap between predicted and ground
truth temporal segments, with a boundary align-
ment reward that penalizes deviations in the start

and end times to ensure precise localization:

Rground :IOU(P ground GTground)+

(6)
Boundary(Pground7 GTground)-
The overall reward R is
R= )\1 Reormat + )\2Rviolati0n + )\SRmajor+ %)

)\4Rsub + )\5Rground + )\6Rreasona

A1, A2, A3, A4, A5, Ag are dynamically adjustable
hyperparameters that control the relative impor-
tance of each reward component.

3.4 Stage 2: Curriculum-Based Passive RL
with Large-Scale Noisy Data

To effectively train the model, we adopt a
curriculum-based passive reinforcement learning
strategy, which dynamically adjusts the weights of
the reward components across three phases. This
approach ensures the model progressively learns
from simpler to more complex tasks, aligning with
its evolving capabilities.
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Figure 2: The deployment of RAVEN++.

3.4.1 Phase 1: Format and Violation Learning

In the early phase, the model focuses on master-
ing the output format and accurately identifying
whether a violation exists. This is critical because
the task format is complex, and errors in format or
violation detection can propagate to downstream
tasks. To prioritize these aspects, the weights \;
(for Rformat) and Ao (for Ryiolation) are set to rel-
atively large values, while the weights for other
reward components are kept small (the reward
weights are [1, 1, 0.5, 0.3, 0, 0.1]). This stage
ensures the model builds a strong foundation in
adhering to the required structure and correctly
classifying violations.

3.4.2 Phase 2: Fine-Grained Violation
Detection and Reasoning

Once the model demonstrates proficiency in format
adherence and violation detection, the focus shifts
to more challenging tasks, including identifying
major categories C, sub-categories S, and generat-
ing interpretable reasoning R s. In this stage, the
weights A1 and Ay are gradually reduced, while the
weights A3 (for Riajor), A4 (for Rgyp), and Ag (for
Rieason) are increased (the reward weights are [0.5,
0.5,1, 1,0, 0.5]). This transition enables the model
to refine its ability to perform fine-grained violation
detection and provide coherent explanations.

3.4.3 Phase 3: Temporal Grounding

In the final phase, the model tackles the most chal-
lenging task: precise temporal localization of vio-
lations X, s = (tlcys, tr.s)- At this stage, the weight
A5 (for Rground) is significantly increased, while
the weights for other components are maintained
or slightly reduced (the reward weights are [0.2,
0.2, 1, 1, 1, 0.5]). This ensures the model dedicates
sufficient resources to learning the temporal bound-
aries of violations, which is critical for accurate

sub-scene localization.

3.5 Stage 3: Active RL with Small-Scale
Precise Data

In the final training phase of RAVEN++, we intro-
duce an active reinforcement learning (RL) stage,
which leverages a small amount of high-quality,
finely annotated data to perform targeted replay
training on valuable samples. This stage is de-
signed to maximize data efficiency while signifi-
cantly improving the model’s performance. During
training, we interleave supervised fine-tuning (SFT)
and RL, maintaining two separate data buffers for
each approach. This strategy is motivated by our
observation that RL excels at maintaining and im-
proving performance on tasks within the model’s
current capabilities, while SFT is more effective
at enabling progress on tasks beyond the model’s
current scope, which is also articled in (Ma et al.,
2025; Chu et al.).

Operation: To operationalize this, we dynam-
ically sample and group training examples based
on their complexity and the model’s performance,
assigning them to either the SFT or RL buffer as
follows:

* Fundamental Knowledge Gaps: Samples
where the model fails to identify violations or
misclassifies the major category are assigned
to the SFT buffer. These cases represent fun-
damental knowledge gaps that require targeted
supplementation to address the model’s inabil-
ity to recognize violations or major categories.

* Refinement of Existing Capabilities: Sam-
ples where the model correctly identifies
the major category but misclassifies the sub-
category, exhibits low IoU for sub-scene local-
ization, or deviates significantly from Qwen-
72B’s reasoning are assigned to the RL buffer
with larger weights. These cases represent
tasks within the model’s current scope but
require refinement in sub-category classifica-
tion, temporal grounding, or reasoning consis-
tency.

* Standard Cases: Samples that do not fall
into the above categories are processed using
normal RL execution but are assigned a very
small weight in the reward function. This en-
sures that the model maintains its performance
on tasks it already handles well, without over-
fitting to less challenging examples. This dy-
namic sampling strategy ensures that SFT is
used for knowledge supplementation on tasks



Marketing Discomforting Vulgar Requiring Prohibited Average
Method Exaggerate Content Content Credential Review Goods/Services Major Category
| Cate.(P/R) Gro. | Cate.(P/R) Gro. | Cate.(P/R) Gro. | Cate.(P/R) Gro. | Cate.(P/R) Gro. | Cate.(P/R) Gro.
l\iomdfllq 0.681/0.532 - | 0.707/0.679 - | 0.667/0.654 - | 0.711/0.687 - | 0.721/0.734 - | 0.697/0.657 -
LLaVA
V1s.SET | 0-796/0.756 0398 | 0.798/0.772 0385 | 0.771/0.799  0.400 | 0.754/0.701 0.432 | 0.789/0.761 0.567 | 0.782/0.758  0.436
Qwen2.5-VL
JB.SFT | 0-832/0.787 0424 | 0.821/0.798 0.402 | 0.800/0.810 0411 | 0.773/0.702 0461 | 0.797/0.771 0.580 | 0.805/0.774  0.456
RAVEN | 0.851/0.801 0.521 | 0.843/0.812 0.477 | 0.810/0.831 0.565 | 0.802/0.713 0.541 | 0.825/0.784 0.669 | 0.826/0.788 0.555
RAVEN++ | 0.905/0.840 0.601 | 0.889/0.859 0.562 | 0.862/0.870 0.650 | 0.873/0.738 0.671 | 0.859/0.832 0.741 | 0.878/0.828 0.647

Table 1: Performance of Violation Major Category (Precision/Recall) and Violation Temporal Grounding (mloU)
on Industrial Dataset. “Cate." indicates “Category”, and “Gro." indicates “Grounding”.

Method Marketing | Discomforting Vulgar Requiring Prohibited Average
Exaggerate Content Content | Credential Review | Goods/Services | Sub-Category (P/R)

RAVEN | 0.638/0.585 | 0.601/0.590 | 0.588/0.611 |  0.586/0.567 | 0.596/0.579 |  0.602/0.586

RAVEN++ | 0.735/0.654 | 0.705/0.622 | 0.668/0.652 | ~ 0.659/0.607 | 0.682/0.704 |  0.690/0.650

Table 2: Performance of Violation Sub-Category (Precision/Recall) on Industrial Dataset.

that exceed the model’s current capabilities,
while RL is applied to refine performance on
tasks within the model’s current scope.

Training Details and Data Efficiency: The
active RL stage places a high emphasis on data
quality, as it relies on a small number of finely
annotated samples. To avoid overfitting and en-
sure stable learning, we use a small learning rate
during this phase. When the buffer accumulates
enough challenging questions to form a training
batch, we perform an SFT or RL step using these
examples. This ensures that the model is trained
on a diverse and representative set of challenging
cases, enabling it to address its weaknesses effec-
tively. Remarkably, even with this limited data, we
observe rapid performance improvements, demon-
strating the data efficiency of this approach. This
efficiency is attributed to the targeted replay train-
ing, which focuses on the most valuable and chal-
lenging samples, enabling the model to quickly
address its weaknesses and enhance its strengths.

4 Deployment

As shown in Fig. 2, based on the deployment of
RAVEN, RAVEN++ integrates difficult positive
and negative samples identified by online review-
ers into the Active RL stage, enabling incremental
learning and continuous model improvement. This
enhancement allows the system to adapt dynami-
cally to emerging violation patterns and improve
its precision over time.

Method ‘ Average
‘ Cate. (P/R)  Gro.
LLaVA-v1.5-SFT ‘ 0.509/0.501 0.370
Qwen2.5-VL-7B-SFT ‘ 0.537/0.517 0.384
RAVEN ‘ 0.551/0.530 0.435
RAVEN++ ‘ 0.584/0.551 0.487

Table 3: Performance of Violation Category (Preci-
sion/Recall) and Violation Temporal Grounding (mIoU)
on Public MultiHateClip Dataset.

S Experiments and Results

We conduct extensive experiments from both of-
fline testing and online testing, utilizing both pub-
lic dataset and practical industrial dataset. For
fair comparison, we follow the dataset settings in
RAVEN.

5.1 Datasets

Our experimental setup follows the dataset settings
in RAVEN (Ji et al., 2025¢). The industrial dataset
consists of 38,000 training videos (with mixed pre-
cise and coarse annotations) and 5,000 precisely
annotated test videos. All annotations adhere to
the same six major violation categories and tempo-
ral interval labels defined in RAVEN. For public
testing, we use the available subset of the Multi-
HateClip (Wang et al., 2024) dataset, consistent
with the RAVEN benchmark.



‘ Online Sample Average

Model
| Cate.(P/R) Gro.
Small Models | 0.711/0.668 -
Qwen2.5-VL-7B-SFT | 0.800/0.787  0.478
RAVEN | 0.821/0.803  0.563
RAVEN++ | 0.873/0.847  0.662

Table 4: A/B Test on the Online Serving.

In-Domain Out-of-Domain

Method ‘ (Average Gro.) | (Average Gro.)

Qwen2.5-VL-7B-SFT | 0433 | 0246
RAVEN | 0546 | 0408
RAVEN++ | 0631 | 0463

Table 5: Study on Generalization Capabilities.

5.2 Offline Testing

We evaluate RAVEN++ against several baselines,
including LLaVA-v1.5 (Liu et al., 2023), Qwen2-
VL-7B (Bai et al., 2023b), Qwen2.5-VL-7B (Bai
et al., 2023b), and RAVEN. The results in Table 1,
2 and 3 show that RAVEN++ outperforms all base-
lines in category accuracy and grounding precision,
achieving significant improvements over RAVEN
in sub-scene interval localization and reasoning
consistency. These gains highlight the effectiveness
of RAVEN++’s active RL stage. Furthermore, we
also perform independent-samples t-tests, which
confirm that the performance differences between
RAVEN and RAVEN++ are statistically significant
(p <0.02).

5.3 Online A/B Testing

To evaluate real-world applicability, we perform
a day-long online A/B test on a live business plat-
form, adhering to the framework established by
RAVEN. By dedicating 20% of the total traffic for
assessment, we compare RAVEN++ with RAVEN,
a compact legacy model, and Qwen2.5-VL-7B-
SFT. As shown in Table 4, RAVEN++ delivers
substantial gains in identifying violative videos,
achieving higher precision and recall in category
detection compared to the legacy model. Moreover,
RAVEN++ achieves an 9.9% improvement over
RAVEN in temporal interval localization accuracy.

5.4 Study on Generalization Capabilities

To further evaluate the generalization ability of
RAVEN++, we follow the experimental design of
RAVEN, training the model on three in-domain cat-

Multi-Task SFT ‘ Passive RL ‘ Active RL ‘ Gro.

v \ \ | 0.461
v v | 0.587
v v v 0647

Table 6: Study on Progressive Training Stages.

Tversky Distance | Reasoning ‘ Average Major
Reward Reward | Category (P/R)

v \ | 0.869/0.820

| v | 08600812

v | v | 0878/0.828

Table 7: Study on Reward Functions.

egories (Discomforting Content, Marketing Exag-
geration, Requiring Credential Review) and testing
it on two out-of-domain categories (Vulgar Con-
tent, Prohibited Goods/Services). The results, pre-
sented in Table 5, reveal that RAVEN++ consis-
tently achieves higher accuracy and better gener-
alization compared to both the Qwen2.5-VL SFT
model and RAVEN.

5.5 Study on Progressive Training Stages

Table 6 presents ablation studies on the three-stage
training process used in this work. The results
show that RAVEN++ achieves steady and signifi-
cant performance improvements with each progres-
sive training stage. Notably, the final active RL
stage boosts grounding performance by 6% com-
pared to the previous stage.

5.6 Study on Reward Functions

RAVEN++ introduces two novel reward functions,
Tversky Distance based and Reasoning Reward,
which are evaluated through ablation studies on the
Industrial dataset. As shown in Table 7, both func-
tions significantly enhance performance, validating
their effectiveness compared to RAVEN.

6 Conclusion

We address the critical challenges of video Ad mod-
eration by introducing RAVEN++, a novel frame-
work that significantly enhances fine-grained vio-
lation understanding, reasoning capabilities, and
generalization ability. Through the integration of
Active RL, Fine-Grained Violation Understanding,
and Progressive Multi-Stage Training, RAVEN++
achieves superior performance on both offline and
online deployment scenarios.



7 Limitations

A key limitation of this work is its exclusive focus
on the video modality for Ad content moderation.
Real-world advertising is inherently multi-modal,
combining text, images, and video. Our current
approach, which analyzes video in isolation, can-
not capture cross-modal inconsistencies—such as
misleading text overlaid on benign visuals. This
restricts its applicability to video-dominant scenar-
ios. However, this constraint outlines a clear path
for future work. Our method provides a foundation
for extension towards a unified multi-modal frame-
work. Future efforts will focus on integrating text
and image analysis to build a holistic system for
robust, comprehensive ad moderation.

8 Ethical Statement

Our research adheres to ethical principles and pri-
oritizes user rights. The dataset samples are for
scientific analysis only and do not reflect the au-
thors’ views. All resources are intended for sci-
entific research purposes only, contributing to the
development of more secure and reliable digital
platforms.
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